
Citation: Qiu, Z.; Wei, W.; Liu, X.

Adaptive Gait Generation for

Hexapod Robots Based on

Reinforcement Learning and

Hierarchical Framework. Actuators

2023, 12, 75. https://doi.org/

10.3390/act12020075

Academic Editor: Chun-Fei Hsu

Received: 6 December 2022

Revised: 2 February 2023

Accepted: 6 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Essay

Adaptive Gait Generation for Hexapod Robots Based on
Reinforcement Learning and Hierarchical Framework
Zhiying Qiu 1, Wu Wei 1,2,* and Xiongding Liu 1

1 School of Automation Science and Engineering, South China University of Technology,
Guangzhou 510641, China

2 The Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education,
Unmanned Aerial Vehicle Systems Engineering Technology Research Center of Guangdong,
South China University of Technology, Guangzhou 510641, China

* Correspondence: weiwu@scut.edu.cn; Tel.: +86-139-2601-3970

Abstract: Gait plays a decisive role in the performance of hexapod robot walking; this paper focuses
on adaptive gait generation with reinforcement learning for a hexapod robot. Moreover, the hexapod
robot has a high-dimensional action space and therefore it is a great challenge to use reinforcement
learning to directly train the robot’s joint angles. As a result, a hierarchical and modular framework
and learning details are proposed in this paper, using only seven-dimensional vectors to denote the
agent actions. In addition, we conduct experiments and deploy the proposed framework using a real
hexapod robot. The experimental results show that superior reinforcement learning algorithms can
converge in our framework, such as SAC, PPO, DDPG and TD3. Specifically, the gait policy trained
in our framework can generate new adaptive hexapod gait on flat terrain, which is stable and has
lower transportation cost than rhythmic gaits.

Keywords: hexapod robot; reinforcement learning; hierarchical framework; gait generation

1. Introduction

Compared with wheeled robots, a hexapod robot has many advantages, including
rich gait [1], strong load capacity [2] and discrete support dependence [3]. With superior
terrain adaptability and excellent performances, hexapod robots have been widely applied
to disaster rescue [4], factory automation [5], intelligent maintenance [6] and exploration [7].
Nevertheless, most research still focuses on hexapod robot gait planning and motion con-
trol [8]. Regarding robotic control, hexapod robots are high-dimensional, omnidirectional
and non-smooth systems with complex kinematic structures, uncertain dynamics and
inherently diverse physical constraints [9,10]. In terms of robotic motion, a hexapod robot
relies on the alternate support and swing of each limb to advance its body’s motion [11],
and therefore the movement of the hexapod robot is constrained by gait.

Locomotion in legged animals is characterized as a rhythmic behavior [12]. To achieve
a rhythmic gait, some existing studies have used Central Pattern Generators (CPGs) as open-
loop oscillators [13], which rely on centrally generated rhythms to drive overall behavior.
Support for such approaches has been found, in particular, on fast walking in insects, such
as rapid locomotion in cockroaches [14] or the running and swimming behavior of the
salamander [15]. Importantly, with a high number of joints, this becomes a challenging
problem, and open-loop oscillator solutions are usually not applicable [16]. This and has
led to biologically inspired control approaches through combined areas of research. As one
example, the Walknet approach for hexapod robots realizes a decentralized and modular
structure that reflects insights from walking in stick insects [17]. While this approach can
deal with a variety of disturbances during locomotion, it is still limited when dealing with
novel and challenging walking situations [16]. In recent years, data-driven-based methods,
such as reinforcement learning and neural networks, have attracted significant attention

Actuators 2023, 12, 75. https://doi.org/10.3390/act12020075 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12020075
https://doi.org/10.3390/act12020075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://doi.org/10.3390/act12020075
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12020075?type=check_update&version=2

Actuators 2023, 12, 75 2 of 15

because of their ability to create more accurate and robust control policies, which provides
new feasible schemes for hexapod robot motion control [18].

Reinforcement learning (RL) can learn feasible planning and control strategies from
data and trials. RL has been extensively studied and applied in terms of legged robot
walking tasks. For instance, Peng et al. proposed a deep learning optimization strategy
to train a biped robot in simulated animations, enabling the robot to pass through ran-
dom obstacles freely [19]. In addition, Tan used proximal policy optimization to train
a quadruped robot motion strategy and realized the transformation from simulation to
physical robot [20]. Similarly, Tsounis constructed the Markov decision process (MDP) and
planned trajectories in a high-dimensional, continuous, state-action space, realizing the
stable movement of the robot in different environments [21]. In relevant research, Deep
Reinforcement Learning (DRL) has proven itself capable of automatically acquiring control
policies to accomplish a large variety of challenging locomotion tasks. Fu et al. designed
a novel DRL method to implement multi-contact motion planning for hexapod robots
moving on uneven plum-blossom piles [22]. Thor and Manoonpong proposed a simple yet
versatile modular neural control framework with fast learning in which behavior-specific
control modules could be added incrementally to obtain increasingly complex emergent
locomotion behaviors [23]. Showing the impressive performance of DRL for special tasks
in footed robots, Miki employed a model-free reinforcement learning approach to train a
deep policy which enabled the ANYmal robot to balance a light-weight ball robustly using
its limbs without any contact measurement sensor [24].

As a series-parallel composite omnidirectional mobile vehicle, the hexapod robot is
a complex coupling agent. As a result, using DRL to train an end-to-end controller leads
to non-convergence and gait disorder during training [25]. This has led to a growing
interest in hierarchical control frameworks and how these frameworks could be exploited
to improve behaviors in DRL. For example, Merel et al. proposed several such bio-inspired
principles of hierarchical control and also advocated their implementation into robot
architectures [26]. As one example, they emphasize a hierarchical framework with a higher-
level planner modulating a lower-level controller. In addition, Eppe et al. provided the
cognitive foundations of hierarchical problem-solving and proposed steps to integrate
biologically inspired hierarchical mechanisms to enable advanced problem-solving skills
in artificial agents [27]. Both works above provide a detailed and excellent overview for
hierarchical reinforcement learning, which was significant to our paper. Similarly, Azayev
and Zimmerman trained policies independently in individual scenarios using DRL, and
presented a scalable two-level hierarchy for hexapod locomotion through complex terrain
without the use of exteroceptive sensors [1].

This paper studies the gait generation of hexapod robots and realizes adaptive gait
generation using RL and hierarchical framework. The main contributions of this paper
are as follows. First, we developed a RL-based hierarchical control framework to reduce
the dimensionality of the action space, which was then deployed in a real robot. Specifi-
cally, for the speed-adaptive gait generation task, we describe the whole learning process,
including the MDP formulation, detailed training settings and policy gradient algorithm.
Furthermore, we designed simulations and experiments to demonstrate our framework’s
effectiveness. Overall, the proposed hierarchical framework appears novel and unique
enough to be applied in reinforcement learning. In addition, we designed a specific trajec-
tory planner, Inverse Kinematics solver and trajectory tracking controller for the hexapod
robot. This paper makes a valuable contribution to the Actuators journal.

The rest of this work is organized as follows. Section 2 introduces the hexapod robot
VkHex and the RL-based hierarchical framework. Section 3 describes the design of our
framework for the hexapod robot gait generation task. Section 4 presents training details
and experiments to verify the effectiveness and feasibility of the proposed framework.
Finally, conclusions and avenues for future research are presented in Section 5.

Actuators 2023, 12, 75 3 of 15

2. Robot Prototype and Hierarchical Framework

In this section, we introduce the key points of the physical prototype and gait planning
of the hexapod robot VkHex, and propose the corresponding hierarchical architecture
based on reinforcement learning.

2.1. Hexapod Robot

We designed a hexapod robot with 18 degrees of freedom (DOF) and constructed a
simulation environment using the PyBullet [28] physical engine. As shown in Figure 1,
VkHex adopts a rectangular structure with six identical legs symmetrically distributed.

Figure 1. (a) Physical prototype of the hexapod robot VkHex; (b) simulated prototype of the VkHex
in PyBullet.

The six legs of the hexapod robot are distributed as shown in Figure 2; each leg can be
abstracted into a three-link mechanism consisting of hip, knee and ankle joints in series.
Table 1 shows details on the VkHex, including dimensions, weight and references.

Figure 2. The rotation angles of the three active joints relative to the initial position are denoted as θ1,
θ2 and θ3. The lengths of the three links are recorded as L1, L2 and L3. The distance from the center
of the body to the hip joint of the Legi is ri (i = 1, ···, 6). A body coordinate frame {B} is located in the
center of the body. The z-axis of the joint coordinate frame {OJij} (j = 1, 2, 3) coincides with the joint
rotation axis. Additionally, the foot tip coordinate frame is denoted as {OFi }.

Table 1. VkHex details and parameters.

Parameter Value Parameter Value

Body dimensions 0.3866 × 0.2232 × 0.0821 m Robot weight 10 kg
DoF 18 Hip link L1 0.1179 m

Knee link L2 0.1302 m Ankle link L3 0.3996 m
Servo size 72 × 40 × 56 mm Servo weight 72 g

Servo parameters 27.5 kg/cm 7.4V Computing device Nvidia Tx2
9-axis IMU MPU9250 Power 7.4 V 8000 mAh

Actuators 2023, 12, 75 4 of 15

2.2. Reinforcement Learning and Hierarchical Framework

Most existing research has applied RL to learn an end-to-end motion controller to
control joints directly. However, as the number of robot joints increases, the end-to-end
motion controller training becomes difficult and tends to diverge, which is not suitable for
a hexapod robot [29]. To address this, we introduced a policy network, gait planner and
trajectory planner to design a RL-based modular hierarchical framework. Figure 3 shows
the designed modular hierarchical framework based on RL.

Figure 3. Gait generation and motion control architecture based on reinforcement learning and
modular hierarchical framework. This architecture decouples the planning and motion control
problem of a hexapod robot into two levels, including a motion planner (shown in blue) and joint
trajectory controller (shown in green).

We divided the RL-based hierarchical control architecture into a high-level planner
and a low-level controller. The high-level planner includes a gait policy network π(at|st; ϕ)
and a gait planner. The gait policy network trained by RL outputs the optimal gait pa-
rameters to the gait planner, including Pswing, ∆φ and s. Then, the gait modulator and
foot trajectory planner generate the swing and support phase functions φsw(t) and φst(t).
The Inverse Kinematics (IK) solver and the trajectory tracking controller make up the
lower-level controller, and the IK solver converts the foot trajectories into joint angles
θij(i = 1 . . . 6; j = 1, 2, 3). Finally, the trajectory tracking controller receives joint commands
and joint position errors to outputs motor control signals.

(a) Gait policy network

We used a two-layer multi-layer perceptron (MLP) [30] with a tanh activation function
to estimate the RL policy function. As shown in Figure 4, the MLP input is a 17D robot
observation vector, and the 7D output is directly sent to the gait planner, including the gait
phase difference, duty factor and step length.

Figure 4. Network architecture used for gait policy is a two-layer MLP with tanh activation function.
The input is the observation vector of the agent. The output is an extremely simple 7D vector.

Actuators 2023, 12, 75 5 of 15

(b) Gait modular

When walking on a flat road, hexapod robots alternate between supporting and swing
phases to advance the body’s motion. In general, the gait duty factor Pswing indicates the
proportion of the swing phase to the whole gait cycle:

Pswing =
Tsw

Tst + Tsw
, (1)

where Tst is the support time in a gait cycle and Tsw is the swing time.
Then, we used a phase function φ(t) ∈ [0, 2) and the relative phase differences ∆φi

to parameterize the state of each leg. φ(tsw) ∈ [0, 1) indicates that the leg is in the swing
phase, and φ

(
tst) ∈ [1, 2) represents the support phase. Where leg-1 is the reference leg

and the phase is φ1, the phases of leg-i can be represented by the following:

φi = φ1 + ∆φi (i = 2, 3, 4, 5, 6). (2)

(c) Trajectory planner

The foot trajectory of a hexapod robot includes the swing and support phase tra-
jectories. In this work, we adopt different phase functions for foot trajectories in three
directions: {

x = y = s·φsw
x (t),

z = h·φsw
z (t),

(3)

where (x, y, z) is the position of the foot tip relative to the body coordinate system at time t,
s is the step length and h is the step length.

When using the cycloid as the swing phase trajectory, the foot tip slides when touching
the ground and drags when walking [31]. As shown in Figure 5, we designed a new
cycloidal function as the swing phase trajectory:

φsw
x (t) = φsw

y (t) = t
Tsw
− 1

2π sin
(

2πt
Tsw

)
,

φsw
z (t) = sgn

(
Tsw

2 − t
)(

2
(

t
Tsw
− 1

4π

)
sin
(

4πt
Tsw

)
− 1
)
+ 1,

(4)

Figure 5. Improved cycloidal trajectory (a) and cycloidal curve in z-axis (b). The modified cycloidal
curve eliminates sudden acceleration change in the z-axis direction, as shown in (b).

To complete the periodic motion, the robot must satisfy momentum conservation
in the vertical direction, but direct force control to ensure the stability of robot motion is
extremely difficult [32]. Considering the hexapod robot equilibrium-point hypothesis [33],

Actuators 2023, 12, 75 6 of 15

we indirectly generated the required support force through position control. Therefore, we
used a sinusoidal function as the support phase trajectory:

z = −δ sin
(

π
t

Tst

)
− η·δ sin

(
2π

t
Tst

)
, (5)

where the amplitude δ is the virtual depth of the foot tip proportional to the support force.
Figure 6 shows the support phase trajectories with different parameters.

Figure 6. The support phase trajectory. In function expression, different amplitudes δ and η can be
set to achieve the ideal support phase position control; we adopted δ = 0.01 and η = 0.5 in this work.

(d) Inverse Kinematics solver

If the position of the foot tip in the hip joint coordinate system P =
(J1 x, J1 y, J1 z

)
is

known, the IK solver calculates the relationship between the joint rotation angles θ1, θ2, θ3
and the foot tip position P:

θ1 = tan−1
(J1 y

J1 x

)
,

θ2 = cos−1
(

d1
2+l22−l32

2d1l2

)
− cos−1

(
d1

2+d2
2−J1 z2

2d1d2

)
θ3 = cos−1

(
l22+l32−d2

2

2l2l3

)
− π,

, (6)

where, d1 =
√

J1 x2 + J1 y2 − l1, d2 =
√

d1
2 + J1 z2.

(e) Trajectory Tracking Controller

In the hierarchical framework, we adopted a sliding mode controller as the joint trajec-
tory tracking controller and used a nonlinear potential-like function to place the integral:

ρ(λ·e) = λ
eλx − e−λx

eλx + e−λx = λ tanh(λ·x), (7)

where λ is the regulator and e is the joint position error.
Then, a sliding surface with an error integral term was designed to improve the track-

ing accuracy, reduce the steady-state error, and avoid the difficult convergence problem,
expressed as:

s = KPe + KI

∫ t

0
ρ(λ·e)dτ + KD

.
e (8)

The control law of the nonlinear integral sliding mode control can be expressed as:

.
θ = J†

v (θ)
{

K−1
P
[
η̂1sgns + η̂2s + KI ·ρ(λ·e) + KD

..
e
]
+

.
φ(t)

}
, (9)

where J†
v (θ) = JT

v (θ)
[

Jv(θ)JT
v (θ)

]T is the pseudo-inverse matrix of the linear velocity Jacobi
matrix, s is the sliding surface, η̂1 and η̂2 are estimates for adaptation laws and

.
φ(t) is the

Actuators 2023, 12, 75 7 of 15

ideal foot-end velocity trajectory. Figure 7 shows the system block diagram of the nonlinear
integral sliding mode controller.

Figure 7. The block diagram of the nonlinear integral sliding mode controller.

3. Learning Process

This section introduces the learning process for the robot gait generation task, in-
cluding the environment’s Markov decision process, RL model description, and policy
training algorithm.

3.1. Markov Decision Process

The adaptive gait generate problem of the hexapod robot can be described as a Markov
decision process. Here, the MDP is a 5-tuple {S, A, r, Γ, γ}, where S is the set of observa-
tions, A is the set of actions, r : S× A→ R represents the reward given after action and
observation, Γ : S× A× S→ R is the transition probability function and γ ∈ (0, 1] is the
discount factor of the MDP. The robot’s goal is to interact with the environment through
the optimal policy network that maximizes future rewards.

3.2. Action

Unlike common robotic arms and quadruped robots with fewer joints, VkHex has
18 driving joints and 42 alternative support states [34], meaning that the gait has to be
searched in an extremely large space. In our framework, we use different parameter
groups

{
Pswing, ∆φi, s

}
to represent different motion gaits, which significantly reduces the

dimension of the action space while being intuitive and simple. As a result, in the gait
generation task and RL framework, one action includes a 7D vector:

• Gait duty factor Pswing (1D);
• Phase difference ∆φi (5D);
• Step length s (1D).

3.3. Observation

The attributes in the observation space consist of only those measurable by VkHex.
We categorized the observed attributes into three types: (1) values sensed by the robot, (2)
values associated with historical moments, and (3) values related to the designed goals.
The observation consists of the following attributes, which add up to a 17D vector:

• Current velocity of the VkHex vcur
base (3D);

• Current angular velocity of the VkHex wbase (3D);
• Body platform height H (1D);
• Last moment action at−1 (7D);
• Target velocity of the VkHex vtarget

base (3D).

Actuators 2023, 12, 75 8 of 15

3.4. Reward Function

Our reward design encourages the robot to generate the most efficient gaits according
to different velocity commands while completing the corresponding joint motion control
without falling. Therefore, we used one primary reward and four penalties.

(i) In our study, the gait stability reward rbalance is the primary reward. The new generated
gaits must be stable enough. Only when the hexapod robot reaches the target position
without falling can it receive a positive reward. The functional expression of this
reward is as follows:

rbalance =

{
λ, Φ(xbalance) ≥ 0,

−αλ, Φ(xbalance) < 0,
(10)

where λ > 0 is the fixed reward value and α denotes discount factor. The function
Φ(xbalance) judges whether the robot is stable from the termination condition.

(ii) The learning task is that the hexapod robot can track speed commands and generate
new RL-based gaits. The velocity tracking penalty rvel forces the agent to move at the
desired velocity:

rvel = exp
(
‖vbase − vbase‖2

)
, (11)

where vbase is the desired velocity and vbase is the actual velocity of the robot.

(iii) The energy consumption penalty renergy is the penalty for gait motion efficiency and
energy consumption. We used the cost of transportation (CoT) [35] as the penalty
index. The expression is:

renergy =
∑18

i=1 τi·ωi

mg·|vbase|
, (12)

where τi is the joint torque, wi is the joint angular velocity, m is the mass of the robot and g
is the gravitational acceleration.

(iv) The joint tracking penalty rjoint is the penalty for the joint tracking error, which aims
to improve the joint tracking control accuracy under the premise of stable motion:

rjoint = exp
(
−p‖∆θi‖2

)
+ exp

(
−q‖∆

.
θi‖2

)
, (13)

where ∆θi is the joint position error, ∆
.
θi is the joint velocity error and p and q are the coeffi-

cients.

(v) The roll and pitch penalty rrp penalizes the roll-pitch-yaw angle of the body, which
can further improve the stability of RL-based gait:

rrp = exp
(
−β‖ωbase‖2

)
, (14)

where ωbase is the angular velocity of the robot platform and β is the coefficient.

3.5. Termination Condition

We used an early termination strategy to avoid falling into the local minimum and im-
prove sampling efficiency. If one of the following conditions was met, the agent terminated
the training and started again from the initial state:

• The robot is involved in a self-collision.
• The pitch or roll degree of the base exceeds the allowable range.
• The base height is less than the set threshold.
• Any link except the foot-tip collides with the ground.

Actuators 2023, 12, 75 9 of 15

3.6. Policy Training

The policy and critic networks are MLPs with two hidden layers each, while the
action and observation vectors are the output and input, respectively. We adopted the Soft
Actor-Critic (SAC) algorithm [36] to maximize the expected reward return:

ϕ∗ = argmax
ϕ

Eπϕ [∑
∞
t=0γ

t(rbalance + w1·rvel + w2·renergy + w3·rjoint + w4·rrp
)
] (15)

where γ is the discount factor and wi(i = 1, 2, 3, 4) is the penalty factor. SAC is an off-policy
maximum-entropy DRL algorithm where the actor aims to maximize expected reward and
entropy. In the RL framework, SAC provides sample-efficient learning while retaining the
benefits of entropy maximization and stability. Algorithm 1 summarizes the essential steps
of SAC, where λV , λQ and λπ are the gradients and ∇̂. J(·) are the approximate gradient
functions [36]. The specific hyperparameters found empirically in preliminary experiments
are shown in Table 2.

Algorithm 1: Soft Actor-Critic

1
Initialize policy parameters ϕ, replay buffer D = {}, Soft Q-function parameters θi, Soft value
function V parameters Ψ and Target critic function V′ parameters Ψ.

2 for iteration = 1, M do:
3 for environment step = 1, N-1 do:
4 at ∼ πφ(at

∣∣st)
5 st+1 ∼ Γ(st+1|st, at)
6 D ∼ D ∪ {(st, at, rt, st+1)}
7 end
8 for gradient step = 1, T-1 do:
9 Update V via minimizing the squared residual error: Ψ← Ψ− λV∇̂Ψ JV(Ψ)

10
Update Q and Q′ via minimizing the soft Bellman residual: θi ← θi − λQ∇̂θi JQ(θi) for

i ∈ {1, 2}
11 Update πϕ via minimizing the expected KL divergence: ϕ← ϕ− λπ∇̂ϕ Jπ(ϕ)
12 Update V′: Ψ← τΨ + (1− τ) Ψ
13 end
14 end

Table 2. Algorithm and model hyperparameters.

Parameter Value Parameter Value

Learning rate 3 × 10−4 Replay buffer size 1× 105

Discount factor 0.99 Entropy regularization 0.005
Policy network hidden layer nodes [256,256] Critic network hidden layer nodes [400,300]

Parameter update frequency 1 Gradient update steps 1
Velocity tracking penalty factor w1 −0.1 Energy consumption penalty factor w2 −0.3

Joint tracking penalty factor w3 −0.1 Roll and pitch penalty factor w4 −0.35
Roll and pitch penalty coefficient ω 2 Joint tracking penalty coefficient m, n 1.5

4. Experiments and Results

In this section, we designed simulation and comparative experiments to verify the su-
periority and effectiveness of the RL-based hierarchical framework proposed in this paper.

4.1. Implementation Details

Environment bias and modeling uncertainties between the simulation and physical
robot affects the porting of the RL model. We adopted the following details in model
training to improve training efficiency and model robustness.

(i) Random model parameters [22]: We used the randomized model parameter strategy,
which can improve the policy robustness against modeling errors and noise. Parameters
of the robot model were sampled uniformly inside the range provided in Table 3.

Actuators 2023, 12, 75 10 of 15

Table 3. Parameter disturbance range of VkHex model.

Parameter Lower Bound Upper Bound

Centroid position −2 cm 2 cm
Link mass 0.04 kg 0.06 kg

Rotational inertia 80% 120%
Joint max torque 80% 120%

Friction coefficient 0.5 1.2

(ii) Introduce sensor noise [30]: All the simulated sensors were noise-free, while the
sensors caused data deviation because of the interference and noise in the actual
observation. Therefore, we added normal distributed noise to the simulation robot
observation and parameters, as shown in Table 4.

Table 4. Sensor noise sampling parameters.

Parameter Sample Distribution

Joint position (rad) N(0, 0.003)
Joint velocity (rad/s) N(0, 0.03)

Joint torque (Nm) N(0, 0.5)
Body height (m) N(0, 0.01)

Body velocity (m/s) N(0, 0.1)
Body angular velocity (rad/s) N(0, 0.1)

(iii) External disturbance: Applying random disturbance force has been shown to be
effective in achieving sim-to-real transfer and virtual load simulation [17]. During
training, the external force was applied to the body from a random direction for
every certain number of steps. The disturbance force was generated randomly within
(0, 5N] and lasted for 0.5 s.

4.2. Training Result

We compared the SAC with some of the algorithms with superior performance, in-
cluding PPO [37], DDPG [38] and TD3 [39]. Figure 8 shows the learning curves, random
sampling and sensor noise cause jitter. Compared with the three algorithms, SAC had the
highest learning efficiency and the fastest rise rate in the initial stage. After 150,000 steps,
the speed gradually decreased and finally converged. In addition, the convergence of
different algorithms also proves the generality of the RL-based hierarchical framework
proposed in this paper.

Figure 8. The reward curves and learning curves on reinforcement learning hierarchical framework
for using SAC algorithm. We stopped training when the parameters were stable. The abscissa
represents the number of steps and the ordinate represents the return value (the average epoch length
is on the left and the average epoch reward on the right). Our framework learned the gait strategy
and converged eventually.

Actuators 2023, 12, 75 11 of 15

4.3. Motion Verification

The initial height of the robot was 0.1 m and the direction was the y-axis of the body
coordinate frame. We trained our robot by giving a specific target 1m in front. Once it
reached its initial target, the next goal was given again to be 1m ahead repeatedly. We
trained the gait policy network in the physics simulation, gradually increasing the expected
velocity to 0.6 m/s. Figure 9 shows the motion process of the hexapod robot in seven
continuous motion cycles, and Figure 10 shows the corresponding gait phase.

Figure 9. Speed-adaptive gaits of the hexapod robot trained in the hierarchical framework for
reinforcement learning. From (a–h), the robot walked in a fixed direction and the motion speed
gradually increased to 0.6 m/s. As the speed increased, the hexapod robot gradually transitioned
from a wave-like gait to a tripod-like gait, and the robot was stable enough not to fall.

Figure 10. Visualization of legs’ phase for the RL-based gaits. Black rectangles indicate support
phases, gray rectangles indicate swing phases and block lengths indicate duration. The hexapod
robot walked with a wave-like gait in the first cycle, a quadruped-like gait in the second to fourth
cycles, and finally walked in a tripod-like gait. Within each gait cycle, RL-based gait had a different
duty cycle and phase difference.

The results show that the gait strategy network can generate new gaits according
to different velocity commands and motion velocity. The RL-based gait is similar to the
tripod, quadruped and wave gaits, but the RL-based gait phase difference and duty factor
differ. In addition, all these gaits were both new and stable. Since the reward function of
the RL-based framework is dominated by stability, the swing phase took less time in the
RL-based gait circle to achieve stability.

4.4. Motion Efficiency Comparison

Referring to Equation (10), we compared the transportation cost of the hexapod robot
under the RL-based gaits and three rhythmic gaits. The robot motion gait period was set to 10,
and the motion velocity was 0.1 to 1.1 m/s. We added up the transportation cost of all periods
to be the total CoT and repeated the same experiment three times. Figure 11 shows the mean
transportation cost and standard deviation (S.D.) of the hexapod robot in the four gaits.

Actuators 2023, 12, 75 12 of 15

Figure 11. The mean CoT (a) and standard deviation (b) of the hexapod robot in four different gaits.
Considering structural features and motion stabilization, a hexapod animal would not use a wave
gait for fast walking and a tripod gait for slow walking.

Comparing three rhythmic gaits, the RL-based gait had the lowest CoT and the highest
motion efficiency. Additionally, the RL-based generated in our framework was speed-
adapted. In the reward, the energy consumption penalty factor was second only to the
gait stability reward, so the RL-generated gaits considered both gait stability and energy
consumption. The experimental results show that the RL-based gait was superior to the
three rhythmic gaits in motion efficiency.

4.5. Sim-to-Real

The previous simulations illustrate that gait policy network can be trained by our
framework and is optimized enough to perform adaptive and stable gaits. In this experi-
ment, we deployed the same policy on the physical VkHex robot and the policy ran 100 Hz
on VkHex. As the movement speed increased from 0m/s to 0.5 m/s, the RL-based gaits
of the hexapod robot behaved as shown in Figure 12. Compared with fixed rhythmic gait,
the RL-based gaits performed more flexibly. As speed increased, VkHex could adaptively
generate rhythmic-like gaits. Furthermore, all gaits were stable during locomotion, which,
when performed in the real world, were similar to the simulated RL-based gaits. Since the
environmental disturbances and modeling uncertainties between simulation and reality
are different, such as servo force, friction coefficient, sensor noise and inaccurate motor
models, the variety and stability of the gait in reality was slightly poorer than in simulation.
The results of the simulated and real experiments further illustrate the effectiveness of the
proposed framework.

Figure 12. RL-based hierarchical framework tested on the VkHex prototype on flat terrain. Similarly,
from (a–h), the robot walked in a fixed direction while the motion speed gradually increased to
0.5 m/s. The hexapod robot walked primarily in a triangular-like gait and slightly to the left.

Actuators 2023, 12, 75 13 of 15

5. Conclusions

In this paper, a RL-based hierarchical framework is proposed to simplify the hexapod
action and learn a RL-based gait generation task, including a policy network, gait planner,
IK solver and trajectory tracking controller. Furthermore, to train an adaptive gait genera-
tion policy network, we designed a whole RL framework for the hexapod robot and tested
our framework using SAC, PPO, DDPG and TD3 in the physics simulation. Our framework
enabled the DRL algorithms to converge and allowed the hexapod to generate adaptive
new gaits on flat terrain. Finally, we ran the same policy in the real robot without any
modification. Through comparison and experiments, it was verified that this framework is
effective for RL tasks. This paper realizes the speed-adaptive gait generation and planning
of the hexapod robot. We only tested using flat terrain, so further research could include
a study of the similarities and differences in reward design under the RL framework for
challenging terrains and tasks.

Author Contributions: All authors contributed to this work. Conceptualization, Z.Q.; methodology,
Z.Q.; software, Z.Q.; validation, Z.Q. and W.W.; writing—original draft, Z.Q.; writing—review and
editing, Z.Q. and X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [Grant
Nos. 61573148, 61603358] and the Science and Technology Planning Project of Guangdong Province,
China [Grant Nos. 2015B010919007, 2019A050520001].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Azayev, T.; Zimmerman, K. Blind hexapod locomotion in complex terrain with gait adaptation using deep reinforcement learning

and classification. J. Intell. Robot. Syst. 2020, 99, 659–671. [CrossRef]
2. Chen, Z.; Wang, S.; Wang, J.; Xu, K.; Lei, T.; Zhang, H.; Wang, X.; Liu, D.; Si, J. Control strategy of stable walking for a hexapod

wheel-legged robot. ISA Trans. 2021, 108, 367–380. [CrossRef] [PubMed]
3. Gao, Y.; Wei, W.; Wang, X.; Li, Y.; Wang, D.; Yu, Q. Feasibility, planning and control of ground-wall transition for a suctorial

hexapod robot. Appl. Intell. 2021, 51, 5506–5524. [CrossRef]
4. Sun, Q.; Gao, F.; Chen, X. Towards dynamic alternating tripod trotting of a pony-sized hexapod robot for disaster rescuing based

on multi-modal impedance control. Robotica 2018, 36, 1048–1076. [CrossRef]
5. Melenbrink, N.; Werfel, J.; Menges, A. On-site autonomous construction robots: Towards unsupervised building. Autom. Constr.

2020, 119, 103312. [CrossRef]
6. Teixeira Vivaldini, K.C.; Franco Barbosa, G.; Santos, I.A.D.; Kim, P.H.C.; McMichael, G.; Guerra-Zubiaga, D.A. An intelligent

hexapod robot for inspection of airframe components oriented by deep learning technique. J. Braz. Soc. Mech. Sci. Eng. 2021, 43,
494. [CrossRef]

7. Deepa, T.; Angalaeswari, S.; Subbulekshmi, D.; Krithiga, S.; Sujeeth, S.; Kathiravan, R. Design and implementation of bio inspired
hexapod for exploration applications. Mater. Today Proc. 2021, 37, 1603–1607. [CrossRef]

8. Coelho, J.; Ribeiro, F.; Dias, B.; Lopes, G.; Flores, P. Trends in the Control of Hexapod Robots: A survey. Robotics 2021, 10, 100.
[CrossRef]

9. Schilling, M.; Konen, K.; Ohl, F.W.; Korthals, T. Decentralized deep reinforcement learning for a distributed and adaptive
locomotion controller of a hexapod robot. In Proceedings of the IROS 2020-International Conference on Intelligent Robots and
Systems, Las Vegas, NV, USA, 25–29 October 2020; pp. 5335–5342. [CrossRef]

10. Flores, P. Modeling and Simulation of Frictional Contacts in Multi-rigid-Body Systems. In International Symposium on Multibody
Systems and Mechatronics; Springer: Cham, Switzerland, 2021; pp. 77–84. [CrossRef]

11. Gao, Y.; Wei, W.; Wang, X.; Wang, D.; Li, Y.; Yu, Q. Trajectory Tracking of Multi-Legged Robot Based on Model Predictive and
Sliding Mode Control. Inf. Sci. 2022, 606, 489–511. [CrossRef]

12. Cai, Z.; Gao, Y.; Wei, W.; Gao, T.; Xie, Z. Model design and gait planning of hexapod climbing robot. J. Phys. Conf. Ser. IOP Publ.
2021, 1754, 012157. [CrossRef]

http://doi.org/10.1007/s10846-020-01162-8
http://doi.org/10.1016/j.isatra.2020.08.033
http://www.ncbi.nlm.nih.gov/pubmed/32950232
http://doi.org/10.1007/s10489-020-01955-2
http://doi.org/10.1017/S026357471800022X
http://doi.org/10.1016/j.autcon.2020.103312
http://doi.org/10.1007/s40430-021-03219-7
http://doi.org/10.1016/j.matpr.2020.07.165
http://doi.org/10.3390/robotics10030100
http://doi.org/10.1109/iros45743.2020.9341754
http://doi.org/10.1007/978-3-030-88751-3_8
http://doi.org/10.1016/j.ins.2022.05.069
http://doi.org/10.1088/1742-6596/1754/1/012157

Actuators 2023, 12, 75 14 of 15

13. Ijspeert, A.J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 2008, 21, 642–653.
[CrossRef] [PubMed]

14. Fuchs, E.; Holmes, P.; Kiemel, T.; Ayali, A. Intersegmental coordination of cockroach locomotion: Adaptive control of centrally
coupled pattern generator circuits. Front. Neural Circuits 2011, 4, 125. [CrossRef] [PubMed]

15. Knüsel, J.; Crespi, A.; Cabelguen, J.M.; Lispeert, A.J.; Ryczko, D. Reproducing five motor behaviors in a salamander robot with
virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback. Front. Neurorobot. 2020,
14, 604426. [CrossRef] [PubMed]

16. Schilling, M.; Melnik, A. An approach to hierarchical deep reinforcement learning for a decentralized walking control architecture.
Biol. Inspired Cogn. Archit. Meet. 2018, 848, 272–282. [CrossRef]

17. Schilling, M.; Hoinville, T.; Schmitz, J.; Cruse, H. Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 2013, 107,
397–419. [CrossRef]

18. Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot.
2020, 5, eabc5986. [CrossRef]

19. Peng, X.B.; Berseth, G.; Yin, K.K.; Panne, M.V.D. Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Trans. Graph. 2017, 36, 1–13. [CrossRef]

20. Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner, D.; Bohez, S.; Vanhoucke, V. Sim-to-real: Learning agile locomotion for
quadruped robots. arXiv 2018. [CrossRef]

21. Tsounis, V.; Alge, M.; Lee, J.; Farshidian, F.; Hutter, M. Deepgait: Planning and control of quadrupedal gaits using deep
reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 3699–3706. [CrossRef]

22. Fu, H.; Tang, K.; Li, P.; Zhang, W.; Wang, X.; Deng, G.; Wang, T.; Chen, C. Deep Reinforcement Learning for Multi-contact Motion
Planning of Hexapod Robots. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal,
QC, Canada, 21 August 2021; pp. 2381–2388. [CrossRef]

23. Thor, M.; Manoonpong, P. Versatile modular neural locomotion control with fast learning. Nat. Mach. Intell. 2022, 4, 169–179.
[CrossRef]

24. Miki, T.; Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning robust perceptive locomotion for quadrupedal
robots in the wild. Sci. Robot. 2022, 7, eabk2822. [CrossRef] [PubMed]

25. Lele, A.S.; Fang, Y.; Ting, J.; Raychowdhury, A. Learning to walk: Spike based reinforcement learning for hexapod robot central
pattern generation. In Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems, Genoa,
Italy, 31 August–4 September 2020; pp. 208–212. [CrossRef]

26. Merel, J.; Botvinick, M.; Wayne, G. Hierarchical motor control in mammals and machines. Nat. Commun. 2019, 10, 5489. [CrossRef]
[PubMed]

27. Eppe, M.; Gumbsch, C.; Kerzel, M.; Butz, M.V.; Wermter, S. Intelligent problem-solving as integrated hierarchical reinforcement
learning. Nat. Mach. Intell. 2022, 4, 11–20. [CrossRef]

28. Panerati, J.; Zheng, H.; Zhou, S.Q.; Xu, J.; Prorok, A.; Schoellig, A.P. Learning to fly-a gym environment with pybullet physics for
reinforcement learning of multi-agent quadcopter control. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; pp. 7512–7519. [CrossRef]

29. Khera, P.; Kumar, N. Role of machine learning in gait analysis: A review. J. Med. Eng. Technol. 2020, 44, 441–467. [CrossRef]
[PubMed]

30. Shi, F.; Homberger, T.; Lee, J.; Miki, T.; Zhao, M. Circus anymal: A quadruped learning dexterous manipulation with its limbs.
In Proceedings of the International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 2316–2323.
[CrossRef]

31. Kim, J.; Ba, D.X.; Yeom, H.; Bae, J. Gait optimization of a quadruped robot using evolutionary computation. J. Bionic Eng. 2021, 18,
306–318. [CrossRef]

32. Han, Y. Action Planning and Design of Humanoid Robot Based on Sports Analysis in Digital Economy Era. Int. J. Multimed.
Comput. 2022, 3, 37–50. [CrossRef]

33. He, J.; Gao, F. Mechanism, actuation, perception, and control of highly dynamic multilegged robots: A review. Chin. J. Mech. Eng.
2020, 33, 79. [CrossRef]

34. Xu, P.; Ding, L.; Wang, Z.; Gao, H.; Zhou, R.; Gong, Z.; Liu, G. Contact sequence planning for hexapod robots in sparse foothold
environment based on monte-carlo tree. IEEE Robot. Autom. Lett. 2021, 7, 826–833. [CrossRef]

35. Owaki, D.; Ishiguro, A. A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep.
2017, 7, 277. [CrossRef]

36. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. International conference on machine learning. Proc. Mach. Learn. Res. 2018, 80, 1861–1870. [CrossRef]

37. Zhang, Z.; Luo, X.; Liu, T.; Xie, S.; Wang, J.; Wang, W.; Li, Y.; Peng, Y. Proximal policy optimization with mixed distributed
training. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR,
USA, 4–6 November 2019; pp. 1452–1456. [CrossRef]

http://doi.org/10.1016/j.neunet.2008.03.014
http://www.ncbi.nlm.nih.gov/pubmed/18555958
http://doi.org/10.3389/fncir.2010.00125
http://www.ncbi.nlm.nih.gov/pubmed/21369365
http://doi.org/10.3389/fnbot.2020.604426
http://www.ncbi.nlm.nih.gov/pubmed/33424576
http://doi.org/10.1007/978-3-319-99316-4_36
http://doi.org/10.1007/s00422-013-0563-5
http://doi.org/10.1126/scirobotics.abc5986
http://doi.org/10.1145/3072959.3073602
http://doi.org/10.48550/arxiv.1804.10332
http://doi.org/10.1109/LRA.2020.2979660
http://doi.org/10.24963/ijcai.2021/328
http://doi.org/10.1038/s42256-022-00444-0
http://doi.org/10.1126/scirobotics.abk2822
http://www.ncbi.nlm.nih.gov/pubmed/35044798
http://doi.org/10.1109/aicas48895.2020.9073987
http://doi.org/10.1038/s41467-019-13239-6
http://www.ncbi.nlm.nih.gov/pubmed/31792198
http://doi.org/10.1038/s42256-021-00433-9
http://doi.org/10.1109/iros51168.2021.9635857
http://doi.org/10.1080/03091902.2020.1822940
http://www.ncbi.nlm.nih.gov/pubmed/33078988
http://doi.org/10.1109/icra48506.2021.9561926
http://doi.org/10.1007/s42235-021-0026-y
http://doi.org/10.38007/IJMC.2022.030106
http://doi.org/10.1186/s10033-020-00485-9
http://doi.org/10.1109/LRA.2021.3133610
http://doi.org/10.1038/s41598-017-00348-9
http://doi.org/10.48550/arXiv.1801.01290
http://doi.org/10.1109/ictai.2019.00206

Actuators 2023, 12, 75 15 of 15

38. Hou, Y.; Liu, L.; Wei, Q.; Xu, X.; Chen, C. A novel DDPG method with prioritized experience replay. In Proceedings of the
2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; Volume 12,
pp. 316–321. [CrossRef]

39. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. International conference on
machine learning. Proc. Mach. Learn. Res. 2018, 80, 1587–1596. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/smc.2017.8122622
http://doi.org/10.48550/arxiv.1802.09477

	Introduction
	Robot Prototype and Hierarchical Framework
	Hexapod Robot
	Reinforcement Learning and Hierarchical Framework

	Learning Process
	Markov Decision Process
	Action
	Observation
	Reward Function
	Termination Condition
	Policy Training

	Experiments and Results
	Implementation Details
	Training Result
	Motion Verification
	Motion Efficiency Comparison
	Sim-to-Real

	Conclusions
	References

