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Abstract: In order to solve the problem of parameter uncertainty and unknown external interference
of wheeled mobile robots (WMR) in a complex environment, the design of a high-precision interval
observer for the robot system is proposed. In this paper, the kinematics and dynamics model of a
wheeled mobile robot is derived first, and then the control strategy of high-precision interval observer
is introduced to estimate and compensate for the unknown state and uncertainty of the system in
real-time, which realizes the robustness of the system to disturbance and high adaptability to the
environment. The stability of the system is proved by Lyapunov’s theory. The experimental results
show that other methods based on coordinate transformation, though the design conditions are
relaxed to a certain extent, bring some conservatism. The method proposed in this paper can obtain
more accurate interval estimation, so the performance of the method proposed in this paper is better.
In conclusion, the control method proposed in this paper can make the mobile robot system have
good tracking control performance and strong robustness.

Keywords: wheeled mobile robot (WMR); trajectory tracking; high precision interval observer

1. Introduction

A robot system is a typical nonlinear system, which can represent a wide range of
mechanical systems. Therefore, the research on the control of robot systems has important
theoretical significance and application value. Typical robot control includes kinematic
control, Proportional plus-derivative (PD) control, neural network control, adaptive control,
variable control, stability control, etc. Mobile robots integrate many tasks such as strategic
decision-making and planning, behavior management and execution, and can replace
humans to complete many important tasks at a low cost. in a harsh, dangerous and
destructive environment. Therefore, it has been widely used in the military, industry and
other fields, and has always been the research focus of most scientific researchers [1,2].

As the wheeled mobile robot (WMR) constantly expansion of application fields, the
mobile robot is increasingly applied in the complex environment of the unknown. Due to
the uncertainty and complexity of the complex working environment, the control system of
mobile robots faces great challenges in anti-interference ability and real-time performance,
which puts forward higher requirements for the motion control of the system. Mobile
robots mainly include crawler, snake, leg, jump, compound and wheel. Compared with
other types of mobile robots, although the motion stability of wheeled mobile robots is
greatly affected by road conditions, it has many advantages, such as large bearing capacity,
convenient driving and control, light dead weight, fast walking speed, simple mechanism,
high work efficiency, flexible mobility and low movement noise. Moreover, the combination
of wheeled mobile machines with multi-agents will bring us greater convenience in the
future [3,4]. An interval observer is a kind of observer that can give the upper and lower
boundary estimates of a given system at any time. It is an estimation method with great
practical significance and has been applied in biotechnology, fault detection and other fields.
In recent years, more and more scholars pay attention to the problem of interval observer
design, and many methods of interval observer design have emerged [5–7]. Among them,
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constructing cooperative error is the most common method for interval observer design.
For continuous-time systems, the main task of this method is to design an observer gain so
that the state matrix of the error equation corresponding to the interval observer is both
Hurwitz and Metzler (its non-diagonal elements are non-negative) [8]. This ensures that
the error system is a stable positive system. However, it is usually not easy to solve the
observer gain by satisfying the above conditions. In order to solve this problem, some
literature has proposed a design method by introducing coordinate transformation to relax
the constraints of collaboration conditions. Although this method based on coordinate
transformation can simplify the design conditions, it may cause interval amplification
in the process of reconstructing the state interval estimation by using inverse coordinate
transformation, resulting in overly conservative estimation results.

At present, the research on interval observer design is mainly focused on the state
space system, but the research results of interval observer design for generalized systems
are not rich. Generalized systems not only have dynamic characteristics described by
differential equations but also have static constraints characterized by algebraic equations.
Generalized systems are more universal than common state-space systems, and have been
applied in modeling and design in many engineering fields. Therefore, the design idea of
this essay is extended to the generalized system, and the high precision interval observer
design for the robot system is proposed [9].

2. Methods
2.1. Theoretical Research Related Knowledge

Sylvester matrix equation is a very important equation in the field of matrix algebra,
which is derived from the research of applied mathematics and cybernetics. This equation
was first proposed and studied by Sylvester et al. Since then, more scholars have conducted
extensive research on this kind of equation and analyzed the existence and uniqueness
of its solutions, so it has been widely used in many fields. It is closely related to many
problems in the linear control theory of systems, such as stability analysis, design analysis,
code generation with internal stability, model tracking and discovering the fault. When
solving the Sylvester matrix equation, it is most important to find the solution parameter
design of its free limits, because many problems, such as strong research in controlling the
design, must use all of its freedom to create.

Interval observer is one of the latest research directions of observer design theory,
which provides a new idea for system state estimation. As the name implies, the timekeeper
is the state of the surrounding system by the upper and lower systems to achieve a short
estimate of the original state, which is the behavior mold by changing to the real state of
the system with a short curve. Those. One of the most stringent assumptions in the design
of periodic evaluators is the quality of the estimated time error. This restriction can be
relaxed by joint replacement. Even if the original system is uncooperative, the cooperative
observer can be designed by transforming the coordinates. At the same time, most of the
current studies on interval observers focus on the design problem, that is, how to build
a cooperative error dynamic system but ignore the improvement of the performance of
system state estimation by interval observers. Although the interval observer has a good
tolerance for uncertainties, its conservatism is not small, and more accurate state estimation
is often needed in the actual system [10].

2.2. Kinematic and Dynamic Models of the Robot

Figure 1 shows a prototype of a two-wheeled mobile robot, which has two driving wheels
and one steering wheel. Among them, the two wheels’ drive is itself driven by two motors,
and the guide wheel only plays a supporting role. XOY is the world coordinate system and
XbObYb is the mobile robot coordinate system. The bit-case of the mobile robot platform can
be represented by the generalized coordinate vector q = [x, y, φ, θr, θl]

> ∈ <5×1, where x, y
represent the position of the robot, φ represents the heading Angle of the robot, θr and θl
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represent the rotation Angle between the left and right driving wheels, 2b is the distance
between the robot wheels, and r is the wheel radius [11].

Figure 1. Wheeled mobile robot model.

Under the condition that the mobile robot satisfies pure rolling and no sliding, the
kinematics equation is shown in Formula (1):

−ẋc sin φ + ẏc cos φ = 0
ẋc cos φ + ẏc sin φ + bφ̇ = rθ̇r
ẋc cos φ + ẏc sin φ− bφ̇ = rθ̇l

(1)

It is noteworthy that the condition above leads to non-holonomic constraint equations.
The mechanical systems that are subjected to non-holonomic constraints in the general case
need equations of motion that are different from Lagrange’s equations of the second kind.
Lagrange’s equations with multipliers, Appel’s equations and Chaplygin’s equations are
examples of this.

Formula (1) is abbreviated as
A(q)q̇ = 0 (2)

Among them, A(q) =

 − sin φ cos φ 0 0 0
cos φ sin φ b −r 0
cos φ sin φ −b 0 −r

.

Let J(q) be a full-rank matrix composed of a series of smooth and linearly independent
vectors, which can be obtained by combining the kinematic properties of the mobile robot:
A(q)J(q) = 0

Where J(q) =


cos φ −2b sin φ
sin φ 2b cos φ

0 1
1
r

b
r

1
r − b

r

.The kinematics equation of the robot is expressed

as follows:

q̇ = J(q)Θ (3)

where Θ = [u w]>, u = r(θ̇r + θ̇l)/2 represents the linear velocity of the mobile robot,
and w = r(θ̇r − θ̇l)/2b represents the angular velocity of the mobile robot.

In the case of the dynamic equations of a wheel pair, the sum of the additional terms
that appear due to non-holonomic constraints is equal to zero. So under this consideration,
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the equations of motion coincide with Lagrange’s equations of the second kind. The
Lagrangian equation with a multiplier of the mobile robot is as follows:

M(q)q̈ + V(q, q̇)q̇ + G(q) + τd = B(q)τ − A>(q)λ (4)

where M(q) ∈ <5×5 is a symmetric positive definite inertia matrix, V(q, q̇)q̇ ∈ <S×b is
the central axial force and Coriolis matrix, G(q) ∈ <5×1 is the gravity matrix, τd ∈ <5×1

represents the sum of internal uncertainties and external disturbances of the system, B(q) ∈
<5×2 represents the input transformation matrix, τ represents the input vector, A(q) ∈ <3×5

is the matrix related to constraints, and λ is the Lagrange operator vector.
According to Equation (4) of the robot dynamic model and Equation (3) of kinematics,

the final model is obtained as follows:

M̄(q)Θ̇ + V̄(q)Θ + Ḡ(q) + τ̄d = B̄(q)τ̄ (5)

where τ represents the input vector M̄ = J>MJ, V̄ = J>(MJ̇ + V J) = 0, G = J>F,
τd = J>τd, B̄ = J>B

Equation (5) can be written as

Θ̇ = −M̄−1(q)V̄(q)Θ− M̄−1(q)Ḡ(q)− M̄−1(q)τ̄d + M̄−1(q)B̄(q)τ̄ (6)

The parameter uncertainties, parameter perturbations and input disturbances existing
in the mobile robot system are regarded as the sum disturbance of the system, i.e.,

D = −M̄−1(q)τ̄d + ∆
[

M̄−1(q)V̄(q)
]
Θ + ∆

[
M̄−1(q)B̄(q)

]
τ̄

Since the mobile robot works on the horizontal plane, Ḡ(q) = 0, it can be further
obtained as follows:

Θ̇ = AΘ− M̄−1(q)Ḡ(q) + Bτ + D (7)

where A = −M̄−1(q)V̄(q), B = M̄−1(q)B̄(q)

2.3. Description of Trajectory Tracking Problem

Given the reference position qd(t) = [xd, yd, φd]
> and the actual pose q(t) = [x, y, φ]>

of the mobile robot, the error equation of the pose of the mobile robot can be expressed as

qe =

 xe
ye
φe

 =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1

 xd − x
yd − y
φd − φ

 (8)

Taking the derivative of Equation (8), the following differential equation of trajectory
tracking error is obtained:

q̇e =

 vr cos φe − v + xeφ̇
vr sin φe + xeφ̇

wr − φ̇

 (9)

In order to track the desired trajectory, an auxiliary speed control input is given:

Θc =

[
vc
wc

]
=

[
vd cos φe + k1xe

wd + k2vdye + k3vd sin φe

]
(10)

where Θc = [vc wc]> is the reference linear velocity and steering velocity of the wheeled
robot, and k1, k2, k3 are the feedback gain matrices of xe, ye, φe, respectively.

In order to track the parameter trajectory, the velocity tracking error is introduced
as follows:
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e(t) = Θ(t)−Θc(t) (11)

As the design criterion of the generalized extended observer controller, Equation (11)
ensures that the trajectory tracking error of the wheeled robot satisfies limh→∞ qe(t) = 0 by
controlling that its velocity tracking error satisfies limt→∞ e(t) = 0.

2.4. Design and Analysis of High Precision Interval Observer

A high-precision interval observer is designed to deal with the uncertainties such as
system modeling mismatch, internal parameter perturbation and external disturbance in
the actual system of the wheeled mobile robot. Real-time estimation and compensation of
uncertainties can be realized to improve the robustness of the mobile robot system against
disturbances and its adaptability to the environment [12–14].

For the dynamic system Equation (5) of the wheeled mobile robot, the following
high-precision interval observer is designed:{

Θ̇ = AΘ + Bτ + Bd f (q, q̇, D, t)
ym = CmΘ

(12)

Define the extension variable Θn+1 = f (q, q̇, D, t), which expands the original system
as follows: { ˙̄Θ = ĀΘ̄ + B̄τ + Eh(t)

ym = C̄mΘ̄
(13)

where ˙̄Θ = [Θ Θn+1], h(t) = d f (q,q̇,D,t)
dt , Ā =

[
An×n (Bd)n×q
0q×n 0q×q

]
,

B̄ =

[
Bn×m
0q×m

]
(n+q)×m

, E =

[
0n×q
Iq×q

]
(n+q)×q

, C̄m =
[

Cm 0r×q
]

r×(n+q).

Since (C̄m, Ā) is observable, for the system shown in Equation (13), the following high
precision interval observer design is constructed:{

ˆ̄Θ = ĀΘ̂ + B̄τ + L(ym − ŷm)

ŷm = C̄m
ˆ̂Θ

(14)

where ˆ̄Θ = [Θ̂ Θ̂n+1]
> is the estimated value of the state variable Θ̄ = [Θ Θn+1]

> and
L is the gain matrix of the observer to be designed.

The control law is designed as

τ = B−1(Θ̇c − AΘ
)
− Kx

(
Θc − Θ̂

)
+ Kdd̂ (15)

where Kx refers to the senile control gain matrix, and Kd refers to the interference comple-
ment gain matrix. The interference is estimated by selecting appropriate Kx and Kd.

2.5. Stability Analysis

Stability is one of the important characteristics of systems, and Lyapunov stability
theory is still an effective method to study the stability of systems with linear parameter
variations [15].

Define the estimation error system as:

H
(
z, ey, ex

)
=

1
2

z>z +
1
2

e>y ey +
1
2

e>y ex (16)

H is called the Hamiltonian energy function, ex and ey represent the observed value, z
represent the observation error, and > represent the reversible constant matrix.
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Considering the system (16), Order:

ṙ = − k1

4
(r− 1) +

r
2k1
‖∆‖2 (17)

The initial condition is satisfied: r(0) ≥ 1 and k1 > 0, ϕ̄1 > 0, ϕ̄2 > 0, then the system (16)
is asymptotically stable and converges to zero.

Proof: The stability of the error system is analyzed below. First, consider V1 = 1
2 z>z,

then V̇1 = −z>(k1 I − ∆ + ṙ/r)z, where ∆ is the error between the assumed approximate
compensation function and the real value, and use the method of increasing output filtering
and dynamic compensation factor to study:

− z>
(

k1 I − ∆ +
ṙ
r

)
z = −k1 Iz2 − ṙ

r
z2 + z>∆z (18)

According to Young’s inequality, there is a variable k1 making the:

z>∆z ≤ k1

2
|z|2 + 1

2k1
‖∆‖2|z|2 (19)

The result:
V̇1 ≤

k1

2
|z|2 − ṙ

r
|z|2 + 1

2k1
‖∆‖2|z|2 (20)

Formula (17) into the Formula (20), then:

V̇1 ≤ −
k1

2
|z|2 + k1(r− 1)

4r
|z|2 (21)

Due to (r− 1)/r ≤ 1, therefore:

V̇1 ≤ −
k1

4
|z|2 (22)

The Lyapunov function considering the system (16) is:

V(X, r) =
1
2

z>z +
1
2

e>y ey +
1
2

e>y ex +
1
2

r2 (23)

Then:
V̇(X, r) ≤ − k1

4 z2 − φ1e2
y − φ1e2

x + ṙr
= − k1

4 z2 − φ1e2
y − φ1e2

x −
k1
4
(
r2 − r

)
+ r2

2k1
‖∆‖2 (24)

Order:

φ1 =
r2

k1

∥∥∆̄y
∥∥2

+ φ̄1φ2 =
r2

k1

∥∥∆̄x
∥∥2

+ φ2 (25)

Then:
V̇(X, r) ≤ −k1z2 − φ̄1e2

y − φ̄2e2
x −

k1

4

(
r2 − r

)
(26)

Here is the following description: according to Equation (17), it is not difficult to find
that r(0) ≥ 1. When r(0) = 1, in Equation (26), ṙ > 0, then r(t) ≥ 1, then−k1

(
r2 − r

)
/4 ≤ 0,

so, V̇(X, r) < 0(X 6= 0, r 6= 1), and V̇(X, r) = 0(X = 0, r = 1), then r ∈ L∞, X converges to
zero, ∆ tends to zero.

In this paper, the error observation system is transformed into a class of Hamilton
system, and the stability and observer design of the system are studied from the overall
perspective, which simplifies the proof process.
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3. Simulation Results and Discussion

In order to verify the effectiveness of the designed high-precision interval observer
control strategy and the tracking performance of the system, the proposed control method
is applied to the simulation of a wheeled mobile robot. The parameters of the mobile robot
used for the experiment are shown in Table 1 as follows [16–18].

Table 1. Parameters of mobile robot.

Parameters Symbol The Numerical Unit

The quality of robot M 50 kg
Driving wheel radius r 0.125 m

Distance between two driving wheels 2b 0.5 m

According to the robot parameters and variables defined in Table 1, on the premise
that the center of mass of the wheeled mobile robot coincides with the geometric center,
according to the principle of torque balance, Newton’s second law of motion and the speed
regulation principle of the wheeled mobile robot driven by two wheels, the following
dynamic model of the wheeled mobile robot is derived:

v̇ = a1v + b1(ur + u1) (27)

ω̇ = a2v + b2(ur − u1) (28)

Among: The a1 and a2 is the variable.

a1 = − 2
Mr2 + 2Iω

, a2 = − 2L2

Ivr2 + 2Iω L2 ,

b1 = − kr
Mr2 + 2Iω

, b2 = − krL
Ivr2 + 2Iω L2

(29)

Define the following variables:

x1 = [v w]>, u1 = [ur ul ]
> (30)

Then the kinetic Equations (27) and (28) of the wheeled mobile robot can be expressed as:{
ẋ1 = A1x1 + B1u1

y1 = x
(31)

In the formula, x1, u1 and y1 represent state, control and output, respectively.
Then we can find that the dynamic equation of the wheeled mobile robot is obtained.
To test the performance of the proposed control method of high-precision interval

observer, it is compared with other design methods. This method proposes the following
form of interval observer:{

ξ̇−(t) = Rξ−(t) + (PT)+ω−(t)− (PT)−ω+(t) + P((TA− LC)N + L)y(t)
ξ̇+(t) = Rξ+(t) + (PT)+ω+(t)− (PT)−ω−(t) + P((TA− LC)N + L)y(t)

(32)

T and N are obtained by solving the equation TE + NC = I, and P and L are obtained
by solving the Sylvester equation:

PTA− RP = QC (33)

In Equation (33), R is the matrix selected by the designer. This method needs to solve
the matrix T first, then determine an R matrix and solve (32) to obtain the values of P and
Q, and finally obtain the matrix L by L = P−1Q [19].



Actuators 2023, 12, 116 8 of 11

After getting ξ+(t) and ξ−(t), we also need to get the interval estimation x̂+(t) and
x̂−(t) of x by the following formula:{

x̂+(t) = S+ξ+(t)− S−ξ−(t)
x̂−(t) = S+ξ−(t)− S−ξ+(t)

(34)

The interval estimation results shown in Figure 2a–c can be obtained by using the
method proposed in this paper, where x(t) ∈ R is the state vector, X1X2X3 is three state
vectors, the blue dotted line shows the upper and lower bounds obtained by the method
proposed in this paper, and the red dashed line shows the upper and lower bounds obtained
by other methods. The methods used in the results are listed in Table 2.

Using the method presented in this paper and the method presented in the litera-
ture [20], the interval estimation results are shown in Figure 3. Among them, the red line
shows the upper and lower bounds obtained by the proposed method proposed in this
paper. It can be seen that the proposed method can obtain a more accurate interval esti-
mation, indicating that the performance of the proposed method is better. This is because
the method in the literature [20] is based on coordinate transformation, which designs
conditions to some extent, but also brings some conservatism.

It can be seen that the method proposed in this paper can obtain more accurate interval
estimation. This is because other methods are based on coordinate transformation [21,22].
Although the design conditions are relaxed to a certain extent, they also bring a certain
degree of conservatism. In fact, if we combine the method in this paper with iterative
learning control, the results will be more accurate, which is conducive to our trajectory
control of the robot [23–25].

Table 2. The methods used for the results

Results X1 X2 X3

Methods In This Paper ! ! !
Method Proposed In Reference [20] ! ! %

Other Methods Based On Coordinate Transformation % % !

(a)

Figure 2. Cont.
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(b)

(c)

Figure 2. Results of interval estimation between this method and other methods. (a) X1 and its
interval estimation results. (b) X2 and its interval estimation results. (c) X3 and its interval estimation
results.

Figure 3. Velocity tracking and perturbation estimation.
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4. Conclusions

In this essay, a high-precision interval observer is proposed for the robot system. In
this essay, the trajectory tracking problem of high precision interval observer is studied
in the case of the uncertainty of control parameters and unknown external disturbance
of mobile robots in a complex environment. Firstly, the kinematics and dynamics models
of the wheeled mobile robot are derived, and then a controller based on the dynamics
model is designed by using a high-precision interval observer. The controller can overcome
the influence of unknown disturbances effectively, which not only ensures the stability of
the system but also realizes the stability and quick tracking of the trajectory. It should be
pointed out that we can also use artificial intelligence or H∞ design method can further
optimize the performance of the interval observer, which can be considered as one of the
future research work [26,27].
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