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Abstract: Mechanical fault prediction is one of the main problems in condition-based maintenance,
and its purpose is to predict the future working status of the machine based on the collected status
information of the machine. However, on one hand, the model health indices based on the information
collected by the sensors will directly affect the evaluation results of the system. On the other
hand, because the model health index is a continuous time series, the effect of feature learning
on continuous data also affects the results of fault prognosis. This paper makes full use of the
autonomous information fusion capability of the stacked autoencoder and the strong feature learning
capability of continuous deep belief networks for continuous data, and proposes a novel fault
prognosis method. Firstly, a stacked autoencoder is used to construct the model health index through
the feature learning and information fusion of the vibration signals collected by the sensors. To solve
the local fluctuations in the health indices, the exponentially weighted moving average method is
used to smooth the index data to reduce the impact of noise. Then, a continuous deep belief network
is used to perform feature learning on the constructed health index to predict future performance
changes in the model. Finally, a fault prognosis experiment based on bearing data was performed.
The experimental results show that the method combines the advantages of stacked autoencoders
and continuous deep belief networks, and has a lower prediction error than traditional intelligent
fault prognosis methods.

Keywords: continuous deep belief network; fault prognosis; rolling bearings; stacked autoencoder

1. Introduction

When machinery is rotated to achieve motion conversion, the bearing is the most criti-
cal component, and the most prone to fault, in the entire transmission system. According
to statistics, 30% of machinery faults are caused by bearings [1]. Fault prognosis is gaining
traction because of the potential value in reducing loss to property by predicting the future
performance of components.

At present, fault prognosis methods are mainly divided into two major directions:
model-based fault prognosis and data-driven fault prognosis [2]. The model-based fault
prognosis method assumes that an accurate mathematical model of the object system can
be constructed [3]. The performance of the part is evaluated by calculation of functional
damage, and the remaining life of the part is evaluated by building physical and simulation
models [4]. Janjarasjitt et al. constructed a mathematical model that characterizes the
operating state of a bearing by using partially correlated integrals [5]. Lei et al. used
algebraic equations to construct a planetary gearbox vibration signal model for gearbox
failure prediction [6]. Huang et al. extracted fault feature information from the system’s
operating state and built a fault state model using the Kalman rate and an expert system
for fault prognosis [7]. Du et al. combined the advantages of strong tracking square root
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Kalman filters and autoregressive models to build a future measurement state prediction
model [8]. Lin et al. combined the concept of fuzzy posted progress in fuzzy mathematics
with particle filtering to realize the fault prognosis of a three-tank water tank system and a
planetary gear system [9]. Although the model-based method can achieve fault prognosis,
it has two disadvantages that cannot be ignored: (1) There is a strong dependence on the
model. The model built will directly affect the effect of fault prognosis, and it is often
difficult to build accurate mathematical models for complex dynamic systems. (2) The
model generalization is poor. The built model needs to consider various working conditions
and operating states of the predicted object. The generality of the physical model is usually
poor, causing unnecessary waste of human and financial resources.

The data-driven fault prognosis method is based on historical data and uses data
mining to find the performance change characteristics of the model to achieve fault prog-
nosis [10]. Marco et al. extensively reviewed the latest developments in non-destructive
techniques [11]. Zhang et al. established a chaotic time series of oil chromatography data
by introducing chaos theory, and used the Lyapunov exponent method to predict the
gas volume trend in oil [12]. Peng et al. used the moving average model to predict the
dissolved gas content in transformer oil [13]. Yan et al. established a system performance
degradation model and used the auto-regression and moving average model to predict
the remaining useful life of the system [14]. Rigamonti et al. used an integrated echo state
network for fault prognosis of industrial components [15]. Xu et al. used a long short-term
memory model and principal component analysis to realize shield fault prognosis [16].
Li et al. used kernel principal component analysis and the hierarchically gated recursive
unit network to predict the health status of bearings [17]. Cecilia Surace et al. proposed an
instantaneous spectral entropy and continuous wavelet transform for anomaly detection
and fault diagnosis using gearbox vibration time histories [18]. Zhou et al. combined
the advantages of principal component analysis and automatic encoders to successfully
implement early monitoring and prognosis of slowly varying fault signals [19].

Although the data-driven fault prognosis method removes the dependence on models,
there are still three shortcomings: (1) The health index that characterizes the changes in
model performance directly affects the effectiveness of fault prediction. Machine learning
methods such as principal component analysis (PCA) and locally linear embedding (LLE)
have limited feature learning capabilities and cannot fully learn model performance change
information. (2) The disturbance of the vibration signal noise collected by the sensor will
cause random disturbances in the constructed health index, which will affect the fault
prognosis effect. (3) The constructed health index is a continuous time series. Traditional
intelligent prediction methods have limited ability to learn continuous data features.

In order to solve the above problems, this paper proposes an intelligent fault prognosis
method based on stacked autoencoders and continuous deep belief networks. Our work is
summarized as follows:

(1) In order to construct a health index that can accurately represent the change in model
performance, this paper makes full use of the powerful feature learning capabilities
and information fusion capabilities of stacked autoencoders.

(2) In order to solve the problem of local random interference in the health index, this
paper uses the exponential weighted moving average method to smooth the health
index. It can integrate historical information with current information to reduce the
impact of noise.

(3) In order to capture the feature information of the continuous time series, this paper
makes full use of the continuous deep belief network’s powerful feature learning
ability and fault prognosis ability for continuous data.

(4) In order to verify the prediction effect of the fault prognosis method in this paper,
a comparative experiment on fault prognosis is carried out using intelligent mainte-
nance systems (IMS) bearing data as an example.

The rest of the paper is arranged as follows: in Section 2, we briefly introduce the
stacked autoencoder and deep belief network; in Section 3, we introduce the proposed fault
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prognosis method in detail; in Section 4, we conduct experiments to verify the effectiveness
of the proposed method; and Section 5 is the conclusion.

2. Basic Theories of Stacked Autoencoder and Deep Belief Network
2.1. Stacked Autoencoder

Autoencoders are the basic unit of a stacked autoencoder’s composition and function.
As shown in Figure 1, the autoencoder is a three-layer neural network consisting of a visible
layer, a hidden layer, and an output layer. In essence, an autoencoder can be divided into
two parts, namely an encoder and a decoder. A stacked autoencoder, as shown in Figure 2,
is a deep learning model composed of multiple autoencoders, where the output of each
hidden layer is connected to the input of the successive hidden layer. After all the hidden
layers are trained, a backpropagation algorithm (BP) is used to minimize the cost and
update the weights with a labeled training set to achieve fine-tuning.

Figure 1. The structure of an autoencoder.

First of all, we will describe the encoding part. The mapping of high-dimensional data
from the input layer to the hidden layer is the feature learning and information fusion of
the model.

y = sigmoid(Wx + b) (1)

where W represents the weight matrix of the encoding part, b represents the offset vector of
the encoding part, and x represents the input data.

In the decoding, the mapping from the hidden layer to the output layer is regarded as
restoring the learned deep feature information to the original state.

y = sigmoid
(
W ′h + b′

)
(2)

where W ′ represents the weight matrix of the decoding part, b′ represents the offset vector
of the decoding part, and h represents the learned deep feature information.

Since the structure of the input and output is the same, the training process of the
autoencoder is a self-supervised learning process. By continuously reducing the error
between the input data and the output data, the training of the autoencoder is realized.



Actuators 2023, 12, 117 4 of 22

This article uses the mean square error cost function as a measure of model training.
The mean square error cost function is defined as follows:

E =
1
S

S

∑
j=1

1
2

n

∑
i=1

(
xj

i − yj
i

)2
(3)

Figure 2. The structure of a stacked autoencoder.

2.2. Deep Belief Network

A deep belief network (DBN) is a deep learning model based on data probability
distribution proposed by Hinton in 2006 [20]. Deep belief network consists of multiple
restricted Boltzmann machines (RBMs) and a BP neural network. RBMs are the basic unit
of DBNs that implement feature extraction and data mining.

As shown in Figure 3, an RBM is a two-layer neural network that includes a visible
layer and a hidden layer. There is no connection between RBM units in the same layer,
and no data or information interactions are performed. The layers are connected to each
other by weights. The visible layer is used to input data, and all nodes in the hidden layer
take random values of 0 or 1.

Figure 3. The structure of the restricted Boltzmann machine.

There is no connection relationship in the RBM layer; thus, the states of the units
in the layer are independent of each other and updated in parallel. Therefore, it is very
easy to obtain the conditional probability distribution of the hidden layer and the visible
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layer. When the input signal is determined, the probability of the hidden layer unit being
activated is shown in Equation (4):

P(h = 1 | v, θ) =
m

∏
j=0

1(
1 + exp

(
−WT

j v− bj

)) (4)

When the hidden layer node is determined, the probability of the visible layer recon-
struction unit being activated is shown in Equation (5):

P(v = 1 | h, θ) =
m

∏
i=0

1(
1 + exp

(
−WT

i h− ai
)) (5)

RBM uses the method of minimizing contrastive divergence (MCD) for its own model
training to achieve the purpose of minimizing the error between the reconstructed signal
of the visible layer and the original signal. Therefore, under the RBM adjustment of
the learning rate, η, and momentum, m, the model parameter update rule is shown in
Equation (6): 

Wn+1 ← mW
n + η

(〈
vihj

〉
data −

〈
vihj

〉
model

)
an+1 ← ma

n + η(〈vi〉data − 〈vi〉model )
bn+1 ← mb

n + η(〈hi〉data − 〈hi〉model )

(6)

where η represents the learning rate, m represents momentum, 〈·〉data represents P(h |
v, θ), and 〈·〉model represents P(v | h, θ). DBN model training involves two processes:
unsupervised learning and supervised learning. In the unsupervised learning phase,
the DBN relies on RBMs to use greedy algorithms to perform feature learning and deep
mining of input information. In the supervised learning phase, the DBN as a whole is
regarded as a BP neural network that has been initialized with parameters. According to
the error between the model learning result and the actual result, the parameters of the
model are further fine-tuned to complete the training of the model. The unsupervised
learning of DBNs overcomes the sensitivity of traditional BP neural networks to initial
parameters and improves the efficiency of learning and convergence in the supervised
training phase.

3. Proposed Method

Constructing health indices that characterize model performance changes based on
information collected by sensors. And predicting future model performance through
feature learning and information mining of health indices are two of the most popular
problems in the field of fault prognosis. This paper makes full use of the automatic
information fusion capability of the stacked autoencoder and the continuous deep belief
network’s excellent feature learning ability for continuous data. Taking bearing data as
an example, an intelligent fault prognosis method based on stacked autoencoders and
continuous deep belief networks is proposed to solve this problem. This method mainly
includes two parts: The first part constructs health indices that accurately represent the
change in model performance. A stacked autoencoder is used to perform feature learning
and information fusion on bearing lifecycle vibration data to construct health indices that
characterize the changes in bearing performance. Aiming at the local disturbance in health
indices, the exponential weighted moving average method is used to smooth the data to
reduce the impact of noise. The second part is the continuous deep belief network feature
learning and information mining of health indices. Firstly, a continuous deep belief network
suitable for processing continuous data is constructed on the basis of a standard deep belief
network. Then, the continuous deep belief network is used to predict the future health
status of the bearing by capturing the non-linear feature information of the health indices.
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3.1. Construction of Health Index

The premise of fault prognosis is to construct health indices that characterize the
performance changes in the model based on the data collected by the sensors. Since the
characteristic parameters of the vibration signal contain the significant information on
model performance changes, in order to construct suitable health indices, it is necessary to
extract the characteristic parameters of the model from the original bearing vibration signal.
As shown in Table 1, this paper extracts time domain parameters such as the average,
variance, root mean square, peak-to-peak value, and kurtosis from time domain signals,
and frequency domain parameters such as averages, variances, and root mean squares
from frequency domain signals. This paper selects the feature data commonly used in
signal processing, but proves that compared with single feature information, the feature
information obtained after feature learning of multiple feature information by SAE and
EWMA can better reflect the change in bearing health status with time.

Table 1. Signal characteristic value formula.

Signal Characteristic Calculation Formula

Root mean square Xms =
√

1
N ∑N

i=1 X2
i

Average value Xms =
1
N ∑N

i=1 Xi
Variance Xvar =

1
N ∑N

i=1(Xi − Xmean )2

Kurtosis K = 1
N ∑N

i=1

(
Xi−µ

σ

)4

Peak-to-peak value Xpp = Xmax − Xmin

The characteristic parameters are the external information of the vibration signal,
and different characteristic values reflect the internal information of different aspects of the
signal [21]. In order to better construct the model’s health indices, it is necessary to perform
feature learning and information fusion on information of all aspects of the vibration
signal. Traditional methods for constructing health indices often use machine learning
methods such as PCA and LLE to perform component analysis and data dimensionality
reduction on feature parameters. In this paper, stacked autoencoders are used to perform
feature learning and information mining on model feature parameters. By capturing
the inherent information hidden in the feature parameters, the health indices that can
characterize the performance changes in the model are constructed. Compared with the
traditional health index construction method, the stacked autoencoder has three obvious
advantages: (1) The stacked autoencoder is a deep learning model composed of multiple
autoencoders. It can rely on the deep structure of the model to autonomously mine
information about the model’s characteristic parameters and obtain information about the
performance changes in the model hidden under the characteristic parameters. (2) The
traditional health index construction method is a machine learning method. Compared
with the stacked autoencoder, the feature learning ability and nonlinear data fitting ability
are very limited. The stacked autoencoder can perform feature learning and information
fusion on feature parameters more comprehensively and accurately, and the constructed
health indices can more accurately track the performance changes in the model. (3) The
stacked autoencoder model uses self-supervised training, which is very suitable for the
construction of model health indices.

Due to the influence of noise in the vibration signal collected by the sensor, al-
though the constructed health indices can reflect the performance change in the model as a
whole, random disturbances appear locally. This not only cannot accurately represent the
actual changes in the model, but also directly affects the result of fault prognosis. There-
fore, in order to reduce the influence of noise, this paper uses the exponential weighted
moving average method to perform further data smoothing of health indices. The expo-
nentially weighted moving average method is a method to determine the estimated value
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by referring to the current data and historical data simultaneously. The mechanism of the
exponential moving average algorithm is described as follows:

ft = αpt + (1− α) ft−1 (7)

where ft represents the estimated value; α is a parameter to control the data smoothing
effect; pt is the current data; and ft−1 represents the historical data. Equation (7) is a
recursive formula. If it is expanded, the mechanism can be described as:{

ft = a
(

pt + βpt−1 + β2 pt−2 + . . . + βt−1 p1
)

β = 1− α
(8)

The change in configuration should be a continuous change. The exponential weighted
moving average method refers to both current data and historical information to evaluate
the actual value of the health indices. It can greatly reduce the impact of noise interference
and capture mutation information while accurately maintaining the changes in health
indices, which is very suitable for the construction of model health indices.

3.2. The Continuous Deep Belief Network

The feature learning effect of health indices directly determines the failure prognosis
result. Deep belief networks can quickly and efficiently perform feature learning of health
indices by simulating the deep structure of the human brain. Deep belief networks perform
feature learning through data discretization, improving the efficiency of feature learning
based on sacrificing data continuity. However, the model’s health index is a continuous
time series. It is difficult for a standard deep belief network to obtain high-precision fault
prognosis results [22]. Through in-depth research on RBMs, Chen et al. proved that RBMs
theoretically have the ability to process continuity data, and designed a continuity restricted
Boltzmann machine (CRBM) [23]. Based on the research into CRBMs, this paper designs a
continuous deep belief network (CDBN) for fault prognosis of health indices.

CRBMs are the most basic component and function realization unit of CDBNs, so
the CRBM was constructed first. The CRBM is a variant of a standard RBM, created in
order to better handle continuous data, so a CRBM model was built on the basis of RBMs.
(1) Gaussian noise was added with an average of 0 and a variance of 1 to each unit of
the visible layer and the hidden layer to build a continuous random unit. (2) Continuous
activation was used to activate the state of each neuron while retaining the sigmoid transfer
function, and upper and lower asymptotes were added along with parameters that control
the slope of the activation function. (3) The probability discrete binary process was cancelled
in a standard RBM. The status of each unit in the CRBM model is as follows:

hj = ϕ
(
∑ Wijvi + λNj(0, 1)

)
vi = ϕ

(
∑ Wjihj + λNi(0, 1)

)
ϕ(x) = φL + (φH − φL)× 1

1+exp(−ax)

(9)

where W represents the weight between the visible layer and the hidden layer in the CRBM
model; φ(x) is the activation function of the CRBM; N(0, 1) is Gaussian noise with an aver-
age of 0 and a variance of 1; λ is a constant; φL and φH are the lower and upper asymptotes,
respectively; and α is used to control the slope of the continuity activation function.

The CDBN is a deep learning model made up of multiple CRBMs through the greedy
algorithm. The training method of the CDBN is almost the same as the standard DBN, and it
also includes two parts: supervised learning and unsupervised learning. The unsupervised
learning part is mainly used by each CRBM to train its own model using the MCD algorithm.
The greedy algorithm, that is, the hidden layer of the first CRBM, is used as the visible
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layer of the second CRBM to realize feature learning and information fusion of the input
information. {

Wn+1 = mWn + ηw(vh− ṽh̃)
an+1 = man + ηa

(
h2 − h̃2)/(an)2 (10)

where m is momentum; η is the learning rate; and ṽ and h̃ represent the state of the neuron
after a Gibbs sample.

The CDBN trains the parameters in the model to a more suitable range through
unsupervised learning. During the supervised phase, the CDBN is regarded as an initialized
BP neural network as a whole, and the gradient descent method is used for further fine-
tuning based on the error of the prediction information and the actual information: ∆W l

ij = ηwδl
i s

l−1

∆al
i = ηaδl

i z
l
i/
(

al
i

)2 (11)

where η is the learning rate; δl
i is the residual of the i-th unit of the model; and zl is the

input value of the unit of each layer without passing through the activation function.
The above gradient is the gradient update method for a single sample in the dataset.

When the entire dataset is trained, the individual gradients are usually added to obtain
the average gradient. After obtaining the gradient value of each parameter, the gradient
descent method is used to fine-tune the parameters of the model in the CDBN until the
supervised learning is complete.

3.3. The Fault Prognosis Steps Based on the Proposed Method

As shown in Figure 4, the intelligent fault prognosis method based on a stacked
autoencoder and a continuous deep belief network mainly includes four aspects: data
collection, construction of health indices, feature learning of continuous deep belief network,
and visualization of fault prediction results.

(1) Data collection. A bearing performance test experiment is designed and sensors are
used to collect bearing lifecycle vibration information.

(2) Establish health indices. Firstly, feature parameters containing information on bearing
performance changes are extracted from the vibration signals collected by the sensors.
Then, the stacked autoencoder is used to perform feature learning and information
fusion on the extracted feature parameters to construct the health indices that charac-
terize the performance change in the model. Aiming at the local fluctuations in health
indices caused by noise, the data are smoothed using the exponentially weighted
moving average method to reduce the impact of noise.

(3) Feature learning for continuous deep belief networks. The model performance change
index is a continuous time series. Firstly, a CDBN model suitable for processing
continuous data is constructed. Then, its own powerful feature learning ability and
information mining ability is used to capture the performance change trends hidden
in health indices, and model fault prognosis is performed.

(4) Visualization of failure results. The fault prognosis results are visualized.
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Figure 4. Bearing fault prognosis steps based on the proposed method.
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4. Data Processing and Experiment
4.1. The Bearing Data Introduction

In order to verify the effectiveness of the fault prognosis method in this paper, the bear-
ing life cycle data from the University of Cincinnati Intelligent Maintenance System Center
are taken as an example to carry out a fault prognosis comparative experiment.

As shown in Figure 5, the bearing accelerated life test bench simulates actual bearing
operation: Firstly, an alternating current (AC) motor is used to maintain four Rexnord
ZA-2115 double-row bearings mounted on the same connecting rod shaft at a speed of
2000 rpm. A spring mechanism is then used to apply a radial load of 6000 pounds to the
bearing. Through two PCB353B33 high-sensitivity quartz integrated circuit piezoelectric
(ICP) acceleration sensors mounted on the bearing box, the bearing vibration signal is
collected every 10 min at a sampling rate of 20 kHz for one second. During the experiment,
an oil circulation system is used to lubricate the bearings and an electromagnetic plug is
installed in the oil return pipe to collect debris. When the accumulated debris exceeds
a certain level, the test is automatically stopped by an electrical switch. A total of 6324
bearing vibration samples were collected throughout the experiment, and each sample
contains 20,480 data points. When the experiment was stopped automatically, the outer
ring of bearing No. 3 was checked for faults.

Figure 5. The bearing accelerated life test bench.

Figure 6 is the full life vibration signal diagram of bearing No. 3 collected by the
sensor. When the bearing is in a normal state, the amplitude of the vibration signal is small
and the waveform is relatively stable. As the working time increases, the performance of
the bearing gradually decreases, and the vibration amplitude gradually increases until it
eventually fails completely. Considering that the bearing is in a normal working state for a
long time and the performance prediction requirements before model failure in the project,
1824 sets of bearing samples with the model close to fault were selected for the performance
evaluation of the method proposed in this paper.

Figure 6. Variation in vibration signal over the full life of a rolling bearing.
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4.2. The Health Indices Construction

The characteristic parameters of the vibration signal means that the information given
by model performance changes is explicit. Firstly, the characteristic parameters shown in
Table 1 were extracted from the vibration signals collected by the sensors. In this paper, five
characteristic parameters, i.e., the average, variance, root mean square, peak-to-peak value,
and kurtosis degree, were extracted from the time-domain signal. Three characteristic
parameters, i.e., the average, variance, and root mean square, were extracted from the
frequency-domain signal. A total of eight feature parameters were extracted from the
group samples. As a deep learning network, an autoencoder is used for feature learning
and has a self-supervised learning process. By reducing the error without disconnecting
between input data and output data, the training of autoencoders is realized. In this
paper, eight feature signals extracted from experimental data were put into the autoencoder
for feature extraction, and the output results are the results of feature extraction of eight
sets of feature data. Different feature parameters contain different model performance
information; therefore, in order to comprehensively and accurately learn the performance
information hidden in the bearing vibration signal, a stacked autoencoder was used to
perform feature learning and information fusion on the extracted feature parameters.
Table 2 shows the experimental parameters extracted by the stacked autoencoder used in
this paper. The network structure of the stacked autoencoder was 8-15-6-2-1, the activation
function was the sigmoid function, the number of iterations was 30, and the noise constant
was 0.1. The parameters of the network structure are the results of the experiment, and the
parameter information of the autoencoder was determined by continuously adjusting the
parameters in Table 2 and comparing the Spilman coefficient of the results.

Table 2. Experimental parameters of the stacked autoencoder.

Parameters

Network structure 8-15-6-2-1
Activation function Sigmoid function

The number of iterations 30
The noise constant 0.1

Figure 7 shows the health indices constructed by the stacked autoencoder by per-
forming feature learning and information fusion on the extracted feature parameters.
The abscissa represents the working time of the bearing and the ordinate represents the
health index corresponding to the bearing. When the bearing is in a normal healthy state,
the health index fluctuates up and down within the range of 0∼0.025. As the working time
increases, the performance of the bearing changes gradually, and the health index also
changes accordingly. The bearing health index as a whole shows a “rise-down-rise” trend,
which is caused by the self-repairing ability of the bearing. As the bearing is in a high-
intensity working state for a long time, the performance of the bearing gradually decreases,
the bearing fails slightly, and the health index starts to rise. However, continuous work will
aggravate the faults in the bearing through wear. The bearing performance improves and
the health index reduces. It is worth noting that the self-repairing ability of the bearing is
limited, and the performance of the bearing will still decrease with the increase in working
time. The process was repeated until the bearing performance completely failed.

Due to the influence of noise on the vibration signal collected by the sensor, as shown
in Figure 7, although the health indices constructed by the stacked autoencoder maintain
the overall monotonicity, random fluctuations will occur. This will affect the outcome of
subsequent fault prognosis. Therefore, this paper uses the exponentially weighted moving
average method to further improve the health index. According to experimental experience,
the smoothing parameter was set to 1/10, as shown in Figure 8. The noise in our data,
which comes from experiments, not only does not accurately represent the change in the
actual model, but also directly affects the results of failure prediction. Figures 7 and 8
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illustrate the effect of the EWMA. The EWMA refers to both the historical data and the
current data, greatly reducing the impact of noise interference and capturing mutation
information while accurately maintaining health index trends, which is very suitable for the
construction of model health indexes. After the health indices were smoothed by the data,
the local disturbance phenomenon was improved, and the influence of noise on the fault
prediction was reduced. To more clearly show the details of the health indices construction,
the subfigures on the right of Figures 7 and 8 are an expansion of the left subfigures in the
range of 15,000∼18,000 min.

Figure 7. The health indices constructed by the SAE, where the right subgraph is a zoomed graph of
the left subfigure in the range of 15,000∼18,000 min.

Figure 8. The health indices constructed by the EWMA and the SAE, where the right subgraph is a
zoomed graph of the left subfigure in the range of 15,000∼18,000 min.

The health indices of the model directly affect the results of the subsequent fault
prognosis. According to the principle trend in the health indices, as the working time
increases, the internal components of the model gradually wear out. In order to verify
the effectiveness of the constructed health indices, the health indices that characterize the
changes in bearing performance should be related to working hours. There is a non-linear
relationship between the health indices and working time. The Spearman coefficient can
transform the non-linear relationship between the health indices and working hours into
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a linear relationship. This paper calculates the Spearman coefficients for different health
indicators and times. The calculation of the Spearman coefficient is as follows:

Tre(X̃, T̃) =
K
(

∑K
k−1 X̃kT̃k

)
−∑K

k−1 X̃k ∑K
k−1 T̃k√[

K ∑K
k−1 X̃2

k −
(

∑K
k−1 X̃k

)2
][

K ∑K
k−1 T̃2

k −
(

∑K
k−1 T̃k

)2
] (12)

where T̃k represents the rank sequence of the k-th time value and X̃k represents the rank
sequence of the k-th time value corresponding to the health indices.

Table 3 summarizes the Spearman coefficients for the different types of health indices
and working hours. By comparing the correlation coefficients of different health indices,
the following conclusions can be obtained:

(1) Compared with a single characteristic parameter model to characterize the perfor-
mance of the model, the health indices constructed by information fusion of multiple
characteristic parameters can more accurately reflect the performance changes of
the model.

(2) Compared with machine learning methods such as PCA and kernel principal com-
ponent analysis (KPCA), stacked autoencoders as deep learning models can better
perform feature learning and information fusion on the extracted feature parameters,
and the health indices constructed are more accurate.

(3) The exponentially weighted moving average can reduce the impact of noise on health
indices, and can capture mutation information while maintaining the overall trend of
the model. The health indices constructed by combining the advantages of the SAE and
the EWMA can better characterize the performance changes in the model and the ten-
dency of the bearing performance to degrade compared to a single characteristic value.

Table 3. Correlation between characteristic indicators and time.

Vibration Signal Eigenvalues Spearman Coefficient

Health index

SAE+EWMA 0.8738
SAE 0.7527
PCA 0.7404

KPCA 0.7402

Time domain

Averagee 0.7101
Variance 0.7259

RMS 0.7246
Peak-to-peak 0.5911

Kurtosis 0.6381

Frequency domain
Average 0.7042
Variance 0.5784

RMS 0.7238

4.3. The Health Indices Fault Prognosis
4.3.1. Data Processing

In order to verify the effectiveness of the proposed fault prognosis method, direct
prediction technology was used to process the health indices of the constructed model
to characterize the performance changes. According to Taken’s embedding theory, when
there is a certain functional relationship between a future value and the first m consecutive
value in a single variable time series, the current and historical information can be used to
predict the performance change of the future model [24]. This is also true for the real-life
engineering problem of predicting the future health indices of bearings. The constructed
health indices contain a total of 1825 data points. Based on experimental experience,
the regression lag order was set to four, which means that the previous four health indices
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are used to predict the next moment’s health index. Therefore, 1821 samples were used in
the experiment.

Considering that in normal engineering, only the vibration data of the normal working
phase of the bearing can be obtained and the complex performance changes at the end of
the bearing life, this paper uses the health indices of normal working of the bearing to train
the continue deep belief network model, and uses the health indices of the influencing
phase to test the model. The envelope spectrum analysis method can demodulate the
frequency components in the vibration signal and extract the low frequency fault signal
from the high frequency information. Therefore, the envelope spectrum analysis method is
used to divide the model’s health indices.

Figure 9 shows the envelope spectrum of the vibration signal collected by the sensor
in different periods. When the bearing runs for 14,690 min, although the characteristic
information of the bearing outer ring fault is found in the envelope spectrum of the bearing,
the amplitude is very small. We believe that the early fault of the bearing has begun, but the
impact on the system is small and can be ignored. When the bearing runs for 15,710 min,
the amplitude of the fault information is slowly increasing but the increase is still small,
so the impact of bearing faults on the system can still be ignored. When the bearing runs
for 15,720 min, the amplitude of the fault information in the envelope spectrum of the
bearing increases rapidly. Therefore, the impact of the bearing fault on the system cannot
be ignored, and the fault is further deepened. When the bearing runs for 18,200 min,
the amplitude of the fault information is very large and the bearing outer ring fault is very
serious. As shown in Table 4, according to the degree of impact of bearing faults on the
system, the bearing health indices are divided into two stages. The first is 0∼15,710 min,
where the impact of the bearing fault on the system can be ignored. This stage involves the
normal operation of the bearing and the initial state of the fault. In the second stage, from
15,720∼18,250 min, the impact of the bearing failure on the system cannot be ignored. This
stage involves accelerated degradation and complete failure of the bearing. The values in
Table 4 are derived from Figure 8. When the bearing runs for 15,710 min, the amplitude
of the fault message increases slowly, but it is still small, so the impact of bearing failure
on the system can still be ignored. When the bearing runs for 15,720 min, the amplitude
of the fault message in the bearing envelope spectrum increases rapidly. Therefore, it is
believed that the impact of bearing failure on the system cannot be ignored, and the failure
is further deepened. Therefore, the data after 15,720 min are selected as the training set and
the test set for deep learning. If the data before 15,720 min are used, the learning effect is
not obvious due to the small amplitude of the fault characteristics. If the data are used, it
means that the corresponding training data are less, which will also affect the results of
failure prediction.

Table 4. The division of health indices.

Operating Hours Health Indices Stage

0∼15,710 min The bearing fault has a negligible effect on the system
15,720∼18,250 min The bearing fault has a considerable effect on the system

4.3.2. The CDBN Parameter Determination Experiment

The CDBN relies on its own deep structure to perform independent feature learning on
the bearing’s health indices to achieve fault prognosis of the future bearing’s health indices.
The network structure of the CDBN model will directly affect the results of fault prognosis,
so on the one hand, too many hidden layers and hidden units will make the model too
complex, which causes overfitting and increases the calculation time. On the other hand,
too few hidden layers and hidden units can degrade the model performance and affect the
fault prognosis results. However, until now, there has been no well-established theory to
directly determine the network structure of the model. Therefore, our experimental method
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was used to determine the suitable network structure of the model by comparing the fault
prognosis results of the different CDBN models.

(a) (b)

(c) (d)

Figure 9. The envelope spectrum of the vibration signal collected by the sensor during different peri-
ods. (a) Envelope spectrum for a bearing running at 14,690 min. (b) Envelope spectrum for a bearing
running at 15,710 min. (c) Envelope spectrum for a bearing running at 15,720 min. (d) Envelope
spectrum for a bearing running at 18,200 min.

This paper introduces the root mean square error (RMSE), the maximum absolute
value error (MaxAE), and the mean absolute value error (MAE) to evaluate the model’s
fault prognosis performance. According to the principle of decreasing the number of
hidden layer units and repeating experiments to reduce the contingency, a total of 10
fault prognosis experiments with different CBDN structures were performed in this paper.
Each group of experiments was repeated five times. The average value of the experimental
results was used as the final result.

RMSE =

√√√√ 1
T

T

∑
i=1

(yi − ỹi)
2 (13)
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MaxAE = max(|yi − ỹi|) (14)

MAE =
1
T

T

∑
i=1
|yi − ỹi| (15)

Table 5 summarizes the fault prognosis results of the CDBN models with different
network structures. The first three sets of models are the CRBM, the middle four sets of
models are the CDBN with two hidden layers, and the last three sets are the CDBN with
three hidden layers. Firstly, the training samples in the normal stage were input into each
model for autonomous feature learning and information fusion. Then, test samples in
the influential stages qwew used for fault prognosis through the trained model. Finally,
the appropriate network structure of the CDBN was determined by calculating the RMSE,
MaxAE, and MAE of the each model’s fault prognosis results.

Table 5. Influence of different CDBN network structures on bearing fault prognosis.

Number CDBN Network Structure RMSE (10−3) MaxAE (10−2) MAE (10−3)

1 4-8-1 6.3 ± 0.34 5.25 ± 0.142 3.9 ± 0.23
2 4-12-1 6.4 ± 0.42 5.31 ± 0.136 4.2 ± 0.26
3 4-16-1 6.2 ± 0.25 5.34 ± 0.153 4.1 ± 0.24
4 4-16-12-1 5.7 ± 0.43 5.21 ± 0.123 3.5 ± 0.31
5 4-16-8-1 5.9 ± 0.32 5.42 ± 0.142 3.6 ± 0.24
6 4-12-8-1 5.6 ± 0.41 4.98 ± 0.135 3.2 ± 0.19
7 4-12-4-1 5.7 ± 0.52 5.15 ± 0.138 3.4 ± 0.32
8 4-12-8-4-1 5.9 ± 0.51 5.24 ± 0.141 3.6 ± 0.36
9 4-16-8-4-1 6.0 ± 0.32 5.26 ± 0.156 3.7 ± 0.25
10 4-16-12-4-1 6.2 ± 0.43 5.35 ± 0.148 3.8 ± 0.43

The magnitudes of the different evaluation standards were quite different; thus, each
index was normalized. Figure 10 shows the fault prognosis results and its trends of CDBN
models with different network structures. We can clearly see that under various standards,
the CDBN model with the network structure of 4-12-8-1 has the smallest error between the
prognosis results and the actual values. The prognosis results of this model are the closest
to the future health indices. By comparing the fault prognosis results of the CDBN models
with different network structures, the following conclusions can be drawn:

(1) The feature learning ability and information fusion ability of a single CRBM model are
limited. The CDBN model uses the greedy algorithm to combine multiple CRBM models.
The feature learning ability and non-linear approximation ability are stronger and the
method is more suitable for dealing with complex non-linear prediction problems.

(2) A model with a more complicated network structure will not have a stronger failure
prediction ability. This is because the more complex the network structure, the stronger
the ability to learn the features of the model, which may lead to over-learning of the
training samples. At the same time as learning the performance of the model, some
interference information may be learned, which affects the results of fault prediction.
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Figure 10. The fault prognosis results of CDBN models with different network structures.

4.3.3. Fault Prognosis Comparative Experiments

In order to verify the results of the fault prognosis method proposed in the paper,
a comparative experiment of this method with traditional fault prognosis methods was
carried out using IMS bearing data as an example. The experimental parameters of the
CDBN model are shown in Table 6. The structure of the CDBN model was 4-12-8-1. In other
words, the input layer of the CDBN model contains 4 units, the first hidden layer contains
12 units, the second hidden layer contains 8 units, and 1 unit in the output layer is used
to output the fault prognosis result. The learning rate of the inter-layer weights and the
control continuity activation function slope parameter was 0.11, and the noise constant was
0.0001. The upper and lower asymptotes of the continuous activation function were 1 and
−1, respectively, and the model was trained 100 times. The experimental parameters of the
other traditional intelligent fault prognosis methods are as follows:

(1) BPNN: The network structure was 4-24-1. The learning rate, momentum, and iteration
time were 0.01, 0.9, and 500, respectively.

(2) SVR: The lag order was four and the penalty parameter and kernel radius were 30 and
0.01, respectively, chosen by 5-fold cross validation. The Gaussian kernel was used.

(3) DBN: The network structure was 4-12-8-1. The learning rate, momentum, and iteration
time were 0.11, 0.9, and 200, respectively.

(4) LSTM: The network structure was 4-12-8-1. The learning rate, momentum, and itera-
tion time were 0.01, 0.9, and 500, respectively. The network was constructed with a
logistic regression layer.

(5) RNN: The network structure was 4-12-8-1. The learning rate, momentum, and iteration
time were 0.37, 0.9, and 700, respectively.

The network was constructed with a sigmoid regression layer.

Table 6. Experimental parameters of the continuous deep belief network.

Parameters

Network structure 4-12-8-1
Learning rate 0.11
Iteration times 100
Noise constant 0.0001

Lower and upper asymptotes −1, 1
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Figure 11 shows the results of different fault prognosis methods. The ordinate rep-
resents the health indices and the abscissa represents the running time of the bearing.
The blue line represents the actual health indices of the bearing, while the red line is the
future health indices predicted by the model through feature learning of current and his-
torical health indices. Through analysis of the results, it can be found that although the
traditional intelligent fault prognosis methods can roughly predict the change in model
performance, as the performance change suddenly increases at the end of the model’s life,
these methods cannot accurately predict the model’s health indices. However, the fault
prognosis method proposed in this paper relies on the strong information fusion ability
and continuous data learning ability of the continuous deep belief network, and can still
make an accurate fault prognosis at the end of the model’s life.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. The results of different fault prognosis methods. (a) The fault prognosis results of
the CDBN. (b) The fault prognosis results of the BPNN. (c) The fault prognosis results of the SVR.
(d) The fault prognosis results of the DBN. (e) The fault prognosis results of the LSTM. (f) The fault
prognosis results of the RNN.

In order to better evaluate the fault prognosis results of the proposed method, the per-
formance of the fault prognosis method was evaluated from different perspectives using
three standards: the RMSE, the MaxAE, and the MAE. The RMSE is mainly used to evaluate
the error dispersion of the fault prognosis method, the MaxAE is mainly used to evaluate
the individual prognosis ability of the fault prognosis method, and the MAE is mainly
used to evaluate the overall prognosis ability of the fault prognosis method. Following
the principle of repeating experiments to increase the reliability of experiments, each fault
prognosis method was repeated 10 times. The results of the three standards for each method
were recorded, and the average and variance were used as the final results. Table 7 shows
the results of the fault prognosis method. By comparing the prognosis results of different
fault prognosis methods, it can be clearly found that: (1) In the same test sample, the RMSE
of the proposed fault prognosis method is the smallest, which means that the dispersion
of the prognosis error of this method is the smallest. The model has the best reliability.
(2) The proposed fault prognosis method has the smallest MaxAE, which means that the
maximum prognosis error of this method is also the smallest among the various methods
and the model has the best fault prognosis capability. (3) The MAE of the proposed fault
prognosis method is the smallest, which means that the average prognosis error of the
method is the smallest and the model’s overall fault prognosis ability is the best. In sum-
mary, compared with the traditional intelligent prognosis methods, the fault prognosis
method proposed in this paper gives the most accurate prognosis and the highest reliability,
regardless of whether it is single or overall.

Table 7. Performance evaluation under four methods.

Network RMSE (10−3) MaxAE (10−2) MAE (10−3)

CDBN 5.6 ± 0.41 4.98 ± 0.14 3.2 ± 0.19
BPNN 12.1 ± 0.15 7 ± 0.52 5.9 ± 0.55
SVR 7.7 10.78 6.8
DBN 10.6 ± 0.72 9.1 ± 0.74 9.3 ± 0.5
LSTM 7.3 ± 0.31 5.57 ± 0.25 5.6 ± 0.35
RNN 6.8 ± 0.42 5.36 ± 0.22 4.4 ± 0.34

Figure 12 shows the prognosis results of the fault prognosis methods. The magnitudes
of the different standards are quite different; thus, the three indicators were standardized.
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The X-axis represents the standard for evaluating the fault prognosis method, the Y-axis rep-
resents the intelligent fault prognosis method, and the Z-axis represents the standardized
evaluation value. It can be clearly seen that the three indicators indicate the fault prog-
nosis method based on the stacked autoencoder and the continuous deep belief network
from three perspectives. By learning the current and historical information of the model,
the prognosis result is more accurate and close to the actual model value. The proposed
fault prognosis method can better predict the performance change in the model. Through
comparative experiments, the following conclusions can be drawn:

(1) Compared with shallow learning models such as the BPNN and SVR, the CDBN
as a deep learning model can more effectively capture the model’s performance trends
with time, and its feature learning ability is stronger and more applicable to information
mining and fault prognosis for complex nonlinear data. (2) Compared with the standard
DBN model, the CDBN has improved feature learning and information mining abilities on
continuous time series through the improvement of the model, and solves the problem of
the standard DBN model not having a high accuracy for continuous data fault prognosis.
(3) Compared with RNN and LSTM models, the CDBN has an improved feature learning
ability and gives more reliable fault prognoses.

Figure 12. Performance evaluation chart of different fault prognosis methods.

5. Conclusions

This paper is based on two aspects: the construction of health indices that characterize
model performance changes and the fault prognosis of health indices. Combining the strong
feature learning capabilities of stacked autoencoders and the continuous information fusion
capabilities of continuous deep belief networks, a novel intelligent fault prognosis method
based on a stacked autoencoder and a continuous deep belief network is proposed. This
method consists of two parts: (1) The stacked autoencoder is used to perform feature
learning and information fusion on the extracted feature parameters to build the health
indices that characterize the performance change in the model. To solve the problem of
local random fluctuations in health indices caused by noise, the exponential weighted
moving average method is used to smooth the data, which greatly reduces the impact of
noise on health indices. By comparing the performance of different health indices with the
performance of actual models, it is proven that the proposed method can more accurately
represent the changes in model performance. (2) Continuous deep belief networks are used
to perform feature learning and fault prognosis on health indices. In order to verify the
fault prognosis ability of the CDBN, a comparative experiment of intelligent prognosis
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methods was performed. The method in this paper evaluates the performance of the BPNN,
SVR, DBN, LSTM, RNN, and the proposed method, CDBN. Furthermore, the normalized
RMSE, MaxAE, and MAE indices are as low as 5.6 × 10−3, 4.98 × 10−2, and 3.2 × 10−3,
respectively. The experimental results prove that compared with traditional intelligent
prognosis methods, the CDBN model used in this paper has stronger feature learning
capabilities, can determine the regularity of model performance changes in health indices,
and can accurately predict changes in bearing performance.
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