
Citation: Szabo, R.; Ricman, R.-S.

Robotic Arm Position Computing

Method in the 2D and 3D Spaces.

Actuators 2023, 12, 112. https://

doi.org/10.3390/act12030112

Academic Editor: André Preumont

Received: 15 November 2022

Revised: 3 February 2023

Accepted: 6 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Robotic Arm Position Computing Method in the 2D and
3D Spaces
Roland Szabo 1,2,* and Radu-Stefan Ricman 1,2

1 Faculty of Electronics, Telecommunications and Information Technologies, Politehnica University Timisoara,
Vasile Parvan Av., No. 2, 300223 Timisoara, Romania

2 Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
* Correspondence: roland.szabo@upt.ro; Tel.: +40-256-40-3351

Abstract: This paper presents a method on how to compute the position of a robotic arm in the 2D
and 3D spaces. This method is slightly different from the well-known methods, such as forward
or inverse kinematics. The method presented in this paper is an optical method, which uses two
video cameras in stereo vision configuration to locate and compute the next move of a robotic arm in
space. The method recognizes the coordinates of the markers placed at the joints of the robotic arm
using the two video cameras. The coordinate points of these markers are connected with straight
lines. Around certain points, circles are drawn. From the tangent to the circles, a non-Cartesian
(orthogonal) coordinate system is drawn, which is enough to compute the target position of the
robotic arm. All of these drawings are overlaid on the live video feed. This paper also presents
another method for calculating the stereo distance using the triangulation method. An alternative
method is also presented when a non-Cartesian (orthogonal) 3D coordinate system is created, which
is used to compute the target position of the robotic arm in the 3D space. Because the system is in a
loop, it can make micro-adjustments of the robotic arm, in order to be exactly in the desired position.
In this way, there is no need to make calibrations for the robotic arm. In an industrial system, there is
no need to stop the production line, which can be a really big cost saver.

Keywords: computer vision; coordinate systems; image overlay; intelligent robots; motion analysis;
robot control; robot kinematics; robot motion; robot vision systems; robotic arm; stereo vision; stereo
image processing

1. Introduction

The idea of controlling a robotic arm has always been of great interest for mankind
because it is the only way to produce many products for today’s users with high demand [1].
Consumerism made today’s world really hard to survive in without machines or robots. In
a traditional robotic system, robots are controlled with forward or inverse kinematics, but
in this paper we try to present an alternative method, maybe a complementary method,
which can help to control a robotic arm optically using video cameras [2] in stereo vision
configuration. Video cameras can be used to auto-calibrate a robotic arm that can shift from
its movement path, due to repeated movement operations [3].

In a traditional robotic system with forward or inverse kinematics, the robot needs
maintenance and calibration. If the robotic arm shifts, it will offset its predefined movement
path [4].

A robotic arm control method will be presented, which will be controlled using
information received from video cameras mounted on the side of the room [5]. With strong
image processing techniques, the robotic arm can be controlled quite precisely.

There are also deep learning and reinforcement learning methods to control the
manipulator for dexterous operation, which can achieve good results [6–10]. The method
presented in this article can be comparable to these methods [11–20], when we refer to

Actuators 2023, 12, 112. https://doi.org/10.3390/act12030112 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12030112
https://doi.org/10.3390/act12030112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-9113-6098
https://orcid.org/0000-0002-2307-8412
https://doi.org/10.3390/act12030112
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12030112?type=check_update&version=2

Actuators 2023, 12, 112 2 of 21

precision, but with the advantage that there is no need for the calibration process, so no
time is lost like with other methods.

The robotic arm’s position computing method is implemented in a real robotic arm
control system.

Table 1 shows a comparison between the system presented in this manuscript and
other robotic arm control systems using video cameras, made by other researchers and
presented in specialized journals. The method presented was currently implemented to
control only three joints of the robotic arm.

Table 1. Comparison between the presented method and other similar methods.

Characteristics Proposed Approach M. Seelinger [21] R. Kelly [22] V. Lippiello [1] M. Kazemi [2]

Joint number 3 6 2 multi-finger 6
Cost low low low high low

Precision high high high high high
Complexity low medium low high high

Memory Usage low medium low high high
Calibration Needed no yes yes yes yes

Characteristics R.T. Fomena [3] L. Behera [23] J.J. Heuring [4] F. Chaumette [5] In-Won Park [24]

Joint number 6 3 6 6 7 or 4
Cost low low low low low

Precision high high high high high
Complexity high low high high medium

Memory Usage high low high high medium
Calibration Needed yes yes yes yes yes

It can be seen that the parameters of the proposed approach are comparable to the
implementations in the specialized journals. The method presented in this paper can be
extended to several joints. The presented algorithm controls three joints: left-right base
rotation (0X axis), forward-backward shoulder movement (0Y axis) and up-down elbow
movement (0Z axis). To scale up the system to robotic arms with more than three DoF,
up-down wrist movement can be added, for example, or rotation of certain joints. All
of this can be achieved by the usage of extra algorithms, such as the forward or inverse
kinematics. The proposed algorithm is not made to work alone, but alongside other known
algorithms, thus it can also control robotic arms with seven joints, which are used in the
aerospace industry.

Park et al. [24] can control a robotic arm with seven joints, in the simulation program
and another robotic arm with four joints, in the real experiment using classical Jacobian
matrix methods, but uses calibration and adjustments with a system of lasers mounted on
the end effector. The experiment also uses the help of a video camera, which tracks the two
laser points projected on a wall. The video camera was used because the classical Jacobian
matrix system has some shortcomings. For example, sometimes the position computed by
the algorithm is not correct, and there are some positions in the space where the robotic
arm cannot reach [24]. In this way, a video camera system was used to solve this problem.
The approach is a bit unusual, as the camera is behind the robotic arm and follows the laser
point projected onto a wall from the end effector, thus not viewing the robotic arm itself or
the object being manipulated.

It can be seen that, in the article presented by Park et al. [24], there are at least
25 calibration steps, which are not present in the method disclosed in this paper because
the calibration is performed in real time during execution. In the method presented in this
paper, only two calibration parameters are needed, which can be measured in the beginning
and will not change over time. The rest of the calibration is conducted automatically in
real-time during execution. In other words, in the worst case, the position is recalculated
and the robotic arm is moved more precisely to the target position. In an unfavorable case,
the robotic arm on the first attempt will not get very close to the target position and will

Actuators 2023, 12, 112 3 of 21

have tolerances on the order of millimeters. At this moment, the video cameras will sense
this and will give a command to recalculate the position. From this moment on, the target
position of the robotic arm will be recalculated from the new position, from this smaller
distance, and in this way the error will be corrected. From the tests, it has been seen that
the position is recalculated a maximum of three times, but in most cases, the robotic arm
manages to reach exactly the target position on the first try.

In the article written by Seelinger et al. [21], an interesting and rather rare approach
can be seen, as three video cameras are used, which can control a robotic arm with six joints.
One camera is placed in front and two on the side of the robotic arm. The approach is quite
interesting because, in the article, only the movements of the robotic arm are tracked, but
they are not actually controlled by the cameras. The control is carried out by forward or
inverse kinematics, so it is completed by classical methods.

Behera et al. [23] presented an approach similar to that disclosed in this paper. Two
video cameras are used and a robotic arm with three joints is controlled. In this approach,
classical methods such as forward or inverse kinematics are also used, but cameras are also
partially used to control the robotic arm. In the paper [23], one camera is placed on the
back and the other camera is placed on one side of the robotic arm.

A stereo camera system is not created because the cameras are not on the same side,
but still the control is made using another algorithm, which complements the classical
methods such as the forward or inverse kinematics. The algorithm in this approach is not
used on its own either, but it is a complex method, which controls the robotic arm using
video cameras, and also incorporates classical methods too.

In the article written by Kelly et al. [22], a slightly different approach is observed,
since only one camera is used, which is mounted on the end effector of the robotic arm.
The robotic arm has only two joints. It can be said that two cameras are too much for this
movement because, with two joints, the robotic arm can only move in one plane, and, in
this way, one camera is enough for computing this movement. This approach is quite
different from the one presented in this paper, as the camera views the manipulated object
and not the robotic arm itself. The approach, however, has advantages because it deals with
the dynamics of the robotic arm, which were not taken into account in this paper. Until
now, the dynamics have not affected the system because the system moved relatively light
objects from one position to another [25]. In the case where the movement velocity does
not matter too much, there are no problems [26]. For moving large objects at high speed,
handling the dynamics of a robotic arm is of great interest [27].

The goal of this work is to create a novel computational method for determining the
position of a robotic arm in space [28]. The idea was to create an alternative, or at least a
complementary method to the classic forward or inverse kinematics. This can be achieved
by creating an optical method in which the position of a robotic arm can be computed
using video cameras [29]. To recognize a robotic arm in space, markers are placed on each
joint of the robotic arm. The coordinates of these markers are connected with straight
lines. Circles around certain points are also drawn. From the tangent to the circles, a
non-Cartesian (orthogonal) coordinate system is drawn, which is good enough to compute
the target position of the robotic arm [30]. All of these drawings are overlaid on the live
video feed. The coordinates of the markers placed on the joints of the robotic arm are the
initial information from which the movement angles of each motor can be computed to
know how much each motor from the joints of the robotic arm has to rotate in order to
move the robotic arm in the desired position [31]. The coordinates of the markers placed
on the joints of the robotic arm are read using two video cameras. In a standard forward or
inverse kinematics computed robotic arm system, the robotic arm can shift or offset after
repeated movements [32]. For this, a re-calibration is needed to place the robotic arm on
track in the desired movement path [33]. When this happens, the production line must be
stopped, which can cause great financial losses for an industrial system and can increase
manufacturing costs [34]. An optical method can be an advantage because there is no need
to perform periodic calibrations of a robotic arm [35]. This can be a really big cost saver [36].

Actuators 2023, 12, 112 4 of 21

The optical method can make repeated micro-adjustments to reach the target position of
the robotic arm because the system is in a loop [37].

2. Problem Solving
2.1. Presenting the Proposed Algorithm

In this section, the proposed method is presented, which can compute the target
position of the robotic arm in the 3D space. This proposed approach is based on the
combination of two algorithms. The first algorithm is the joint detection method in the 2D
space (axes 0Y and 0Z), using image processing techniques. The second algorithm is the
stereo distance calculation algorithm, which computes distances in the third dimension
(axis 0X), using two video cameras in stereo mode.

The algorithm used involves the usage of some guide lines and circles overlaid on the
image captured in real-time by the video cameras. These video cameras provide the initial
information (the coordinates of the joints) to calculate distances.

In Figure 1, it can be seen how the guide lines and circles will be drawn on the live
video stream with the robotic arm. Here, a 3D model of the Lynxmotion AL5X robotic arm
is shown with the guide lines and circles drawn for the position calculation. The 3D model
was used only to show the basic idea of the algorithm. Other alternative methods will be
shown on a real robotic arm.

Figure 1. Auxiliary drawings on the 3D model of the robotic arm.

In Figure 2, the drawings overlaid on the live video stream can be seen.

Actuators 2023, 12, 112 5 of 21

Figure 2. Guide lines and circles for calculating distances in the 2D space overlaid on the live
video stream.

The point P0 refers to the blue bottle cap placed on the base of the robotic arm, the
point P1 refers to the yellow bottle cap placed on the elbow of the robotic arm, and the
point P2 refers to the red bottle cap placed on the end effector of the robotic arm. The point
PT is the target point, the point at which the end effector must reach, and is marked with
the green bottle cap.

Points P1, P2 and P1 with P0 are connected with blue lines, the point P2 is connected
with the point P0 using a green line, in this way obtaining the skeleton of the robotic arm.
The blue lines are overlaid directly on the robotic arm because they connect the joints of
the robotic arm (these lines have a fixed length), and the green line shows the “opening
distance” of the robotic arm, or the distance between the bottom and the end joints (this
line is variable in length). Finally, the point P2 is connected with the point PT using a red
line (this line is also variable in length, depending on the position where the target point
is placed).

A blue circle is drawn around the point P1, and a green circle is drawn around the point
P0. The blue circle has a fixed radius and a variable origin, and the green circle has a fixed
origin and a variable radius. After this step, the tangents are drawn to the blue and green
circles. The simplest method is to calculate the orthogonal vector for the blue segment
P1P2 and the orthogonal vector for the green segment P0P2 by drawing perpendicular
segments of equal lengths to the radius of the circles. The green segment P4P2 is equal
and perpendicular to the green segment P2P0, and the blue segment P5P2 is equal and
perpendicular to the blue segment P2P1.

This way, a coordinate system was obtained, which is not a Cartesian (orthogonal)
coordinate system, but it can be used for the intended purpose to compute the robotic arm’s
position in space. The points of interest are P6 and P7, which need to be determined.

A parallel line to the green line P2P4 can be drawn; this line also passes through the
point PT , which will certainly intersect the blue line. In addition, the points P2 and P5 are
on this line. The intersection is made through the point P6. A parallel line can be drawn,
with the blue line; also, the points P5 and P2 are on this line; this parallel line also passes
through the point PT , which will surely intersect the green line; also, the points P2 and P4
are on this line. The intersection is made through the point P7. Thus, the parallelogram
P2P6PT P7 is obtained. This parallelogram is actually the coordinate system from which

Actuators 2023, 12, 112 6 of 21

useful information can be obtained; the useful information is the length of the segments
P2P7 and P2P6. In addition, the length of the segments P0P2 and P2P1 is known (the position
of the points P0, P1, and P2 is known, and the coordinates of these points were obtained
with the help of a single camera). The coordinates of the target point PT and the intersection
points P6 and P7 are also known.

The length of the segments P2P7 and P2P0 is also known, which are the lengths of the
legs of the green right triangle, for which the motion angle P̂2P0P7 of the base motor of
the robotic arm using trigonometric functions must be computed by computing the angle
arctangent. The system could compute singularities at specific positions. The robotic arm
is mechanically made in such a way that it does not move when a singularity point is
computed. If the system computes a singularity point, the robotic arm would move as close
to the target position by repeating the position computation algorithm again. The system is
made to move in a loop.

Knowing the length of the segments P2P6 and P2P1 (the lengths of the legs of the blue
right triangle) for which the angle of motion P̂2P1P6 of the robotic arm elbow motor needs
to be computed.

This drawing refreshes on the robotic arm’s live video stream dynamically every time
the robotic arm changes its position. The dimensions differ, but the symmetry is the same;
the sides of the parallelogram P2P6PT P7 will always be parallel to each other. Certain
segments of the final overlaid image are hidden for readability (e.g., segments P5P6, P4P7,
P7P0, P6P1).

Angles must be converted into robotic values, and these values can be decoded by the
robotic arm microcontroller; in other words, these values are “understood” by the robotic
arm. These robotic values are actually pulse widths in microseconds (µS) which are used
to control each motor from the joints of the robotic arm, and the “robotic values” are the
positions of each servo motor of the robotic arm.

The three-dimensional extension of the present 2D algorithm is performed using a
secondary video camera used to calculate distances on the 0X axis.

In the following, the formulas for generating the overlaid drawings applied in the
real-time video stream are presented [38].

The values of the robot commands have been determined. These were obtained by con-
verting the “robotic_values” (pulse widths) for the servomotors as shown in Equation (1):

robotic_constant =
∆PW

180◦ − 0◦
=

2500− 500
180◦ − 0◦

= 11.(1) robotic_values (1)

The “robotic_values” (pulse widths) are between 500 and 2500, and the maximum
angle of movement of a servomotor is 180◦, so the relationship between the angles and
“robotic_values” (pulse widths) is presented in Equation (2):

1◦ ∼= 11 robotic_values (2)

As seen in (2), the “robotic_values” were rounded to integer values because the micro-
controller, which controls the servomotors from the robotic arm’s joints, can accept only
integer values. We can accept (2); then, the error of our rounding will be a movement of a
joint with ∼=0.01◦, which is not a big error, but even in this situation, this error will be also
corrected by the micro adjustments made by the robotic arm controlled by the two video
cameras used in the stereo vision configuration.

The difference between the vectors was calculated as shown in Equation (3):{
∆x = x2 − x0
∆y = y2 − y1

(3)

Actuators 2023, 12, 112 7 of 21

The length of the Euclidean norm vector is computed as shown in Equation (4):

‖l‖ =
√

x2 + y2 (4)

The orthogonal vector was calculated as shown in Equation (5):{
x̃ort = y

ỹort = −x
(5)

Combining Equation (3) with Equation (5), we obtain the coordinates of the points P4
and P5 as shown in Equation (6) and in Equation (7).{

x4 = ∆x0x − 2 · ∆x0x + x2
y4 = ∆x0y − 2 · ∆x0y + y2

(6)

{
x5 = ∆y0x − 2 · ∆y0x + x2
y5 = ∆y0y − 2 · ∆y0y + y2

(7)

The parallelogram P7PT P6P2 was calculated as follows:
The slope (m) of the two tangents to the circles is expressed by Equation (8):{

mα = y5−y2
x5−x2

mβ = y4−y2
x4−x2

(8)

The line passing through the point P2 for the end effector of the robotic arm is expressed
by Equation (9):

y2 = mαx2 + b (9)

Or:
y = mαx + y2 −mαx2 (10)

Using Equation (10) twice for x and twice for y, for both slopes (mα and mβ),
Equations (11)–(14) were obtained:

y6 = mαx6 + y2 −mαx2 (11)

y7 = mβx7 + y2 −mβx2 (12)

y6 = mβx6 + yT −mβxT (13)

y7 = mαx7 + yT −mαxT (14)

Inserting y6 into Equation (11) and into Equation (13) yielded the Equation (15):

mαx6 −mβx6 = yT −mβxT − y2 + mαx2 (15)

Finally, the coordinates of the point P6 were obtained as presented in Equation (16):{
x6 =

(mαx2−mβxT+yT−y2)
mα−mβ

y6 = mα(x6 − x2) + y2
(16)

Performing the same calculations for y7, the coordinates for the point P7 were obtained
with Equations (17) and (18):

mβx7 −mαx7 = yT −mαxT − y2 + mβx2 (17){
x7 =

(mβx2−mαxT+yT−y2)
mβ−mα

y7 = mβ(x7 − x2) + y2
(18)

Actuators 2023, 12, 112 8 of 21

Next, how to calculate the distance using the stereo cameras is described.
In Figure 3, the right triangle has one leg that represents the object “distance”, and the

other leg represents the distance between the cameras, or, in the terms used in this paper,
represents “camera_separation”.

Figure 3. Stereo distance calculation.

In the smaller (calibration) right triangle, one leg is the difference between the two
images, and the other leg is the conversion factor, which is a calibration parameter. The
system thus provides a self-calibration function, as the conversion factor is recalculated each
time the distance is computed; this event occurs each time the robot changes direction [39].
The only pre-calibration, which the system needs, is the distance between the cameras
(“camera_separation”) and knowledge the initial distance from the cameras to the robotic
arm (“distance”). This can be measured in advance. In industrial systems and in our system,
too, the robotic arm is fixed to the ground [40–42] with screws, so these distances will not
change. The offset can be computed by reading the coordinates, with the video cameras,
of a certain marker placed at a specific joint of the robotic arm. In our case, the marker
number 2, is placed at the end effector joint of the robotic arm.

Two distances were calculated, one to the blue dot, which represents the base of the
robot, and the other to the green dot, which represents the target point, where the end
effector must reach [38]. These two distances are subtracted from each other. This difference
represents the leg of the right triangle, and the other leg is the green segment P0P2, as shown
in Figure 2.

Using the following formulas, the measured distance values can be transformed
from the real-world coordinates to the pixel coordinates to synchronize them with the
values obtained from Figure 2. With trigonometric functions, the value of the angle of
movement of the robotic arm will be calculated on the 0X axis and after that this value will
be converted into a command “understood” by the robot. The image in Figure 2 is doubled
for redundancy and is also used to obtain the distance parameters measured using stereo
cameras [38]. In Figure 2, the distances for the 0Y and 0Z axes are determined, and, in
Figure 3, the distances for the 0X axis are determined. The position of the robotic arm in the
3D space is obtained by combining the two algorithms [38], the first algorithm presented
in Figure 2 is doubled for redundancy, using the two cameras, and the other algorithm is
presented in Figure 3, which also uses the parameters obtained with the algorithm shown
in Figure 2.

In the following, the formulas for calculating the stereo distance will be presented
according to Figure 3.

The tangent of the angles â and b̂ was calculated as shown in Equation (19):{
tan(a) = distance

camera_separation

tan(b) = o f f set
conversion_ f actor

(19)

Actuators 2023, 12, 112 9 of 21

The offset was calculated as the difference between the initial points of the left and
right images, acquired by the two cameras, as shown in Equation (20):

o f f set = |x0R − x0L| (20)

The conversion factor results are shown in Equation (21):

conversion_ f actor =
o f f set · initial_distance

camera_separation
(21)

The offset was calculated relative to the point P2 as shown below in Equation (22):

o f f set = |x2R − x2L| (22)

The final distance was calculated as seen in Equation (23):

f inal_distance =
conversion_ f actor · camera_separation

o f f set
(23)

The angle in degrees will be obtained as shown in Equation (24):

angle =
180◦

π
· arctan

(
tangent_length
radius_length

)
(24)

The values for the final “robotic commands” were calculated as presented in Equa-
tion (25):

f inal_robotic_values = angle · 11 robotic_values (25)

The real-world coordinates were converted into pixels as follows. The computer dis-
play used is a 19′′ display, and the resolution for the captured image has 320 × 240 pixels [43]
as shown in Equation (26):

horizontal_resolution = 320
vertical_resolution = 240

diagonal = 19′′
(26)

The pixel density was obtained from Equation (26). From Equation (27), the data for
the image size were obtained for a specific computer display size, which in the case of
the experiment was 21.05 PPI [43]. This value was taken from the PPI table [43], where
initially the height and width of a computer display needed to be measured and, after
being computed, the area in square inches. For each computer display area, in square
inches, there is a correspondence in PPI, which is a constant, which we can use to convert
real-world values into pixels:

display_size = 15.2′′ · 11.4′′ = 173.28 in2 @ 21.05 PPI (27)

The distance (in pixels) results in [43] as shown in Equation (28):

scale [pixels] = real_world_distance [cm] · 21.05 [pixels/in]
2.54 [cm/in]

(28)

The screen resolution needed to be introduced because the robotic arm’s position
detection in the 2D space (for axes 0Y and 0Z) makes distance calculations on the computer
screen at pixel level. For the third dimension (for the 0X axis), the stereo distance measure-
ment makes calculations in the real world, which needs to be converted to pixels, to be
combined with the robotic arm position detection in the 2D space, which uses pixel level
calculations. To convert real-world coordinates to pixels, as presented, the screen size and

Actuators 2023, 12, 112 10 of 21

resolution is a factor, which needs to be taken into account (some screens have more, others
have less pixels).

The method to compute the distance in the 3D space is made using a combined algo-
rithm. The movement in 2D (on the 0Y and 0Z axes) is computed with Equations (3)–(18)
and, for the movement in the third dimension (for the 0X axis), the stereo distance cal-
culation is used, which is calculated with Equations (19)–(23). There are two images for
redundancy, so for the 0Y and 0Z axis in the 2D space, the calculations are made twice, us-
ing Equations (3)–(18). The second camera is actually needed for the distance measurement
for the 0X axis, for the stereo distance calculation.

As geometric conclusions, it can be said that the position of the robotic arm in space
cannot be computed with only forward and inverse kinematics or coordinate system
transformations, but also with another type of parallelogram-shaped coordinate system,
which is not a Cartesian (orthogonal) coordinate system, but it is good enough to compute
the position of the robotic arm in space.

In Figure 4, the graphical representation of the steps on how to control a robotic arm
using the proposed method is presented. Also, a pseudocode with the implementation is
shown in Appendix A.

Figure 4. Graphical representation of the steps on how to control a robotic arm using the pro-
posed method.

Actuators 2023, 12, 112 11 of 21

2.2. Method Evaluation with Six-Sigma Tools

Six-Sigma (6σ) is a set of tools and methods to improve the process. These tools try to
improve the quality of manufacturing by removing defective products. This can be carried
out using statistical or empirical quality management methods with the goal of increasing
customer satisfaction. The term Six Sigma comes from statistics, indicating the percentage
of products without defects, or how many standard deviations of a Gaussian distribution
correspond to the number of products without defect. These tools can be successfully used
for any measurement system, in our case the distance measurement system. If our distance
measurement system passes the Six-Sigma tests, it means that we have a robust system that
can be easily used in the industry and also in other fields.

In Table 2, the method is tested by taking measurements at different distances. The
system was tested by comparing the computed distance measurement method to a laser
distance measurement tool. In total, 30 measurements for the distances from 100 mm to
3000 mm, with an increment of 100 mm.

The measuring error for the 0Y and 0Z axes was not computed because the compu-
tations are at the pixel level. Everything being computed in the 2D space is computed on
the computer screen, and this error could not be relevant for a motor movement. This is
considered to be much under 1◦ of the motor movement. For the 0X axis, the measurement
error was computed, due to the fact that depth movement is measured using two video
cameras. The measuring error for the 0X axis is presented in the table. Here, the actual
measured distance with a laser measurement tool and the distance computed by the pre-
sented algorithm using video cameras can be seen. The delta (error) was also computed,
which is the difference between the value measured by the presented algorithm using video
cameras and the real distance measured by the laser measurement tool.

In Equation (29), the relative error is presented, and this is also presented in Table 2:

RE =

∣∣∣∣RD− CD
RD

∣∣∣∣ (29)

where RE is the relative error, RD is the real distance measured with the laser distance
measurement tool, and CD is the distance calculated with the algorithm. In Equation (30),
the tracking error is presented:

TE =

√
∑ (RD− CD)2

N − 1
∼= 3.47 mm (30)

where TE is the tracking error, RD is the real distance measured with the laser distance
measurement tool, CD is the distance calculated with the algorithm, and N is the number
of measurements made. As can be seen, the tracking error is just below 3.5 mm at distances
between 100 and 3000 mm, which is quite acceptable, due to the fact that the system can
make corrections using the optical self-calibration because the system is in a loop.

Figure 5 shows the normal probability plot, with a 95% confidence interval, of the
delta (error), which is the difference between the real value and the measured value. The
mean of the delta (error) is −0.7667 mm, which is acceptable. The standard deviation is
3.38 mm. This could cause the robotic arm to oscillate, but with the auto-calibration method,
the system being in a loop, the robotic arm can easily get in the desired target position,
by the repeated use of the presented algorithm. The authors made video recordings to
demonstrate that the robotic arm can reach the desired position. The AD (Anderson–
Darling) value is 0.643, and the p-value is 0.084, which is greater than α = 0.05, so we fail
to reject the null hypothesis and the delta (error) is not statistically significant because
it has too few values. However, even in this situation, the values are very close to the
real distance.

Actuators 2023, 12, 112 12 of 21

Table 2. Distance measurement using video cameras at different distances in [mm] with a highlight
on the measurement delta (error) in [mm] and the relative error.

Real Distance (RD)
[mm]

Computed Distance
(CD) [mm] Delta (∆) [mm] Relative Error (RE)

100 99 1 0.01
200 202 −2 0.01
300 303 −3 0.01
400 395 5 0.013
500 502 −2 0.004
600 598 2 0.003
700 699 1 0.001
800 797 3 0.004
900 904 −4 0.004

1000 1005 −5 0.005
1100 1101 −1 0.001
1200 1204 −4 0.003
1300 1298 2 0.002
1400 1402 −2 0.001
1500 1494 6 0.004
1600 1599 1 0.001
1700 1701 −1 0.001
1800 1802 −2 0.001
1900 1905 −5 0.003
2000 2005 −5 0.003
2100 2105 −5 0.002
2200 2202 −2 0.001
2300 2302 −2 0.001
2400 2404 −4 0.002
2500 2496 4 0.002
2600 2598 2 0.001
2700 2697 3 0.001
2800 2796 4 0.001
2900 2902 −2 0.001
3000 3006 −6 0.002

Figure 5. Normal probability plot for the error (delta).

In Figure 6, a capability analysis of the 30 distance measurements is presented. The
I − MR charts (individual value and moving range) are in limits. The histogram has a
Gaussian trend, but for a histogram, 30 values are not enough. It is also observed in the
histogram that there are no measured values where the delta (error) is 0. This means that
there is no measurement without error, but this is not a big issue because these errors are

Actuators 2023, 12, 112 13 of 21

very low. In the normal probability plot, the AD (Anderson–Darling) value is 0.643, and
the p-value is 0.084. Thus, it is greater than α = 0.05, so we fail to reject the null hypothesis,
and it can be said that the delta (error) is not statistically significant because we do not have
enough values. However, in this situation, the values are also very close to the real distance.
The most important part is the values in the conclusions, where the standard deviation is
2.965 mm within the subgroup and 3.38 mm in the overall measurements. The Cpk value is
1.38, which is more than 4σ, which is a very good result for a real system. The Cp is 1.46,
Pp is 1.28, and Cpk is 1.21. All the values are very close to 4σ, which is a very good result
for a real system. The PPM (the error per one million measurements) is 20.21 within the
subgroup and 171.11 in overall the measurements. This value is also a very good result.

Figure 6. Capability analysis for the actual distance and distance computed by the method using
video cameras.

Only a distance measurement with a laser distance measuring tool was performed,
and this was considered standard for distance measurement. Therefore, only a comparison
to this value was performed, a validation of the distance measurement with video cameras,
using the Six Sigma (6σ) tools. A comparison to a calibrated device (the laser distance
measuring tool) was made, and this can be considered as the calibration error.

3. Results
3.1. Calibrations

All of the methods presented in this paper needed some initial calibrations or some
calibrations before running the experiment. Using a video controlled system in a loop,
which can make micro-adjustments during execution, can be of great benefit in multiple
ways. The presented system has the ability to re-calibrate itself during execution by
recomputing the target distance in a loop as the end effector of the robotic arm gets closer
to the target object. The advantage of this can be time saving and also cost saving, due to
the fact that there is no need to pre-calibrate or re-calibrate the system after the robotic arm
shifts from its movement path during repeated movement operations.

Actuators 2023, 12, 112 14 of 21

3.2. Experimental Results

Figure 7 shows the block diagram for the experiment of the detection of robotic arms
in space. On the hardware side, there are two web cameras connected to the USB port,
and the robotic arm is connected to the RS-232 port [38] of the PC. In the software part,
histogram equalization is carried out to unify the image. Then, an HSV (hue, saturation,
value) filter was used, the contours of the colored dots were detected (using edge detection),
and finally the centers of the circles were computed, which were drawn around the colored
dots detected. The colored dots are actually the markers placed at the joints of the robotic
arm. The markers are made by using colored bottle caps. Mathematical calculations are
made again, and circles and lines are drawn on the image to guide the calculations [38].
The colored dots detected are connected with lines and the circles are drawn around the
detected colored dots. The center of the circles around the detected colored dots helps
to connect the colored dots through their center. After mathematical calculations, the
movement distance of each motor is converted into “robotic commands” (SCPI commands)
and then sent to the robot using the RS-232 Linux driver.

Figure 7. Block diagram for the robotic arm controlling experiment in the 3D space made in Linux
implemented in C language and OpenCV.

Figure 8 shows the block diagram for the Lynxmotion AL5B robotic arm control
experiment with the ZedBoard and web cameras on the USB interface. The experiment
is very similar to the one in Figure 7; the only difference is that the system is embedded
because, instead of a PC, a development board [44] is used. The ZedBoard contains a
Zynq-7000 SoC, which has an ARM Cortex-A9 dual-core microprocessor clocked between
866 and 1000 MHz, more than the microprocessor on the Zybo board, which has an ARM
Cortex-A9 dual-core microprocessor clocked at 650 MHz. The Zynq-7000 SoC has an
Artix-7 FPGA on both the ZedBoard and the Zybo boards. An Ubuntu Linux operating
system was installed on the ZedBoard system. Then, the OpenCV library was installed and
finally everything was coded in the C programming language [44]. The ZedBoard has some
differences from the Zybo board. The ZedBoard has a USB port with a microUSB connector,
and the Zybo board has a USB port with a USB type A (standard) connector. To connect a
keyboard or mouse to the USB port on the ZedBoard, a male microUSB to a female USB
A adapter cable is also needed. On the Zybo board, the UART serial interface and the
programming interface are on the same interface, and a single microUSB connector is used.
On the ZedBoard, there are separate connectors for these two interfaces. The ZedBoard
has a more complex audio module than the Zybo board because the Zybo board has only
three analog audio ports: line-in, microphone, and headphone. In addition to these analog
audio ports, the ZedBoard has one more analog audio port: line-out. The audio system is
not used in this experiment, but it is a plus that the ZedBoard has a more complex analog
sound circuit. A big difference between two boards is that the video output is set in the
Ubuntu Linux operating system to the ZedBoard on the VGA port and on the Zybo board
to the HDMI port. The use of the VGA port can be quite noticeable in image quality since

Actuators 2023, 12, 112 15 of 21

the microprocessor has not integrated a separate graphic processor. The system has not
implemented a GPU, so when the analog VGA port is used, the pixels can be much more
pronounced compared to the digital HDMI port. Even if there is no GPU on these systems,
the marker detection method works smoothly.

Figure 8. Block diagram of the Lynxmotion AL5B robotic arm control experiment using the ZedBoard
FPGA board.

In Figure 9, the stereo image with the auxiliary drawings applied directly to the live
video feed can be seen. With their help, the amount of movement for each motor can
be calculated, so that the robotic arm can reach the target position. In other words, the
end effector, marked with the red bottle cap, reaches close to the green bottle cap. This
first approach uses a combined algorithm using the distance calculation algorithm in the
2D space of the robotic arm and the stereo distance calculation algorithm. The distance
calculation algorithm in the 2D space calculates the distance for movement in the Y0Z
coordinate system. The movement around point 0 (the base joint marked with the blue
bottle cap) is the movement on the 0Y axis. The movement around point 1 (the elbow
joint marked with the yellow bottle cap) is the movement on the 0Z axis. For the 0X axis,
two images are used (from the two cameras) and the depth distance is calculated using
the stereo distance calculation algorithm. Positions are identified in the 3D space using
image processing methods (color recognition (histogram equalization, HSV filter, contour
detection, circle center detection) for different colored bottle caps placed on the joints of the
robotic arm).

Figure 9. The image of the guide lines and circles drawn for computing the position of the robotic
arm in the 3D space using two combined algorithms: distance calculation in the 2D space and stereo
distance calculation.

Actuators 2023, 12, 112 16 of 21

The noise problem of the proposed computer vision techniques would not be a prob-
lem. Actually, the system is made for robotic arms, which in the industry are screwed to
the ground, so they are not moving from their position, and they are in an environment
with good light because in a factory the lighting is usually good. Low light conditions can
make noise in a live video feed, but this is not the case in our experiment. In addition to
this, several image processing techniques such as histogram equalization or HSV filtering
are used (for color recognition, to recognize the colored bottle caps placed on the joints of
the robotic arm), which can correct an image with noise.

3.3. Discussion

The advantages of the presented method are that there is no need to calibrate or
re-calibrate a robotic arm because the calibration is carried out during execution, with the
help of the video cameras because the system is in a loop. Another advantage is that the
system can be combined with other known methods, such as forward or inverse kinematics.
The system can be implemented on any actual robotic arm, with current technology, due to
the fact that video cameras nowadays are very popular and easy to find.

The disadvantages of the system can be that it is made up of two combined algorithms
and sometimes it can be hard to implement a combined algorithm in a system.

4. Conclusions

The robotic arm position computation algorithm, using video cameras in the 3D space,
was presented. The algorithm was validated using Six-Sigma (6σ) tools. The method of
computation was implemented in software and tested on a real robotic arm.

The method and basic idea of the algorithms used were presented. Similar studies
from the specialized literature were compared with the original model and the differences
and advantages of the presented method were highlighted.

The formulas used in the robotic arm control programs were presented.
Several algorithms for computing distances were presented in the 2D and 3D spaces.
Since the mass of the robots used in the experimental part is not significant and

the payload is reduced, an aspect corroborated by the servomotor control, the dynamics
problems, was not taken into account, considering the optical self-calibration to be sufficient.

Further enhancements can be achieved by implementing the method on other plat-
forms, such as FPGA boards with the Zynq-7000 SoC, like the Zybo. The system can also
be implemented on a Raspberry Pi. The method can be ported to other programming
languages, such as Python or Java, with the actual system being implemented in the C
programming language. The best enhancement could be porting the system to another
robot, such as the SCORBOT-ER III robotic arm.

Author Contributions: Conceptualization, R.S. and R.-S.R.; methodology, R.S. and R.-S.R.; software,
R.S.; validation, R.S.; formal analysis, R.S. and R.-S.R.; investigation, R.S. and R.-S.R.; resources,
R.S.; data curation, R.S.; writing—original draft preparation, R.S.; writing—review and editing, R.S.;
visualization, R.S.; supervision, R.S.; project administration, R.S.; funding acquisition, R.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Academy of Romanian Scientists, Splaiul Independentei
54, 050044 Bucharest, Romania. This research was also funded by Politehnica University Timisoara
and the Applied Electronics Department.

Data Availability Statement: All the images are available on request from the corresponding author.

Acknowledgments: The authors would like to thank the Academy of Romanian Scientists, Splaiul
Independentei 54, 050044 Bucharest, Romania for the given support. The authors would also
like to thank Politehnica University Timisoara and the Applied Electronics Department for the
given support.

Conflicts of Interest: The authors declare no conflict of interest.

Actuators 2023, 12, 112 17 of 21

Notations
The following symbols and abbreviations are used in this manuscript:

2D 2 Dimensions
3D 3 Dimensions
DoF Degrees of Freedom
∆PW difference between robotic values (pulse widths) of the motors of the robotic arm
∆x, ∆y difference between vectors
x, y vectors
‖l‖ length of the Euclidean norm vector
x̃ort, ỹort orthogonal vectors
mα, mβ slopes of the two tangents to the circles
x0R, x0L right and left points of the offset
π pi = 3.14
in inch
PPI Pixels Per Inch
R, L right, left
X, Y, Z coordinates
d distance
f focal distance
θ angle
P, Q, R coordinates in space
−→
PQ,
−→
PR vectors of the coordinates in space

i, j, k unit vectors
x, y, z vectors
a, b, c, d scalars
u, v, w vectors
USB Universal Serial Bus
RS-232 Recommended Standard 232 (serial communication)
PC Personal Computer
HSV Hue, Saturation, Value
SCPI Standard Commands for Programmable Instruments
ARM Advanced RISC (Reduced Instruction Set Computer) Machine
SoC System-on-a-Chip
FPGA Field Programmable Gate Array
OpenCV Open Computer Vision
UART Universal Asynchronous Receiver-Transmitter (serial communication)
VGA Video Graphics Array
HDMI High-Definition Multimedia Interface
GPU Graphics Processing Unit

Appendix A

A pseudo code containing the computation method of the guidelines for calculating
distances in the 3D space is listed below.
1

2 // ===
3 // Global functions
4 // ===
5

6 DiffPoint (pos1 , pos2) {
7

8 diff.x = pos1.x - pos2.x;
9 diff.y = pos1.y - pos2.y;

10

11 return diff;
12

13 }
14

15 VectLen (vect) {
16

Actuators 2023, 12, 112 18 of 21

17 return sqrt (abs (vect.x * vect.x + vect.y * vect.y));
18

19 }
20

21 Orthogonalize (vect) {
22

23 temp = vect.x;
24 vect.x = vect.y;
25 vect.y = -temp;
26

27 return vect;
28

29 }
30

31 autoMove () {
32

33 // ===
34 // Stereo distance calculation
35 // ===
36

37 offset = abs (pointR [0].x - pointL [0].x);
38 factor = offset / (tan (PI / 2 - atan (dist0 / eyesep)));
39

40 offset = abs (pointR [2].x - pointL [2].x);
41 dist1 = tan (PI / 2 - atan (offset / factor)) * eyesep;
42

43 offset = abs (targetR.x - targetL.x);
44 dist2 = tan (PI / 2 - atan (offset / factor)) * eyesep;
45

46 // ===
47 // Robotic arm control
48 // ===
49

50 xAxis = DiffPoint(targetR , pointR [0]);
51 dradlen = VectLen(xAxis);
52

53 diffb = DiffPoint (pointR [6], pointR [2]);
54 btanlen = VectLen (diffb) + (2 * (21.05 / 2.54));
55

56 diffg = DiffPoint (pointR [7], pointR [2]);
57 gtanlen = VectLen (diffg) - (2 * (21.05 / 2.54));
58

59 dtanlen = abs (dist2 - dist1) * (21.05 / 2.54);
60

61 // ===
62

63 degb = (180 / PI) * atan (btanlen / bradlenR);
64 degg = (180 / PI) * atan (gtanlen / gradlenR);
65 degd = (180 / PI) * atan (dtanlen / dradlen);
66

67 // ===
68

69 robodegb = degb * (2000 / 180);
70 robodegg = degg * (2000 / 180);
71 robodegd = degd * (2000 / 180);
72

73 // ===
74 // Robot arm moving from right to left
75 // ===
76

77 if ((targetR.x < pointR [2].x) && (targetR.y > pointR [2].y)) {
78 robovalb -= robodegb;
79 robovalg -= robodegg;
80 }
81

82 if ((targetR.x > pointR [2].x) && (targetR.y > pointR [2].y)) {
83 robovalb += robodegb;
84 robovalg += robodegg;
85 }

Actuators 2023, 12, 112 19 of 21

86

87 if ((targetR.x < pointR [2].x) && (targetR.y < pointR [2].y)) {
88 robovalb -= robodegb;
89 robovalg -= robodegg;
90 }
91

92 if ((targetR.x > pointR [2].x) && (targetR.y < pointR [2].y)) {
93 robovalb += robodegb;
94 robovalg += robodegg;
95 }
96

97 if (((dist2 - dist1) * (21.05 / 2.54)) > 0)
98 robovald += robodegd;
99 if (((dist2 - dist1) * (21.05 / 2.54)) < 0)

100 robovald -= robodegd;
101

102 }
103

104 main (argc , argv []) {
105

106 while (1) {
107

108 // ===
109 // Orthogonalize
110 // ===
111

112 yAxisR = Orthogonalize (yAxisR);
113 zAxisR = Orthogonalize (zAxisR);
114

115 pointR [4].x = yAxisR.x - 2 * yAxisR.x + pointR [2].x;
116 pointR [4].y = yAxisR.y - 2 * yAxisR.y + pointR [2].y;
117 pointR [5].x = zAxisR.x - 2 * zAxisR.x + pointR [2].x;
118 pointR [5].y = zAxisR.y - 2 * zAxisR.y + pointR [2].y;
119

120 // ===
121 // Parallelogram calculation
122 // ===
123

124 m1R = (pointR [5].y - pointR [2].y) / (pointR [5].x - pointR [2].x);
125 m2R = (pointR [4].y - pointR [2].y) / (pointR [4].x - pointR [2].x);
126 x1R = (m1R * pointR [2].x - m2R * targetR.x + targetR.y - pointR [2].y) /
127 (m1R - m2R);
128 y1R = m1R * (x1R - pointR [2].x) + pointR [2].y;
129 x2R = (m2R * pointR [2].x - m1R * targetR.x + targetR.y - pointR [2].y) /
130 (m2R - m1R);
131 y2R = m2R * (x2R - pointR [2].x) + pointR [2].y;
132

133 pointR [6].x = x1R;
134 pointR [6].y = y1R;
135 pointR [7].x = x2R;
136 pointR [7].y = y2R;
137

138 // ===
139

140 if (Key == 27)
141 break;
142

143 }
144

145 return 0;
146

147 }

Actuators 2023, 12, 112 20 of 21

References
1. Lippiello, V.; Ruggiero, F.; Siciliano, B.; Villani, L. Visual Grasp Planning for Unknown Objects Using a Multifingered Robotic

Hand. IEEE/ASME Trans. Mechatron. 2013, 18, 1050–1059. [CrossRef]
2. Kazemi, M.; Gupta, K.K.; Mehrandezh, M. Randomized Kinodynamic Planning for Robust Visual Servoing. IEEE Trans. Robot.

2013, 29, 1197–1211. [CrossRef]
3. Fomena, R.T.; Tahri, O.; Chaumette, F. Distance-Based and Orientation-Based Visual Servoing from Three Points. IEEE Trans. Robot.

2011, 27, 256–267. [CrossRef]
4. Heuring, J.J.; Murray, D.W. Modeling and copying human head movements. IEEE Trans. Robot. Autom. 1999, 15, 1095–1108.

[CrossRef]
5. Chaumette, F.; Hutchinson, S. Visual servo control. II. Advanced approaches [Tutorial]. IEEE Robot. Autom. Mag. 2007, 14, 109–118.

[CrossRef]
6. Naceri, A.; Schumacher, T.; Li, Q.; Calinon, S.; Ritter, H. Learning Optimal Impedance Control during Complex 3D Arm Movements.

IEEE Robot. Autom. Lett. 2021, 6, 1248–1255. [CrossRef]
7. Li, S.; Zhang, Y.; Jin, L. Kinematic Control of Redundant Manipulators Using Neural Networks. IEEE Trans. Neural Netw. Learn.

Syst. 2017, 28, 2243–2254. [CrossRef]
8. Jiang, Y.; Wang, Y.; Miao, Z.; Na, J.; Zhao, Z.; Yang, C. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots

With Relative Motion. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1010–1021. [CrossRef]
9. Vazquez, L.A.; Jurado, F.; Castaneda, C.E.; Santibanez, V. Real-Time Decentralized Neural Control via Backstepping for a Robotic

Arm Powered by Industrial Servomotors. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 419–426. [CrossRef]
10. Liu, Z.; Chen, C.; Zhang, Y.; Chen, C.L.P. Adaptive Neural Control for Dual-Arm Coordination of Humanoid Robot With Unknown

Nonlinearities in Output Mechanism. IEEE Trans. Cybern. 2015, 45, 507–518.
11. Cheng, B.; Wu, W.; Tao, D.; Mei, S.; Mao, T.; Cheng, J. Random Cropping Ensemble Neural Network for Image Classification in a

Robotic Arm Grasping System. IEEE Trans. Instrum. Meas. 2020, 69, 6795–6806. [CrossRef]
12. Freire, E.O.; Rossomando, F.G.; Soria, C.M. Self-tuning of a Neuro-Adaptive PID Controller for a SCARA Robot Based on Neural

Network. IEEE Lat. Am. Trans. 2018, 16, 1364–1374. [CrossRef]
13. Zhang, Y.; Chen, S.; Li, S.; Zhang, Z. Adaptive Projection Neural Network for Kinematic Control of Redundant Manipulators with

Unknown Physical Parameters. IEEE Trans. Ind. Electron. 2018, 65, 4909–4920. [CrossRef]
14. Hu, Z.; Han, T.; Sun, P.; Pan, J.; Manocha, D. 3D Deformable Object Manipulation Using Deep Neural Networks. IEEE Robot.

Autom. Lett. 2019, 4, 4255–4261. [CrossRef]
15. Huang, X.; Wu, W.; Qiao, H.; Ji, Y. 3D Brain-Inspired Motion Learning in Recurrent Neural Network with Emotion Modulation.

IEEE Trans. Cogn. Dev. Syst. 2018, 10, 1153–1164. [CrossRef]
16. Yang, Y.; Ni, Z.; Gao, M.; Zhang, J.; Tao, D. Collaborative Pushing and Grasping of Tightly Stacked Objects via Deep Reinforcement

Learning. IEEE/CAA J. Autom. Sin. 2022, 9, 135–145. [CrossRef]
17. Zhang, T.; Zhang, K.; Lin, J.; Louie, W.-Y.G.; Huang, H. Sim2real Learning of Obstacle Avoidance for Robotic Manipulators in

Uncertain Environments. IEEE Robot. Autom. Lett. 2022, 7, 65–72. [CrossRef]
18. Hsieh, Y.-Z.; Lin, S.-S. Robotic Arm Assistance System Based on Simple Stereo Matching and Q-Learning Optimization. IEEE Sens.

J. 2020, 20, 10945–10954. [CrossRef]
19. James, S.; Davison, A.J. Q-Attention: Enabling Efficient Learning for Vision-Based Robotic Manipulation. IEEE Robot. Autom. Lett.

2022, 7, 1612–1619. [CrossRef]
20. Yang, D.; Liu, H.A. EMG-Based Deep Learning Approach for Multi-DOF Wrist Movement Decoding. IEEE Trans. Ind. Electron.

2022, 69, 7099–7108. [CrossRef]
21. Seelinger, M.; Gonzalez-Galvan, E.; Robinson, M.; Skaar, S. Towards a robotic plasma spraying operation using vision. IEEE Robot.

Autom. Mag. 1998, 5, 33–38. [CrossRef]
22. Kelly, R.; Carelli, R.; Nasisi, O.; Kuchen, B.; Reyes, F. Stable visual servoing of camera-in-hand robotic systems. IEEE/ASME Trans.

Mechatron. 2000, 5, 39–48. [CrossRef]
23. Behera, L.; Kirubanandan, N. A hybrid neural control scheme for visual-motor coordination. IEEE Control Syst. 1999, 19, 34–41.
24. Park, I.-W.; Lee, B.-J.; Cho, S.-H.; Hong, Y.-D.; Kim, J.-H. Laser-Based Kinematic Calibration of Robot Manipulator Using Differential

Kinematics. IEEE/ASME Trans. Mechatron. 2012, 17, 1059–1067. [CrossRef]
25. Li, Z.; Li, S.; Luo, X. Using Quadratic Interpolated Beetle Antennae Search to Enhance Robot Arm Calibration Accuracy. IEEE

Robot. Autom. Lett. 2022, 7, 107202–107213. [CrossRef]
26. Tan, N.; Yu, P.; Zhong, Z.; Ni, F. A New Noise-Tolerant Dual-Neural-Network Scheme for Robust Kinematic Control of Robotic

Arms with Unknown Models. IEEE/CAA J. Autom. Sin. 2022, 9, 1778–1791. [CrossRef]
27. Costanzo, M.; De Maria, G.; Natale, C. Tactile Feedback Enabling In-Hand Pivoting and Internal Force Control for Dual-Arm

Cooperative Object Carrying. IEEE Robot. Autom. Lett. 2022, 7, 11466–11473. [CrossRef]
28. AlBeladi, A.; Ripperger, E.; Hutchinson, S.; Krishnan, G. Hybrid Eye-in-Hand/Eye-to-Hand Image Based Visual Servoing for Soft

Continuum Arms. IEEE Robot. Autom. Lett. 2022, 7, 11298–11305. [CrossRef]
29. Ruan, Q.; Yang, F.; Yue, H.; Li, Q.; Xu, J.; Liu, R. An Accurate Position Acquisition Method of a Hyper-Redundant Arm with Load.

IEEE Sens. J. 2022, 22, 8986–8995. [CrossRef]

http://doi.org/10.1109/TMECH.2012.2195500
http://dx.doi.org/10.1109/TRO.2013.2264865
http://dx.doi.org/10.1109/TRO.2011.2104431
http://dx.doi.org/10.1109/70.817672
http://dx.doi.org/10.1109/MRA.2007.339609
http://dx.doi.org/10.1109/LRA.2021.3056371
http://dx.doi.org/10.1109/TNNLS.2016.2574363
http://dx.doi.org/10.1109/TNNLS.2020.3037795
http://dx.doi.org/10.1109/TNNLS.2016.2628038
http://dx.doi.org/10.1109/TIM.2020.2976420
http://dx.doi.org/10.1109/TLA.2018.8408429
http://dx.doi.org/10.1109/TIE.2017.2774720
http://dx.doi.org/10.1109/LRA.2019.2930476
http://dx.doi.org/10.1109/TCDS.2018.2843563
http://dx.doi.org/10.1109/JAS.2021.1004255
http://dx.doi.org/10.1109/LRA.2021.3116700
http://dx.doi.org/10.1109/JSEN.2020.2993314
http://dx.doi.org/10.1109/LRA.2022.3140817
http://dx.doi.org/10.1109/TIE.2021.3097666
http://dx.doi.org/10.1109/100.740463
http://dx.doi.org/10.1109/3516.828588
http://dx.doi.org/10.1109/TMECH.2011.2158234
http://dx.doi.org/10.1109/LRA.2022.3211776
http://dx.doi.org/10.1109/JAS.2022.105869
http://dx.doi.org/10.1109/LRA.2022.3202358
http://dx.doi.org/10.1109/LRA.2022.3194690
http://dx.doi.org/10.1109/JSEN.2022.3156381

Actuators 2023, 12, 112 21 of 21

30. Rakshit, A.; Konar, A.; Nagar, A.K. A hybrid brain-computer interface for closed-loop position control of a robot arm. IEEE/CAA J.
Autom. Sin. 2020, 7, 1344–1360. [CrossRef]

31. Li, F.; Jiang, Y.; Li, T. A Laser-Guided Solution to Manipulate Mobile Robot Arm Terminals within a Large Workspace. IEEE/ASME
Trans. Mechatron. 2021, 26, 2676–2687. [CrossRef]

32. Tang, Z.; Wang, P.; Xin, W.; Laschi, C. Learning-Based Approach for a Soft Assistive Robotic Arm to Achieve Simultaneous Position
and Force Control. IEEE Robot. Autom. Lett. 2022, 7, 8315–8322. [CrossRef]

33. Min, J.-K.; Kim, D.-W.; Song, J.-B. A Wall-Mounted Robot Arm Equipped with a 4-DOF Yaw-Pitch-Yaw-Pitch Counterbalance
Mechanism. IEEE Robot. Autom. Lett. 2020, 5, 3768–3774. [CrossRef]

34. Lu, W.; Tang, B.; Wu, Y.; Lu, K.; Wang, D.; Wang, X. A New Position Detection and Status Monitoring System for Joint of SCARA.
IEEE/ASME Trans. Mechatron. 2021, 26, 1613–1623. [CrossRef]

35. Khaled, T.A.; Akhrif, O.; Bonev, I.A. Dynamic Path Correction of an Industrial Robot Using a Distance Sensor and an ADRC
Controller. IEEE/ASME Trans. Mechatron. 2021, 26, 1646–1656. [CrossRef]

36. Kamtikar, S.; Marri, S.; Walt, B.; Uppalapati, N.K.; Krishnan, G.; Chowdhary, G. Visual Servoing for Pose Control of Soft Continuum
Arm in a Structured Environment. IEEE Robot. Autom. Lett. 2022, 7, 5504–5511. [CrossRef]

37. Liu, X.; Madhusudanan, H.; Chen, W.; Li, D.; Ge, J.; Ru, C.; Sun, Y. Fast Eye-in-Hand 3D Scanner-Robot Calibration for Low
Stitching Errors. IEEE Trans. Ind. Electron. 2021, 68, 8422–8432. [CrossRef]

38. Szabo, R.; Gontean, A. Controlling a Robotic Arm in the 3D Space with Stereo Vision. In Proceedings of the 21st Telecommunications
Forum (TELFOR), Belgrade, Serbia, 26 November 2013; pp. 916–919.

39. Santoni, F.; De Angelis, A.; Skog, I.; Moschitta, A.; Carbone, P. Calibration and Characterization of a Magnetic Positioning System
Using a Robotic Arm. IEEE Trans. Instrum. Meas. 2019, 68, 1494–1502. [CrossRef]

40. Zhang, J.; Wang, W.; Cai, Y.; Li, J.; Zeng, Y.; Chen, L.; Yuan, F.; Ji, Z.; Wang, Y.; Wyrwa, J. A Novel Single-Arm Stapling Robot for
Oral and Maxillofacial Surgery—Design and Verification. IEEE Robot. Autom. Lett. 2022, 7, 1348–1355. [CrossRef]

41. Ozguner, O.; Shkurti, T.; Huang, S.; Hao, R.; Jackson, R.C.; Newman, W.S.; Cavusoglu, M. Cenk Camera-Robot Calibration for the
Da Vinci Robotic Surgery System. IEEE Trans. Autom. Sci. Eng. 2020, 17, 2154–2161. [CrossRef]

42. Pan, Y.; Wang, H.; Li, X.; Yu, H. Adaptive Command-Filtered Backstepping Control of Robot Arms with Compliant Actuators.
IEEE Trans. Control Syst. Technol. 2018, 26, 1149–1156. [CrossRef]

43. PPI Computation. Available online: https://www.sven.de/dpi (accessed on 15 September 2022).
44. Szabo, R.; Gontean, A. Lynxmotion AL5 Type Robotic Arm Control with Color Detection on FPGA Running Linux OS. In

Proceedings of the 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–23 November 2016; pp. 818–821.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JAS.2020.1003336
http://dx.doi.org/10.1109/TMECH.2020.3044461
http://dx.doi.org/10.1109/LRA.2022.3185786
http://dx.doi.org/10.1109/LRA.2020.2975731
http://dx.doi.org/10.1109/TMECH.2020.3025902
http://dx.doi.org/10.1109/TMECH.2020.3026994
http://dx.doi.org/10.1109/LRA.2022.3155821
http://dx.doi.org/10.1109/TIE.2020.3009568
http://dx.doi.org/10.1109/TIM.2018.2885590
http://dx.doi.org/10.1109/LRA.2021.3137891
http://dx.doi.org/10.1109/TASE.2020.2986503
http://dx.doi.org/10.1109/TCST.2017.2695600
https://www.sven.de/dpi

	Introduction
	Problem Solving
	Presenting the Proposed Algorithm
	Method Evaluation with Six-Sigma Tools

	Results
	Calibrations
	Experimental Results
	Discussion

	Conclusions
	Appendix A
	References

