
Citation: Tu, G.-T.; Juang, J.-G. UAV

Path Planning and Obstacle

Avoidance Based on Reinforcement

Learning in 3D Environments.

Actuators 2023, 12, 57. https://

doi.org/10.3390/act12020057

Academic Editor: Ronald M. Barrett

Received: 9 December 2022

Revised: 23 January 2023

Accepted: 23 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

UAV Path Planning and Obstacle Avoidance Based on
Reinforcement Learning in 3D Environments
Guan-Ting Tu and Jih-Gau Juang *

Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University,
Keelung 20224, Taiwan
* Correspondence: jgjuang@mail.ntou.edu.tw

Abstract: This study proposes using unmanned aerial vehicles (UAVs) to carry out tasks involving
path planning and obstacle avoidance, and to explore how to improve work efficiency and ensure the
flight safety of drones. One of the applications under consideration is aquaculture cage detection;
the net-cages used in sea-farming are usually numerous and are scattered widely over the sea. It is
necessary to save energy consumption so that the drones can complete all cage detections and return
to their base on land. In recent years, the application of reinforcement learning has become more and
more extensive. In this study, the proposed method is mainly based on the Q-learning algorithm to
enable improvements to path planning, and we compare it with a well-known reinforcement learning
state–action–reward–state–action (SARSA) algorithm. For the obstacle avoidance control procedure,
the same reinforcement learning method is used for training in the AirSim virtual environment; the
parameters are changed, and the training results are compared.

Keywords: unmanned aerial vehicles; UAV; reinforcement learning; Q-learning; deep Q-learning;
obstacle avoidance; path planning

1. Introduction

With the development of integrated circuit technology, rapid growth in computing
power has led to a surge in the application of drones. Advances in microcontrollers
have created a new world for many innovations. In recent years, work efficiency and
human resources shortages have been extensively discussed. The use of drones will greatly
reduce the death and injury of pilots flying planes, which is another great advantage of
drones, so that research into drones has become more widespread. With the development
of drones, some problems have been addressed or have evolved, such as aquaculture,
infrastructure inspection, environmental monitoring, and agricultural spraying. Therefore,
the development of path planning and obstacle avoidance systems needs to keep pace with
the times, so that drones can effectively perform and complete automation tasks in various
environments.

In recent years, unmanned aerial vehicles (UAVs) have gradually become an important
issue in many studies; these are divided into two categories, comprising fixed-wing aircraft
and multi-axis rotorcraft. The wing of a fixed-wing aircraft does not need to rotate and
the aircraft uses the airflow passing around the wing to provide lift. Fixed-wing aircraft
can only fly forward and cannot fly in any other direction. In addition, fixed-wing aircraft
are unable to make an immediate sharp turn or to fly backward. Furthermore, the runway
for fixed-wing aircraft must be long enough for them to be able to take off as well as to
land. Conversely, the rotorcraft, also known as the multirotor, has the capacity for vertical
take-off and landing (VTOL); it can thus enjoy unlimited movement and freedom in the air.
The multirotor can hover above the target location and can drop items of set weight within
the load range for delivery to the designated location. The application of this study is to
use unmanned multi-rotor aircraft to replace traditional human operations. The multirotor

Actuators 2023, 12, 57. https://doi.org/10.3390/act12020057 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12020057
https://doi.org/10.3390/act12020057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2683-9931
https://doi.org/10.3390/act12020057
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12020057?type=check_update&version=1

Actuators 2023, 12, 57 2 of 32

can drop sensors to collect environmental information from the cage net in the ocean for
the purposes of aquaculture. In order to carry out this mission, making the UAV fly safely
to its destination is the most important issue. The main purpose of this study is to plan
appropriate paths and design an obstacle avoidance system to ensure that the UAV has a
safe flight to its destination.

In past decades, the most frequently used path-planning algorithms include Dijkstra’s
algorithm, A Star (A*), and D*. Dijkstra’s algorithm and A* plan the projected path from
the starting position to the goal position. A* also considers the distance from the starting
position to the goal [1]. D* plans the path by setting off from the goal to the starting position.
It has the ability to adjust the projected path in the face of obstacles [2]. Although these
algorithms can successfully plan paths, the drawback is that they are computationally ex-
pensive when the search space is large. Rapidly exploring random tree methods represents
a less expensive approach because it can quickly explore a search space with an iterative
function [3]. Still, these algorithms are time-consuming and may not be appropriate for
UAVs. The main objective of path planning is to have less computational time needed for
optimal path planning. The path generated by the path-planning algorithms should be
optimal so that it consumes minimal energy, takes less time, and reduces the likelihood
of collisions between UAVs and obstacles. Classical algorithms cannot truly reflect the
actual needs of UAV path planning. In this paper, a UAV path-planning algorithm, based
on reinforcement learning, was applied according to the simulated scenarios. The UAV can
follow this planned path and perform visual real-time collision avoidance by the use of
depth images and deep-learning neural networks.

The UAV can either be operated by the operator visually, or the operator can wear
special glasses to fly in first-person view (FPV) mode. In addition, one can write code to
use a microcontroller to operate the UAV. The traditional control-system technology uses
a PID controller to give the flight attitude of UAVs good performance [4,5]. In addition,
the adjustment of PID parameters, based on reinforcement learning, has been proposed
by the authors of [6,7]. In recent years, the use of drone applications in many fields has
become more and more common. T. Lampersberger et al. proposed the application of a
radar system and antenna in UAVs [8]. P. Udvardy et al. used drones to model a church in
3D and evaluated the results [9]. In [10], Z. Ma et al. discussed communication research
using UAVs in an air-to-air environment. K. Feng et al. used UAVs for package delivery
research [11]. Among these applications, UAV path planning and obstacle avoidance
issues are worthy of study and discussion. In addition, research into the applications
of reinforcement learning is also very popular. For example, Alphago is a well-known
reinforcement learning application [12]. In other studies [13–16], research based on the
Q-learning algorithm was applied to path planning. A. Anwar et al. used reinforcement
learning methods to study obstacle avoidance control [17]. The final research results are
amazing, and the content produced is excellent. In [18–21], many deep reinforcement
learning methods for obstacle avoidance were proposed and the results were analyzed.
With the help of a number of reinforcement learning experiences, this study proposes a
comparison of path planning based on the SARSA algorithm and the Q-learning algorithm
in reinforcement learning, along with the use of a deep Q-learning algorithm for obstacle
avoidance simulation experiments.

A brief introduction to path planning and obstacle avoidance, based on reinforcement
learning, was presented in [22]. In this study, a detailed description and extension methods
are presented. The proposed methods are divided into two parts. The first part concerns
path planning. In path planning, we compare the Q-learning algorithm with the SARSA
algorithm. The principles of these two algorithms are similar, but they still have their
own characteristics. Therefore, we propose two reinforcement-learning methods for path-
planning experiments. In the second part, obstacle avoidance control is utilized; because
the input depth image data is more complicated, deep Q-learning is used for experiments,
then the training results are observed in a simulated environment. Considering the future
testing of reinforcement learning methods involving physical drones, we use ultrasonic

Actuators 2023, 12, 57 3 of 32

sensor modules to assist in side-obstacle avoidance, so that the drone can maintain a safe
distance from obstacles. This study applies reinforcement learning methods to train the
UAV in a simulated environment, followed by testing and then analysis of the results.

2. System Description

In this study, a hexacopter was used to perform an assigned task, for instance, to
collect sensor data for the purposes of aquaculture. This section details the main archi-
tecture, sensors, and computer hardware configuration used in deep-learning training.
The computational hardware system includes an onboard computer and off-line training
computer. The basic UAV system consists of a flight control board, power supply, sensors,
motors, 3DR telemetry radio, and a remote controller. At the ground control station, the
operator can send control signals to the flight control board via the remote controller and
obtain flight status information from the Mission Planner software, which communicates
with the 3DR telemetry radio device. For UAV systems, sensors such as accelerometers,
barometers, and gyroscopes are used to monitor changes in the environment to maintain
flight stability; then, the environmental information is sent back to the flight control board
to adjust the flight attitude of the hexacopter. Figure 1 shows the UAV’s system structure.

Actuators 2023, 12, x FOR PEER REVIEW 3 of 33

from obstacles. This study applies reinforcement learning methods to train the UAV in a
simulated environment, followed by testing and then analysis of the results.

2. System Description
In this study, a hexacopter was used to perform an assigned task, for instance, to collect

sensor data for the purposes of aquaculture. This section details the main architecture, sen-
sors, and computer hardware configuration used in deep-learning training. The computa-
tional hardware system includes an onboard computer and off-line training computer. The
basic UAV system consists of a flight control board, power supply, sensors, motors, 3DR
telemetry radio, and a remote controller. At the ground control station, the operator can
send control signals to the flight control board via the remote controller and obtain flight
status information from the Mission Planner software, which communicates with the 3DR
telemetry radio device. For UAV systems, sensors such as accelerometers, barometers, and
gyroscopes are used to monitor changes in the environment to maintain flight stability; then,
the environmental information is sent back to the flight control board to adjust the flight
attitude of the hexacopter. Figure 1 shows the UAV’s system structure.

Figure 1. UAV system structure.

The flight control board of the hexacopter is the Pixhawk 4, which is part of an inde-
pendent open-source project. It has a more advanced 32-bit ARM Cortex® M7 processor, 16
PWM/servo outputs, and others used to establish the flight status. The necessary sensors
include a three-axis gyroscope, barometer, magnetometer, and accelerometer. The atti-
tude of the hexacopter can be improved by the two sets of accelerometers, while other
sensors can help the hexacopter to locate its position. In order to prevent positioning er-
rors, the Pixhawk 4 can also have the compass and GPS module installed externally, away
from the motor, electronic speed controller, and power supply lines.

The ground control station (GCS) software and the flight control board work together,
and the appropriate firmware version can be selected and installed. The operator can easily
obtain the flight information via the Mission Planner software, which helps the operator to
understand the current rotorcraft status and record the flight data during the mission at the
same time. This allows us to acquire information if the hexacopter had crashed or encountered
other emergency situations. The NEO-M8N module is highly compatible; therefore, it is
widely used in UAV positioning systems. GNSS can concurrently receive GPS, Galileo,
GLONASS, and Beidou satellite signals, accessing them all at the same time. The safety switch
of the drone hardware is also on the same module. In a favorable area without obscuration
and interference, the NEO-M8N module, when combined with real-time kinematic (RTK) po-
sitioning technology, can receive data from up to 30 satellites; the horizontal dilution accuracy
(HDOP) is often between 0.5 and 0.6, which means that the GPS is in good condition; that is,
the positioning error (static) is less than 10 cm.

Figure 1. UAV system structure.

The flight control board of the hexacopter is the Pixhawk 4, which is part of an
independent open-source project. It has a more advanced 32-bit ARM Cortex® M7 processor,
16 PWM/servo outputs, and others used to establish the flight status. The necessary sensors
include a three-axis gyroscope, barometer, magnetometer, and accelerometer. The attitude
of the hexacopter can be improved by the two sets of accelerometers, while other sensors
can help the hexacopter to locate its position. In order to prevent positioning errors, the
Pixhawk 4 can also have the compass and GPS module installed externally, away from the
motor, electronic speed controller, and power supply lines.

The ground control station (GCS) software and the flight control board work together,
and the appropriate firmware version can be selected and installed. The operator can easily
obtain the flight information via the Mission Planner software, which helps the operator
to understand the current rotorcraft status and record the flight data during the mission
at the same time. This allows us to acquire information if the hexacopter had crashed or
encountered other emergency situations. The NEO-M8N module is highly compatible;
therefore, it is widely used in UAV positioning systems. GNSS can concurrently receive
GPS, Galileo, GLONASS, and Beidou satellite signals, accessing them all at the same time.
The safety switch of the drone hardware is also on the same module. In a favorable area
without obscuration and interference, the NEO-M8N module, when combined with real-
time kinematic (RTK) positioning technology, can receive data from up to 30 satellites; the
horizontal dilution accuracy (HDOP) is often between 0.5 and 0.6, which means that the
GPS is in good condition; that is, the positioning error (static) is less than 10 cm.

Actuators 2023, 12, 57 4 of 32

The accuracy of waypoints in path planning is very important. In this study, the RTK
positioning technology is used. RTK base stations are set up in the experimental field to
wait for their convergence and are then connected to the chip on the hexacopter, so that the
error can be reduced to 10 cm. Figure 2 shows the ground station of the RTK. The working
procedure of the proposed approach is shown in Figure 3.

Actuators 2023, 12, x FOR PEER REVIEW 4 of 33

The accuracy of waypoints in path planning is very important. In this study, the RTK
positioning technology is used. RTK base stations are set up in the experimental field to
wait for their convergence and are then connected to the chip on the hexacopter, so that
the error can be reduced to 10 cm. Figure 2 shows the ground station of the RTK. The
working procedure of the proposed approach is shown in Figure 3.

Figure 2. RTK ground station.

Figure 3. Working procedure of the proposed approach.

In this study, we used a self-assembling hexacopter, which is mainly made from light-
weight and strong carbon fiber. Compared with the quadcopter, the hexacopter utilizes a sen-
sor that is more resistant to strong wind interference and offers greater force-bearing. The
main body of the hexacopter is shown in Figure 4. The on-board computer is used for the path-
planning experiment and obstacle-avoidance experiment. Ultrasonic sensors are set on the

Figure 2. RTK ground station.

Actuators 2023, 12, x FOR PEER REVIEW 4 of 33

The accuracy of waypoints in path planning is very important. In this study, the RTK
positioning technology is used. RTK base stations are set up in the experimental field to
wait for their convergence and are then connected to the chip on the hexacopter, so that
the error can be reduced to 10 cm. Figure 2 shows the ground station of the RTK. The
working procedure of the proposed approach is shown in Figure 3.

Figure 2. RTK ground station.

Figure 3. Working procedure of the proposed approach.

In this study, we used a self-assembling hexacopter, which is mainly made from light-
weight and strong carbon fiber. Compared with the quadcopter, the hexacopter utilizes a sen-
sor that is more resistant to strong wind interference and offers greater force-bearing. The
main body of the hexacopter is shown in Figure 4. The on-board computer is used for the path-
planning experiment and obstacle-avoidance experiment. Ultrasonic sensors are set on the

Figure 3. Working procedure of the proposed approach.

In this study, we used a self-assembling hexacopter, which is mainly made from
lightweight and strong carbon fiber. Compared with the quadcopter, the hexacopter utilizes
a sensor that is more resistant to strong wind interference and offers greater force-bearing.
The main body of the hexacopter is shown in Figure 4. The on-board computer is used
for the path-planning experiment and obstacle-avoidance experiment. Ultrasonic sensors

Actuators 2023, 12, 57 5 of 32

are set on the side of the hexacopter. The hexacopter is also used in aquaculture projects,
considering that we can implement reinforcement learning algorithms in the future for
hexacopter obstacle avoidance and other tasks that require a lot of computing to detect
objects. For integration, we used the NVIDIA Jetson Xavier NX development kits and
modules. The use of deep Q-learning in the virtual environment of Microsoft AirSim
requires a great deal of computer resources; therefore, a graphics card with better graphics
computing capabilities and sufficient memory, etc. is required. The sensor used for obstacle
detection on the side of the UAV’s body is the ultrasonic ranging module, HC-SR04. The
HC-SR04 has a ranging accuracy of 3 mm and can measure distances from 2 cm to 400 cm.

Actuators 2023, 12, x FOR PEER REVIEW 5 of 33

side of the hexacopter. The hexacopter is also used in aquaculture projects, considering that
we can implement reinforcement learning algorithms in the future for hexacopter obstacle
avoidance and other tasks that require a lot of computing to detect objects. For integration, we
used the NVIDIA Jetson Xavier NX development kits and modules. The use of deep Q-learn-
ing in the virtual environment of Microsoft AirSim requires a great deal of computer re-
sources; therefore, a graphics card with better graphics computing capabilities and sufficient
memory, etc. is required. The sensor used for obstacle detection on the side of the UAV’s body
is the ultrasonic ranging module, HC-SR04. The HC-SR04 has a ranging accuracy of 3mm and
can measure distances from 2 cm to 400 cm.

Figure 4. The hexacopter setup.

3. Path Planning
One of the most complex problems that are widely explored in robotics concerns path

planning. There are many algorithms that have been applied to path planning, such as the
improved ACO [23], used to navigate in a maze-like environment, the ACO combined
with chaos theory [24], used to find a path away from threatened areas, and the improved
PSO [25], used to navigate a ship in the surrounding environment of an island. When the
hexacopter performs tasks, there are often huge static obstacles in the execution area, such
as mountains, buildings, no-fly zones (NFZ), etc. Pathfinding in a known environment is
known as global path planning. The main purpose is to spend less time and reach the
destination without passing through restricted areas. Compared with the traditional A*
algorithm, the reinforcement learning algorithm can solve more complex problems. How-
ever, when the model corrects the error, the chance of the same error is very small. This
technique is the first choice for long-term results. This method can collect information
about the environment and interact with the specific environment of the problem, which
makes this method of problem-solving flexible. The learning model of reinforcement
learning is very similar to that of human learning. Therefore, this method will be closer to
perfect expectations. In this section, all obstacle settings are treated as a priori information,
which represents a known environment. Before the hexacopter takes off, we calculate the
path and plan the best path. Using the known information, two search algorithms based
on reinforcement learning are applied to generate optimal routes in this study. As a result,
the hexacopter can fly through the given waypoints. The introduction of these two algo-
rithms is given as follows.

Figure 4. The hexacopter setup.

3. Path Planning

One of the most complex problems that are widely explored in robotics concerns path
planning. There are many algorithms that have been applied to path planning, such as
the improved ACO [23], used to navigate in a maze-like environment, the ACO combined
with chaos theory [24], used to find a path away from threatened areas, and the improved
PSO [25], used to navigate a ship in the surrounding environment of an island. When the
hexacopter performs tasks, there are often huge static obstacles in the execution area, such
as mountains, buildings, no-fly zones (NFZ), etc. Pathfinding in a known environment
is known as global path planning. The main purpose is to spend less time and reach
the destination without passing through restricted areas. Compared with the traditional
A* algorithm, the reinforcement learning algorithm can solve more complex problems.
However, when the model corrects the error, the chance of the same error is very small. This
technique is the first choice for long-term results. This method can collect information about
the environment and interact with the specific environment of the problem, which makes
this method of problem-solving flexible. The learning model of reinforcement learning is
very similar to that of human learning. Therefore, this method will be closer to perfect
expectations. In this section, all obstacle settings are treated as a priori information, which
represents a known environment. Before the hexacopter takes off, we calculate the path
and plan the best path. Using the known information, two search algorithms based on
reinforcement learning are applied to generate optimal routes in this study. As a result, the
hexacopter can fly through the given waypoints. The introduction of these two algorithms
is given as follows.

Actuators 2023, 12, 57 6 of 32

3.1. Markov Decision Process (MDP)

In reinforcement learning, the three basic elements are state, action, and reward. These
three elements are the messages that the agent and environment communicate with each
other, but they still lack communication channels, as shown in Figure 5. This pipeline is
created through the mathematical model of the Markov decision process (MDP) [26].

Actuators 2023, 12, x FOR PEER REVIEW 6 of 33

3.1. Markov Decision Process (MDP)
In reinforcement learning, the three basic elements are state, action, and reward. These

three elements are the messages that the agent and environment communicate with each
other, but they still lack communication channels, as shown in Figure 5. This pipeline is
created through the mathematical model of the Markov decision process (MDP) [26].

Figure 5. The interaction between the agent and the environment.

The agent interacts with the environment, as shown in Figure 5. The environment gives
the state and reward at time t to the agent, and the agent then determines the behavior to be
performed using this information. Then, the environment determines the state and reward
for the next time through the behavior of the agent. All the processes of MDP are random
and the next state transition is only related to the current state. At time t, action 𝐴௧ is made
according to 𝑆௧, and the state 𝑆௧ାଵ at the next time, 𝑡 + 1 is uncertain. We call this environ-
ment transition probability the MDP dynamic. The equation is as follows: 𝑝ሺ𝑠ᇱ, 𝑟|𝑠, 𝑎ሻ = Prሺ𝑆௧ାଵ = 𝑠ᇱ, 𝑅௧ାଵ = 𝑟|𝑆௧ = 𝑠, 𝐴௧ = 𝑎ሻ. (1)

After taking action 𝑎 in the state 𝑠, the probability id that the next state is 𝑠ᇱ and the
reward is 𝑟. The next-state transition of MDP is only related to the current state; we call
this the Markov Property, which can be expressed using the following equation: 𝑃𝑟ሺ𝑆௡|𝑆௡ିଵ, 𝑆௡ିଶ, … , 𝑆଴ሻ = Prሺ𝑆௡|𝑆௡ିଵሻ. (2)

The current state contains information about all the states experienced in the past.
However, the probability that we are looking for can reject all the past states and focus
only on the present state. This greatly reduces the amount of calculation necessary, and
we can then use a simple iterative method to find the result. However, since not all rein-
forcement-learning problems satisfy the Markov property, we can assume that the Mar-
kov property is satisfied to achieve approximate results.

3.2. Bellman Equation
The Bellman equation [27] is also called the dynamic programming equation. Many

common reinforcement learning algorithms are based on the Bellman equation, and the
goal of reinforcement learning can be expressed as a value function. Calculating the solu-
tion of this value function can indirectly identify the best solution for reinforcement learn-
ing. However, the solution of the value function must be simplified by the Bellman equa-
tion. The Bellman equation is as follows: 𝑣ሺ𝑠ሻ = 𝔼ሾ𝑅௧ାଵ + 𝛾𝑣ሺ𝑆௧ାଵሻ|𝑆௧ = 𝑠ሿ (3)

where 𝑅௧ାଵ represents the immediate reward values and 𝛾 is the discount factor (0 ≤ 𝛾 ≤ 1).
However, it is uncertain, when moving from state S௧ to state 𝑆௧ାଵ , if there will be an
expectation symbol in the outermost layer. By observing the equation, we can see that v(s)
is composed of two parts. One is the immediate reward expectation of this state. According
to the definition of the immediate reward, this will not be related to the next state. The other
is the value expectation of the state in the next moment, which can be obtained according to
the probability distribution of the state at the next moment. If 𝑆௧ାଵ is expressed as any
possible state at the next moment in state S௧, then the Bellman equation can be written as:

Figure 5. The interaction between the agent and the environment.

The agent interacts with the environment, as shown in Figure 5. The environment
gives the state and reward at time t to the agent, and the agent then determines the behavior
to be performed using this information. Then, the environment determines the state and
reward for the next time through the behavior of the agent. All the processes of MDP are
random and the next state transition is only related to the current state. At time t, action At
is made according to St, and the state St+1 at the next time, t + 1 is uncertain. We call this
environment transition probability the MDP dynamic. The equation is as follows:

p
(
s′, r
∣∣s, a

)
= Pr

(
St+1 = s′, Rt+1 = r

∣∣St = s, At = a
)
. (1)

After taking action a in the state s, the probability id that the next state is s′ and the
reward is r. The next-state transition of MDP is only related to the current state; we call this
the Markov Property, which can be expressed using the following equation:

Pr(Sn|Sn−1, Sn−2, . . . , S0) = Pr(Sn|Sn−1). (2)

The current state contains information about all the states experienced in the past.
However, the probability that we are looking for can reject all the past states and focus only
on the present state. This greatly reduces the amount of calculation necessary, and we can
then use a simple iterative method to find the result. However, since not all reinforcement-
learning problems satisfy the Markov property, we can assume that the Markov property is
satisfied to achieve approximate results.

3.2. Bellman Equation

The Bellman equation [27] is also called the dynamic programming equation. Many
common reinforcement learning algorithms are based on the Bellman equation, and the goal
of reinforcement learning can be expressed as a value function. Calculating the solution
of this value function can indirectly identify the best solution for reinforcement learning.
However, the solution of the value function must be simplified by the Bellman equation.
The Bellman equation is as follows:

v(s) = E[Rt+1 + γv(St+1)|St = s] (3)

where Rt+1 represents the immediate reward values and γ is the discount factor (0 ≤ γ ≤ 1).
However, it is uncertain, when moving from state St to state St+1, if there will be an
expectation symbol in the outermost layer. By observing the equation, we can see that v(s)
is composed of two parts. One is the immediate reward expectation of this state. According
to the definition of the immediate reward, this will not be related to the next state. The other
is the value expectation of the state in the next moment, which can be obtained according

Actuators 2023, 12, 57 7 of 32

to the probability distribution of the state at the next moment. If St+1 is expressed as any
possible state at the next moment in state St, then the Bellman equation can be written as:

v(s) = Rs + γ ∑
St+1∈S

PStSt+1 v(St+1). (4)

The value function of each state is calculated iteratively through the Bellman equation.
Below, we give an example showing the calculation of the value function of a state to help
with understanding the process, as shown in Figure 6.

Actuators 2023, 12, x FOR PEER REVIEW 7 of 33

vሺsሻ = 𝑅௦ + 𝛾 ෍ 𝑃ௌ೟ௌ೟శభ𝑣ሺ𝑆௧ାଵሻௌ೟శభ∈ௌ . (4)

The value function of each state is calculated iteratively through the Bellman equa-
tion. Below, we give an example showing the calculation of the value function of a state
to help with understanding the process, as shown in Figure 6.

Figure 6. Example of the calculation of value function.

After substituting the value into the calculation of Equation (4), the value of the
current state can be obtained, as shown in Equation (5): 4.3 = −2 + 0.6 ൈ 10 + 0.4 ൈ 0.8. (5)

However, when the current state is 4.3, the subsequent state value function is 0.8 and
10. In fact, these values can be arbitrarily initialized and updated through learning,
thereby functioning in the same way as the weight parameters in neural networks. They
are initialized arbitrarily at the beginning of the process and are then updated backward
through loss.

3.3. Policy
In both the Q-learning algorithm and the SARSA algorithm, a particular policy is

required for action selection. In this study, two policies were applied and are introduced
here. The first is the most intuitive, the greedy policy [28]. Assuming the situation
encountered below is shown in Figure 7, there are 4 directions to choose from in this state,
and the highest 0.9 Q-value is selected according to the Q-table; this is the greedy policy
mentioned above, to which we add random probability. In this way, during the training
process, there is a chance that the agent of 𝜀 will choose a random direction, so that the
model has the opportunity to learn new experiences. This is the 𝜀- greedy policy [29].

Figure 7. Operation of the greedy policy.

Figure 6. Example of the calculation of value function.

After substituting the value into the calculation of Equation (4), the value of the current
state can be obtained, as shown in Equation (5):

4.3 = −2 + 0.6× 10 + 0.4× 0.8. (5)

However, when the current state is 4.3, the subsequent state value function is 0.8
and 10. In fact, these values can be arbitrarily initialized and updated through learning,
thereby functioning in the same way as the weight parameters in neural networks. They
are initialized arbitrarily at the beginning of the process and are then updated backward
through loss.

3.3. Policy

In both the Q-learning algorithm and the SARSA algorithm, a particular policy is re-
quired for action selection. In this study, two policies were applied and are introduced here.
The first is the most intuitive, the greedy policy [28]. Assuming the situation encountered
below is shown in Figure 7, there are 4 directions to choose from in this state, and the
highest 0.9 Q-value is selected according to the Q-table; this is the greedy policy mentioned
above, to which we add random probability. In this way, during the training process, there
is a chance that the agent of ε will choose a random direction, so that the model has the
opportunity to learn new experiences. This is the ε-greedy policy [29].

Actuators 2023, 12, x FOR PEER REVIEW 7 of 33

vሺsሻ = 𝑅௦ + 𝛾 ෍ 𝑃ௌ೟ௌ೟శభ𝑣ሺ𝑆௧ାଵሻௌ೟శభ∈ௌ . (4)

The value function of each state is calculated iteratively through the Bellman equa-
tion. Below, we give an example showing the calculation of the value function of a state
to help with understanding the process, as shown in Figure 6.

Figure 6. Example of the calculation of value function.

After substituting the value into the calculation of Equation (4), the value of the
current state can be obtained, as shown in Equation (5): 4.3 = −2 + 0.6 ൈ 10 + 0.4 ൈ 0.8. (5)

However, when the current state is 4.3, the subsequent state value function is 0.8 and
10. In fact, these values can be arbitrarily initialized and updated through learning,
thereby functioning in the same way as the weight parameters in neural networks. They
are initialized arbitrarily at the beginning of the process and are then updated backward
through loss.

3.3. Policy
In both the Q-learning algorithm and the SARSA algorithm, a particular policy is

required for action selection. In this study, two policies were applied and are introduced
here. The first is the most intuitive, the greedy policy [28]. Assuming the situation
encountered below is shown in Figure 7, there are 4 directions to choose from in this state,
and the highest 0.9 Q-value is selected according to the Q-table; this is the greedy policy
mentioned above, to which we add random probability. In this way, during the training
process, there is a chance that the agent of 𝜀 will choose a random direction, so that the
model has the opportunity to learn new experiences. This is the 𝜀- greedy policy [29].

Figure 7. Operation of the greedy policy. Figure 7. Operation of the greedy policy.

Actuators 2023, 12, 57 8 of 32

In Figure 8, there is a probability that the agent in this state will randomly choose
the direction so that the agent has the opportunity to learn new experiences and will not
always choose the same action.

Actuators 2023, 12, x FOR PEER REVIEW 8 of 33

In Figure 8, there is a probability that the agent in this state will randomly choose the
direction so that the agent has the opportunity to learn new experiences and will not al-
ways choose the same action.

Figure 8. Operation of the 𝜀- greedy policy

3.4. Q-Learning Algorithm
Q-learning is a time difference (TD) method and is also a classic method in reinforce-

ment learning [30]. The Q-learning algorithm uses the newly obtained reward and the
original Q-value to update the current Q-value, which process is also called value itera-
tion. Then, it creates a Q-table and updates the Q-table with the rewards of each action, as
shown in Algorithm 1. The Q-learning algorithm procedure is shown in Figure 9. The
inputs of this algorithm are state S (the current position coordinates on the map), action A
(the direction of movement), and reward R (the reward from the current position to the
next position). The outputs are the values of the Q-table.

Algorithm 1 Q-learning (off-policy TD control) for estimating π ൎ 𝜋∗
Initialize 𝑄ሺ𝑠, 𝑎ሻ, ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝒜ሺ𝑠ሻ, arbitrarily, and 𝑄ሺ𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒,⋅ሻ = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g.,𝜖-greedy)
Take action A, observe R, 𝑆ᇱ 𝑄ሺ𝑆, 𝐴ሻ ← 𝑄ሺ𝑆, 𝐴ሻ + 𝛼ሾ𝑅 + 𝛾𝑚𝑎𝑥௔𝑄ሺ𝑆ᇱ, 𝑎ሻ − 𝑄ሺ𝑆, 𝐴ሻሿ 𝑆 ← 𝑆ᇱ;
until S is terminal

Figure 8. Operation of the ε- greedy policy.

3.4. Q-Learning Algorithm

Q-learning is a time difference (TD) method and is also a classic method in reinforce-
ment learning [30]. The Q-learning algorithm uses the newly obtained reward and the
original Q-value to update the current Q-value, which process is also called value iteration.
Then, it creates a Q-table and updates the Q-table with the rewards of each action, as shown
in Algorithm 1. The Q-learning algorithm procedure is shown in Figure 9. The inputs
of this algorithm are state S (the current position coordinates on the map), action A (the
direction of movement), and reward R (the reward from the current position to the next
position). The outputs are the values of the Q-table.

Algorithm 1 Q-learning (off-policy TD control) for estimating π ≈ π∗

Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal state, ·) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g.,ε-greedy)
Take action A, observe R, S′

Q(S, A)← Q(S, A) + α[R + γmaxaQ(S′, a)−Q(S, A)]
S← S′ ;
until S is terminal

The Q-learning algorithm is off-policy. This different policy means that the action
policy and the evaluation policy are not the same. The action policy in Q-learning is the
ε-greedy policy, whereas the policy to update the Q-table is the greedy policy. The equation
for calculating the Q-value is as follows, and is based on the Bellman equation:

Qnew(st, at)← (1− α) ·Q(st, at) + α ·
(

rt + γ ·max
a

Q(st+1, a)
)

(6)

where rt represents the reward values that are obtained from state St to state St+1, α is the
learning rate (0 < α ≤ 1), and γ is the discount factor (0 ≤ γ ≤ 1). When the γ-value is
larger, the agent pays more attention to the long-term rewards to be obtained in the future.
Finally, the calculated Q-value is stored in the Q-table. The flowchart is shown in Figure 10.

Actuators 2023, 12, 57 9 of 32Actuators 2023, 12, x FOR PEER REVIEW 9 of 33

Figure 9. Q-learning algorithm procedure.

The Q-learning algorithm is off-policy. This different policy means that the action
policy and the evaluation policy are not the same. The action policy in Q-learning is the ε-
greedy policy, whereas the policy to update the Q-table is the greedy policy. The equation
for calculating the Q-value is as follows, and is based on the Bellman equation: 𝑄௡௘௪ሺ𝑠௧, 𝑎௧ሻ ← ሺ1 − 𝛼ሻ ⋅ 𝑄ሺ𝑠௧, 𝑎௧ሻ + 𝛼 ⋅ ቀ𝑟௧ + 𝛾 ⋅ 𝑚𝑎𝑥௔ 𝑄ሺ𝑠௧ାଵ, 𝑎ሻቁ (6)

where 𝑟௧ represents the reward values that are obtained from state 𝑆௧ to state 𝑆௧ାଵ, α is the
learning rate (0 < 𝛼 ≤ 1), and 𝛾 is the discount factor (0 ≤ 𝛾 ≤ 1). When the 𝛾-value is larger,
the agent pays more attention to the long-term rewards to be obtained in the future. Finally,
the calculated Q-value is stored in the Q-table. The flowchart is shown in Figure 10.

Figure 9. Q-learning algorithm procedure.

Actuators 2023, 12, x FOR PEER REVIEW 10 of 33

Figure 10. Flowchart of the Q-learning algorithm.

3.5. Reward
In the process of human learning and growth, parents will teach their children what

things should be done, or what things are dangerous and should not be done. The right
actions will be rewarded, and the dangerous actions will be punished. In Q-learning, it is
also necessary to set reward and punishment rules. In this way, when iterating and updating
the Q-value, the result will be closer to expectations. When we initialize the reward, the
reward rules are as shown in Equation (7). Finally, in order to reach the goal with the least
number of steps, each step will be taken as −1. The schematic diagram of the reward and
punishment rules is shown in Figure 11. The rules are flexible and need to be adjusted ac-
cording to the problem. In other words, the rules of reward and punishment depend on the
problem. Q-learning will thus maximize the overall reward as much as possible. Therefore,
there is more than one route in Figure 12 that will yield the highest score.

𝑅𝑒𝑤𝑎𝑟𝑑 = ൝ −1−200+100 𝑒𝑣𝑒𝑟𝑦 𝑠𝑡𝑒𝑝𝑒𝑛𝑡𝑒𝑟 𝑡ℎ𝑒 𝑔𝑟𝑎𝑦 𝑏𝑙𝑜𝑐𝑘𝑠𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙 (7)

Figure 11. The schematic diagram of the reward and punishment rules.

Figure 10. Flowchart of the Q-learning algorithm.

3.5. Reward

In the process of human learning and growth, parents will teach their children what
things should be done, or what things are dangerous and should not be done. The right
actions will be rewarded, and the dangerous actions will be punished. In Q-learning, it
is also necessary to set reward and punishment rules. In this way, when iterating and
updating the Q-value, the result will be closer to expectations. When we initialize the
reward, the reward rules are as shown in Equation (7). Finally, in order to reach the goal

Actuators 2023, 12, 57 10 of 32

with the least number of steps, each step will be taken as −1. The schematic diagram of the
reward and punishment rules is shown in Figure 11. The rules are flexible and need to be
adjusted according to the problem. In other words, the rules of reward and punishment
depend on the problem. Q-learning will thus maximize the overall reward as much as
possible. Therefore, there is more than one route in Figure 12 that will yield the highest
score.

Reward =


−1
−200
+100

every step
enter the gray blocks

reach the goal
(7)

Actuators 2023, 12, x FOR PEER REVIEW 10 of 33

Figure 10. Flowchart of the Q-learning algorithm.

3.5. Reward
In the process of human learning and growth, parents will teach their children what

things should be done, or what things are dangerous and should not be done. The right
actions will be rewarded, and the dangerous actions will be punished. In Q-learning, it is
also necessary to set reward and punishment rules. In this way, when iterating and updating
the Q-value, the result will be closer to expectations. When we initialize the reward, the
reward rules are as shown in Equation (7). Finally, in order to reach the goal with the least
number of steps, each step will be taken as −1. The schematic diagram of the reward and
punishment rules is shown in Figure 11. The rules are flexible and need to be adjusted ac-
cording to the problem. In other words, the rules of reward and punishment depend on the
problem. Q-learning will thus maximize the overall reward as much as possible. Therefore,
there is more than one route in Figure 12 that will yield the highest score.

𝑅𝑒𝑤𝑎𝑟𝑑 = ൝ −1−200+100 𝑒𝑣𝑒𝑟𝑦 𝑠𝑡𝑒𝑝𝑒𝑛𝑡𝑒𝑟 𝑡ℎ𝑒 𝑔𝑟𝑎𝑦 𝑏𝑙𝑜𝑐𝑘𝑠𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙 (7)

Figure 11. The schematic diagram of the reward and punishment rules. Figure 11. The schematic diagram of the reward and punishment rules.

Actuators 2023, 12, x FOR PEER REVIEW 11 of 33

Figure 12. The routes in the reward and punishment rules.

The ultimate goal of Q-Learning is to obtain feedback, meaning that the sum of all
rewards on the trajectory during the training process needs to be saved. Therefore, the Q-
table of the two-dimensional table is designed to store the 𝑄ሺ𝑆, 𝐴ሻ, which can store the
expected maximum reward value for each action in each state in the future. In this way,
we can know the best action for each state. The table is known as the Q-table and is shown
in Figure 13.

Figure 13. Grid map stored in a Q-table.

There are four actions in the Q-table in the grid map (up, down, left, and right ac-
tions). The row represents the state, while the value of each cell will be the maximum
reward value expected in the future for a specific state and action.

3.6. State–Action–Reward–State–Action (SARSA) Algorithm
SARSA is also a time difference (TD) method and is a classic method in reinforcement

learning [31]. The SARSA algorithm is similar to the Q-learning algorithm; the main dif-
ference is the way in which it updates the Q-value, as shown in Algorithm 2. The SARSA
algorithm procedure is shown in Figure 14. The inputs of this algorithm are state S (the
current position coordinates on the map), action A (the moving direction), and reward R
(the reward for moving from the current position to the next position). The outputs are
the values of the Q-table.

Figure 12. The routes in the reward and punishment rules.

The ultimate goal of Q-Learning is to obtain feedback, meaning that the sum of all
rewards on the trajectory during the training process needs to be saved. Therefore, the
Q-table of the two-dimensional table is designed to store the Q(S, A), which can store the
expected maximum reward value for each action in each state in the future. In this way, we
can know the best action for each state. The table is known as the Q-table and is shown in
Figure 13.

Actuators 2023, 12, x FOR PEER REVIEW 11 of 33

Figure 12. The routes in the reward and punishment rules.

The ultimate goal of Q-Learning is to obtain feedback, meaning that the sum of all
rewards on the trajectory during the training process needs to be saved. Therefore, the Q-
table of the two-dimensional table is designed to store the 𝑄ሺ𝑆, 𝐴ሻ, which can store the
expected maximum reward value for each action in each state in the future. In this way,
we can know the best action for each state. The table is known as the Q-table and is shown
in Figure 13.

Figure 13. Grid map stored in a Q-table.

There are four actions in the Q-table in the grid map (up, down, left, and right ac-
tions). The row represents the state, while the value of each cell will be the maximum
reward value expected in the future for a specific state and action.

3.6. State–Action–Reward–State–Action (SARSA) Algorithm
SARSA is also a time difference (TD) method and is a classic method in reinforcement

learning [31]. The SARSA algorithm is similar to the Q-learning algorithm; the main dif-
ference is the way in which it updates the Q-value, as shown in Algorithm 2. The SARSA
algorithm procedure is shown in Figure 14. The inputs of this algorithm are state S (the
current position coordinates on the map), action A (the moving direction), and reward R
(the reward for moving from the current position to the next position). The outputs are
the values of the Q-table.

Figure 13. Grid map stored in a Q-table.

Actuators 2023, 12, 57 11 of 32

There are four actions in the Q-table in the grid map (up, down, left, and right actions).
The row represents the state, while the value of each cell will be the maximum reward
value expected in the future for a specific state and action.

3.6. State–Action–Reward–State–Action (SARSA) Algorithm

SARSA is also a time difference (TD) method and is a classic method in reinforcement
learning [31]. The SARSA algorithm is similar to the Q-learning algorithm; the main
difference is the way in which it updates the Q-value, as shown in Algorithm 2. The SARSA
algorithm procedure is shown in Figure 14. The inputs of this algorithm are state S (the
current position coordinates on the map), action A (the moving direction), and reward R
(the reward for moving from the current position to the next position). The outputs are the
values of the Q-table.

Algorithm 2 Sarsa (on-policy TD control) for estimating Q ≈ q∗

Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal state, ·) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g.,ε-greedy)
Repeat (for each step of episode):
Take action A, observe R, S′

Choose A′ from S′ using policy derived from Q (e.g.,ε-greedy)
Q(S, A)← Q(S, A) + α[R + γQ(S′, A′)−Q(S, A)]

S← S′; A← A′;
until S is terminal

Actuators 2023, 12, x FOR PEER REVIEW 12 of 33

Algorithm 2 Sarsa (on-policy TD control) for estimating 𝑄 ൎ 𝑞∗
Initialize 𝑄ሺ𝑠, 𝑎ሻ, ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝒜ሺ𝑠ሻ, arbitrarily, and 𝑄ሺ𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒,⋅ሻ = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g.,𝜖-greedy)
Repeat (for each step of episode):
Take action A, observe R, 𝑆ᇱ
Choose 𝐴ᇱ from 𝑆ᇱ using policy derived from Q (e.g.,𝜖-greedy) 𝑄ሺ𝑆, 𝐴ሻ ← 𝑄ሺ𝑆, 𝐴ሻ + 𝛼ሾ𝑅 + 𝛾𝑄ሺ𝑆ᇱ, 𝐴ᇱሻ − 𝑄ሺ𝑆, 𝐴ሻሿ 𝑆 ← 𝑆ᇱ; 𝐴 ← 𝐴ᇱ;
until S is terminal

Figure 14. The SARSA algorithm procedure.

This algorithm mainly incorporates the five elements of reinforcement learning: state
(S), action (A), reward (R), discount factor, 𝛾, and exploration rate, 𝜀, and uses the optimal
action value function to find the best path. It can be seen that in the updated formula of 𝑄ሺ𝑆, 𝐴ሻ, the on-policy update method is adopted, and both the action policy and the up-
date policy are an ε-greedy policy. This means that the SARSA algorithm will directly
adopt the policy that is currently considered the best in the current state. The equation for
calculating the Q-value is as follows: 𝑄௡௘௪ሺ𝑠௧, 𝑎௧ሻ ← ሺ1 − αሻ ⋅ Qሺ𝑠௧, 𝑎௧ሻ + α ⋅ ൫𝑟௧ + γ ⋅ 𝑄ሺ𝑠௧ାଵ, 𝑎ሻ൯ (8)

where 𝑟௧ represents the reward values that are obtained from state 𝑆௧ to state 𝑆௧ାଵ, 𝛼 is the
learning rate (0 < 𝛼 ≤ 1), 𝛾 is the discount factor (0 ≤ 𝛾 ≤ 1). Finally, the Q-value is up-
dated and stored in the Q-table via an iterative calculation.

3.7. SARSA Algorithm, Compared with the Q-Learning Algorithm
Comparing the two algorithms in the grid world shows that there will be different

paths due to the different Q-value update methods. An example is shown in Figure 15.

Figure 14. The SARSA algorithm procedure.

This algorithm mainly incorporates the five elements of reinforcement learning: state
(S), action (A), reward (R), discount factor, γ, and exploration rate, ε, and uses the optimal
action value function to find the best path. It can be seen that in the updated formula
of Q(S, A), the on-policy update method is adopted, and both the action policy and the
update policy are an ε-greedy policy. This means that the SARSA algorithm will directly

Actuators 2023, 12, 57 12 of 32

adopt the policy that is currently considered the best in the current state. The equation for
calculating the Q-value is as follows:

Qnew(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·Q(st+1, a)) (8)

where rt represents the reward values that are obtained from state St to state St+1, α is
the learning rate (0 < α ≤ 1), γ is the discount factor (0 ≤ γ ≤ 1). Finally, the Q-value is
updated and stored in the Q-table via an iterative calculation.

3.7. SARSA Algorithm, Compared with the Q-Learning Algorithm

Comparing the two algorithms in the grid world shows that there will be different
paths due to the different Q-value update methods. An example is shown in Figure 15.

Actuators 2023, 12, x FOR PEER REVIEW 13 of 33

Figure 15. Example in the grid-world environment.

In this environment, one point is lost for every square moved. When stepping into the
black area (obstacle), the algorithm will lose one hundred points and return to the starting
point. Finally, it will learn the path with the highest score to reach the goal. The method uses
both the SARSA algorithm and Q-learning algorithm for learning. The results are shown in
Figure 16 and Figure 17; the dashed line is the optimal route of each algorithm.

Figure 16. The SARSA algorithm route.

Figure 17. The Q-learning algorithm route.

The action policy of the Q-learning algorithm is based on the ε-greedy policy; only
the globally optimal action is considered in the Q-value update method. The SARSA al-
gorithm can only find a suboptimal path, which is intuitively safer. Because the SARSA
algorithm has the same action policy and evaluation policy, it considers the possibilities
of all actions (ε-greedy). When it is close to the black area, there is a certain probability
that it will choose to take a step toward the black area, so it is less likely to choose the path
around the black area. Although the Q-learning algorithm has the ability to learn the glob-
ally optimal path, its convergence is slow, while the SARSA algorithm has a lower learn-
ing effect than the Q-learning algorithm, but its convergence is faster and simpler. There-
fore, we need to consider the different issues.

4. Obstacle Avoidance
In recent years, drones have become popular in both the consumer and professional

fields. Therefore, great research attention has been paid to the obstacle-avoidance function
of UAVs. In order to ensure flight safety, although drones have GPS signals, there are still
some small static or dynamic obstacles, such as trees, walls, and birds. None of these ob-
stacles can be ascertained from the GPS data. In order to solve this problem, the obstacle
avoidance system first needs accurate positioning information of the UAV, relative to the
obstacle. Several methods have been proposed, such as the use of deep reinforcement
learning, based on obstacle avoidance training and testing in a virtual environment
[18,32], or the use of depth cameras with computer vision detection to avoid obstacles
[33,34]. After obtaining information about the environmental obstacles, the UAV will
adopt the corresponding avoidance direction and keep the flight stable. The main purpose
of the current research is to collect water-quality information regarding the cage net in the
ocean. Therefore, several long obstacles of sufficient height have been placed to simulate

Figure 15. Example in the grid-world environment.

In this environment, one point is lost for every square moved. When stepping into the
black area (obstacle), the algorithm will lose one hundred points and return to the starting
point. Finally, it will learn the path with the highest score to reach the goal. The method
uses both the SARSA algorithm and Q-learning algorithm for learning. The results are
shown in Figures 16 and 17; the dashed line is the optimal route of each algorithm.

Actuators 2023, 12, x FOR PEER REVIEW 13 of 33

Figure 15. Example in the grid-world environment.

In this environment, one point is lost for every square moved. When stepping into the
black area (obstacle), the algorithm will lose one hundred points and return to the starting
point. Finally, it will learn the path with the highest score to reach the goal. The method uses
both the SARSA algorithm and Q-learning algorithm for learning. The results are shown in
Figure 16 and Figure 17; the dashed line is the optimal route of each algorithm.

Figure 16. The SARSA algorithm route.

Figure 17. The Q-learning algorithm route.

The action policy of the Q-learning algorithm is based on the ε-greedy policy; only
the globally optimal action is considered in the Q-value update method. The SARSA al-
gorithm can only find a suboptimal path, which is intuitively safer. Because the SARSA
algorithm has the same action policy and evaluation policy, it considers the possibilities
of all actions (ε-greedy). When it is close to the black area, there is a certain probability
that it will choose to take a step toward the black area, so it is less likely to choose the path
around the black area. Although the Q-learning algorithm has the ability to learn the glob-
ally optimal path, its convergence is slow, while the SARSA algorithm has a lower learn-
ing effect than the Q-learning algorithm, but its convergence is faster and simpler. There-
fore, we need to consider the different issues.

4. Obstacle Avoidance
In recent years, drones have become popular in both the consumer and professional

fields. Therefore, great research attention has been paid to the obstacle-avoidance function
of UAVs. In order to ensure flight safety, although drones have GPS signals, there are still
some small static or dynamic obstacles, such as trees, walls, and birds. None of these ob-
stacles can be ascertained from the GPS data. In order to solve this problem, the obstacle
avoidance system first needs accurate positioning information of the UAV, relative to the
obstacle. Several methods have been proposed, such as the use of deep reinforcement
learning, based on obstacle avoidance training and testing in a virtual environment
[18,32], or the use of depth cameras with computer vision detection to avoid obstacles
[33,34]. After obtaining information about the environmental obstacles, the UAV will
adopt the corresponding avoidance direction and keep the flight stable. The main purpose
of the current research is to collect water-quality information regarding the cage net in the
ocean. Therefore, several long obstacles of sufficient height have been placed to simulate

Figure 16. The SARSA algorithm route.

Actuators 2023, 12, x FOR PEER REVIEW 13 of 33

Figure 15. Example in the grid-world environment.

In this environment, one point is lost for every square moved. When stepping into the
black area (obstacle), the algorithm will lose one hundred points and return to the starting
point. Finally, it will learn the path with the highest score to reach the goal. The method uses
both the SARSA algorithm and Q-learning algorithm for learning. The results are shown in
Figure 16 and Figure 17; the dashed line is the optimal route of each algorithm.

Figure 16. The SARSA algorithm route.

Figure 17. The Q-learning algorithm route.

The action policy of the Q-learning algorithm is based on the ε-greedy policy; only
the globally optimal action is considered in the Q-value update method. The SARSA al-
gorithm can only find a suboptimal path, which is intuitively safer. Because the SARSA
algorithm has the same action policy and evaluation policy, it considers the possibilities
of all actions (ε-greedy). When it is close to the black area, there is a certain probability
that it will choose to take a step toward the black area, so it is less likely to choose the path
around the black area. Although the Q-learning algorithm has the ability to learn the glob-
ally optimal path, its convergence is slow, while the SARSA algorithm has a lower learn-
ing effect than the Q-learning algorithm, but its convergence is faster and simpler. There-
fore, we need to consider the different issues.

4. Obstacle Avoidance
In recent years, drones have become popular in both the consumer and professional

fields. Therefore, great research attention has been paid to the obstacle-avoidance function
of UAVs. In order to ensure flight safety, although drones have GPS signals, there are still
some small static or dynamic obstacles, such as trees, walls, and birds. None of these ob-
stacles can be ascertained from the GPS data. In order to solve this problem, the obstacle
avoidance system first needs accurate positioning information of the UAV, relative to the
obstacle. Several methods have been proposed, such as the use of deep reinforcement
learning, based on obstacle avoidance training and testing in a virtual environment
[18,32], or the use of depth cameras with computer vision detection to avoid obstacles
[33,34]. After obtaining information about the environmental obstacles, the UAV will
adopt the corresponding avoidance direction and keep the flight stable. The main purpose
of the current research is to collect water-quality information regarding the cage net in the
ocean. Therefore, several long obstacles of sufficient height have been placed to simulate

Figure 17. The Q-learning algorithm route.

The action policy of the Q-learning algorithm is based on the ε-greedy policy; only the
globally optimal action is considered in the Q-value update method. The SARSA algorithm
can only find a suboptimal path, which is intuitively safer. Because the SARSA algorithm
has the same action policy and evaluation policy, it considers the possibilities of all actions
(ε-greedy). When it is close to the black area, there is a certain probability that it will choose
to take a step toward the black area, so it is less likely to choose the path around the black
area. Although the Q-learning algorithm has the ability to learn the globally optimal path,
its convergence is slow, while the SARSA algorithm has a lower learning effect than the
Q-learning algorithm, but its convergence is faster and simpler. Therefore, we need to
consider the different issues.

4. Obstacle Avoidance

In recent years, drones have become popular in both the consumer and professional
fields. Therefore, great research attention has been paid to the obstacle-avoidance function

Actuators 2023, 12, 57 13 of 32

of UAVs. In order to ensure flight safety, although drones have GPS signals, there are
still some small static or dynamic obstacles, such as trees, walls, and birds. None of these
obstacles can be ascertained from the GPS data. In order to solve this problem, the obstacle
avoidance system first needs accurate positioning information of the UAV, relative to the
obstacle. Several methods have been proposed, such as the use of deep reinforcement
learning, based on obstacle avoidance training and testing in a virtual environment [18,32],
or the use of depth cameras with computer vision detection to avoid obstacles [33,34].
After obtaining information about the environmental obstacles, the UAV will adopt the
corresponding avoidance direction and keep the flight stable. The main purpose of the
current research is to collect water-quality information regarding the cage net in the ocean.
Therefore, several long obstacles of sufficient height have been placed to simulate the
situation when encountering sails at sea. The ground also has up- and down-slopes to
simulate the environment of sea waves. The following describes the system architecture
and the details of training in a virtual environment.

In the previous section, we mentioned the Q-learning algorithm. First, we suppose that
when a complex problem is encountered, the Q-table needs to store very large quantities of
states and actions. This will slow down the training speed and reduce the effect. Obstacle
avoidance is a complex problem of this type. Therefore, a neural network is used for the
calculation of the Q-value, known as the deep Q-learning network (DQN). The relationship
of the DQN with the environment is shown in Figure 18. The inputs of the deep neural
network are the depth images from the UAV’s side. The outputs of the deep neural network
are the Q-values.

Actuators 2023, 12, x FOR PEER REVIEW 14 of 33

the situation when encountering sails at sea. The ground also has up- and down-slopes to
simulate the environment of sea waves. The following describes the system architecture
and the details of training in a virtual environment.

In the previous section, we mentioned the Q-learning algorithm. First, we suppose
that when a complex problem is encountered, the Q-table needs to store very large quan-
tities of states and actions. This will slow down the training speed and reduce the effect.
Obstacle avoidance is a complex problem of this type. Therefore, a neural network is used
for the calculation of the Q-value, known as the deep Q-learning network (DQN). The
relationship of the DQN with the environment is shown in Figure 18. The inputs of the
deep neural network are the depth images from the UAV’s side. The outputs of the deep
neural network are the Q-values.

Figure 18. Interaction between the DQN and the environment.

4.1. Deep Q-Learning Algorithm
The deep Q-learning algorithm was originally designed for a brick-and-mortar game

[35]; it is a method for passing Q-learning through the approximate value function of a
neural network. It has achieved results that surpass human-level players in the Atari 2600
game; the algorithm is also suitable for the problem of avoiding obstacles. DQN has two
models with the same structure; one is a Q-network and the other is a target Q-network.
The parameters of the target Q-network will remain for a set period of time, the purpose
of which is to avoid algorithm divergence. The DQN algorithm will update the Q-network
parameter value to the target Q-network after a certain period of time. The DQN algo-
rithm diagram is shown in Figure 19.

Figure 18. Interaction between the DQN and the environment.

4.1. Deep Q-Learning Algorithm

The deep Q-learning algorithm was originally designed for a brick-and-mortar game [35];
it is a method for passing Q-learning through the approximate value function of a neural
network. It has achieved results that surpass human-level players in the Atari 2600 game;
the algorithm is also suitable for the problem of avoiding obstacles. DQN has two models
with the same structure; one is a Q-network and the other is a target Q-network. The
parameters of the target Q-network will remain for a set period of time, the purpose of
which is to avoid algorithm divergence. The DQN algorithm will update the Q-network
parameter value to the target Q-network after a certain period of time. The DQN algorithm
diagram is shown in Figure 19.

Actuators 2023, 12, 57 14 of 32Actuators 2023, 12, x FOR PEER REVIEW 15 of 33

Figure 19. The DQN algorithm diagram.

The core of DQL is the error between two neural networks. According to the target
network, we should select the action with the largest Q-value and the corresponding maxQሺ𝑎ᇱሻ. We then multiply the discount factor, γ, by this maximum value and add r, to
establish the target value of the neural network. The square error between the target value
of the target Q-network and 𝑄ሺ𝑎ሻ of the Q-network is the error of the deep neural network.
Finally, we use the error calculated by the loss function to train the neural network. The
inputs of this algorithm are state s (image pixel information), action a (moving direction),
and reward r (the reward for moving from the current position to the next position). The
outputs are the values of the Q-table. The DQL algorithm is shown as Algorithm 3 [35].

Algorithm 3 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
For episode = 1, M do
Initialize sequence 𝑠ଵ = ሼ𝑥ଵሽ and preprocessed sequenced 𝜙ଵ = 𝜙ሺ𝑠ଵሻ
for t = 1, T do
With probability 𝜖 select a random action select a random action 𝑎௧
otherwise select 𝑎௧ = 𝑚𝑎𝑥௔𝑄∗ሺ𝜙ሺ𝑠௧ሻ, 𝑎; 𝜃ሻ
Execute action 𝑎௧ in emulator and observe reward 𝑟௧ and image 𝑥௧ାଵ
Set 𝑠௧ାଵ = 𝑠௧,𝑎௧, 𝑥௧ାଵ and preprocess 𝜙௧ାଵ = ϕሺ𝑠௧ାଵሻ
Store transition (𝜙௧, 𝑎௧, 𝑟௧, 𝜙௧ାଵ) in D
Sample random minibatch of transitions (𝜙௝, 𝑎௝, 𝑟௝, 𝜙௝ାଵ) from D

Set 𝑦௝ = ൜ 𝑟௝𝑟௝ + 𝛾𝑚𝑎𝑥௔ᇲ𝑄൫𝜙௝ାଵ, 𝑎ᇱ; 𝜃൯ for terminal 𝜙௝ାଵfor non − terminal 𝜙௝ାଵ

Perform a gradient descent step on ቀ𝑦௝ − 𝑄൫𝜙௝, 𝑎௝; 𝜃൯ቁଶ
according to equation 3

end for
end for

The reason for experience replay is that the deep neural network, as a supervised
learning model, requires the data to meet independent and identical distributions. The
samples obtained by the Q-learning algorithm are related to the data both before and after.
In order to break the correlation between these datasets, the experience replay method
breaks this correlation via storage and sampling. The following equations are the equation
of the gradient descent method and the equation for the loss function: 𝑔ప = ൫𝑟 + 𝛾𝑚𝑎𝑥௔ᇲ𝑄ሺ𝑠ᇱ, 𝑎ᇱ; 𝜃పି ሻ − 𝑄ሺ𝑠, 𝑎; 𝜃పሻ൯∇ఏ𝑄ሺ𝑠, 𝑎; 𝜃ሻ (9)

Figure 19. The DQN algorithm diagram.

The core of DQL is the error between two neural networks. According to the target
network, we should select the action with the largest Q-value and the corresponding
maxQ(a′). We then multiply the discount factor, γ, by this maximum value and add r, to
establish the target value of the neural network. The square error between the target value
of the target Q-network and Q(a) of the Q-network is the error of the deep neural network.
Finally, we use the error calculated by the loss function to train the neural network. The
inputs of this algorithm are state s (image pixel information), action a (moving direction),
and reward r (the reward for moving from the current position to the next position). The
outputs are the values of the Q-table. The DQL algorithm is shown as Algorithm 3 [35].

Algorithm 3 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
For episode = 1, M do
Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
for t = 1, T do
With probability ε select a random action select a random action at
otherwise select at = maxaQ∗(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st,at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

{
rj

rj + γmaxa′Q
(

φj+1, a′; θ
) for terminal φj+1

for non− terminal φj+1

Perform a gradient descent step on
(

yj −Q
(

φj, aj; θ
))2

according to Equation (3)
end for
end for

The reason for experience replay is that the deep neural network, as a supervised
learning model, requires the data to meet independent and identical distributions. The
samples obtained by the Q-learning algorithm are related to the data both before and after.
In order to break the correlation between these datasets, the experience replay method
breaks this correlation via storage and sampling. The following equations are the equation
of the gradient descent method and the equation for the loss function:

gı =
(
r + γmaxa′Q

(
s′, a′; θ−ı

)
−Q(s, a; θı)

)
∇θQ(s, a; θ) (9)

Actuators 2023, 12, 57 15 of 32

Lı(θı) = E
[(

r + γmaxa′Q
(
s′, a′; θ−ı

)
−Q(s, a, ; θı)

)2
]

(10)

The stochastic gradient descent method can be used to optimize the weight, minimize
the loss function, and gradually approach the optimal Q function to satisfy Bellman’s
equation. If the loss function is 0, it can be considered that the approximation function has
reached the optimal solution.

4.2. Microsoft AirSim Environment

AirSim [36] is an open-source platform for drones, cars, and other simulators that
were built based on Unreal Engine 4. It can also offer a cross-platform for simulation
control through the PX4 flight controller. AirSim can interact with vehicles or drones in the
simulation program via programming languages, such as Python, and can use these APIs
to retrieve images and obtain the status to control the vehicle. The use of reinforcement
learning methods for UAV obstacle avoidance training requires multiple collisions. Training
in the real world will inevitably take a great deal of time and cost, and it will also cause
doubts about flight safety. Therefore, most of the reinforcement learning training will be
carried out in a virtual environment. In this study, we presented the obstacle avoidance
results within the AirSim virtual environment. The environment from the AirSim is shown
in Figure 20.

Actuators 2023, 12, x FOR PEER REVIEW 16 of 33

𝐿పሺ𝜃పሻ = 𝐸 ቂ൫𝑟 + 𝛾𝑚𝑎𝑥௔ᇲ𝑄ሺ𝑠ᇱ, 𝑎ᇱ; 𝜃పି ሻ − 𝑄ሺ𝑠, 𝑎, ; 𝜃పሻ൯ଶቃ (10)

The stochastic gradient descent method can be used to optimize the weight, minimize
the loss function, and gradually approach the optimal Q function to satisfy Bellman’s
equation. If the loss function is 0, it can be considered that the approximation function has
reached the optimal solution.

4.2. Microsoft AirSim Environment
AirSim [36] is an open-source platform for drones, cars, and other simulators that

were built based on Unreal Engine 4. It can also offer a cross-platform for simulation con-
trol through the PX4 flight controller. AirSim can interact with vehicles or drones in the
simulation program via programming languages, such as Python, and can use these APIs
to retrieve images and obtain the status to control the vehicle. The use of reinforcement
learning methods for UAV obstacle avoidance training requires multiple collisions. Train-
ing in the real world will inevitably take a great deal of time and cost, and it will also cause
doubts about flight safety. Therefore, most of the reinforcement learning training will be
carried out in a virtual environment. In this study, we presented the obstacle avoidance
results within the AirSim virtual environment. The environment from the AirSim is
shown in Figure 20.

Figure 20. AirSim environment screenshot.

4.3. Obstacle Avoidance System in the AirSim Environment
A particular variable, D, known as replay memory, is used in the DQL algorithm to

store the current state, current action, current action reward, and next state. When training
the neural network, we randomly select batch-size samples from variable D to train the
neural network. In this study, there are an RGB camera and a depth camera in front of the
virtual drone. In the case of drones, the RGB image is the current state feature, and the
depth image is used to obtain the distance information regarding the surrounding obsta-
cles and to obtain the rewards for the current action selection. The DQL obstacle avoidance
flow chart is shown in Figure 21.

Figure 20. AirSim environment screenshot.

4.3. Obstacle Avoidance System in the AirSim Environment

A particular variable, D, known as replay memory, is used in the DQL algorithm to
store the current state, current action, current action reward, and next state. When training
the neural network, we randomly select batch-size samples from variable D to train the
neural network. In this study, there are an RGB camera and a depth camera in front of the
virtual drone. In the case of drones, the RGB image is the current state feature, and the
depth image is used to obtain the distance information regarding the surrounding obstacles
and to obtain the rewards for the current action selection. The DQL obstacle avoidance
flow chart is shown in Figure 21.

We use the backpropagation method, by means of the error between the target value
and the current value, to train the neural network. After that, we output the best predicted
Q-value for action selection. Figure 22 shows the neural network architecture. The image
adopts 227 × 227 × 3 as the input; it passes through the convolutional network layer for
feature extraction, then passes through the fully connected layer for classification, and
finally outputs 25 Q-values for each action selection.

The action space is a 5 × 5 size, as shown in Figure 23. There are 25 action options; the
flight action of the drone is calculated via angle equations, then we output the pitch and

Actuators 2023, 12, 57 16 of 32

yaw control commands to the UAV. θι and φj represent the moving angles for the horizontal
and vertical directions. These angle equations are calculated as follows:

θι =

(
FOVh

N2 ×
i−
(

N2 − 1
)

2

)
(11)

φj =

(
FOVv

N2 ×
i−
(

N2 − 1
)

2

)
(12)

where i and j ∈
{

0, 1, . . . , N2−1
2

}
are the locations, as shown in Figure 23. The size of the

action space is N × N. FOVh and FOVv are information on the horizontal and vertical
attitudes, respectively, taken from the drone.

Actuators 2023, 12, x FOR PEER REVIEW 17 of 33

Figure 21. DQL obstacle avoidance flow chart.

We use the backpropagation method, by means of the error between the target value
and the current value, to train the neural network. After that, we output the best predicted
Q-value for action selection. Figure 22 shows the neural network architecture. The image
adopts 227ൈ227ൈ3 as the input; it passes through the convolutional network layer for fea-
ture extraction, then passes through the fully connected layer for classification, and finally
outputs 25 Q-values for each action selection.

Figure 22. Network architecture.

The action space is a 5 ൈ 5 size, as shown in Figure 23. There are 25 action options;
the flight action of the drone is calculated via angle equations, then we output the pitch
and yaw control commands to the UAV. 𝜃ఐ and 𝜙௝ represent the moving angles for the
horizontal and vertical directions. These angle equations are calculated as follows: 𝜃ఐ = ቆ𝐹𝑂𝑉௛𝑁ଶ ൈ 𝒾 − ሺ𝑁ଶ − 1ሻ2 ቇ (11)

𝜙௝ = ቆ𝐹𝑂𝑉௩𝑁ଶ ൈ 𝒾 − ሺ𝑁ଶ − 1ሻ2 ቇ (12)

where 𝒾 and 𝑗 ∈ ቄ0,1, … , ேమିଵଶ ቅ are the locations, as shown in Figure 23. The size of the ac-
tion space is NൈN. 𝐹𝑂𝑉௛ and 𝐹𝑂𝑉௩ are information on the horizontal and vertical attitudes,
respectively, taken from the drone.

Figure 21. DQL obstacle avoidance flow chart.

Actuators 2023, 12, x FOR PEER REVIEW 17 of 33

Figure 21. DQL obstacle avoidance flow chart.

We use the backpropagation method, by means of the error between the target value
and the current value, to train the neural network. After that, we output the best predicted
Q-value for action selection. Figure 22 shows the neural network architecture. The image
adopts 227ൈ227ൈ3 as the input; it passes through the convolutional network layer for fea-
ture extraction, then passes through the fully connected layer for classification, and finally
outputs 25 Q-values for each action selection.

Figure 22. Network architecture.

The action space is a 5 ൈ 5 size, as shown in Figure 23. There are 25 action options;
the flight action of the drone is calculated via angle equations, then we output the pitch
and yaw control commands to the UAV. 𝜃ఐ and 𝜙௝ represent the moving angles for the
horizontal and vertical directions. These angle equations are calculated as follows: 𝜃ఐ = ቆ𝐹𝑂𝑉௛𝑁ଶ ൈ 𝒾 − ሺ𝑁ଶ − 1ሻ2 ቇ (11)

𝜙௝ = ቆ𝐹𝑂𝑉௩𝑁ଶ ൈ 𝒾 − ሺ𝑁ଶ − 1ሻ2 ቇ (12)

where 𝒾 and 𝑗 ∈ ቄ0,1, … , ேమିଵଶ ቅ are the locations, as shown in Figure 23. The size of the ac-
tion space is NൈN. 𝐹𝑂𝑉௛ and 𝐹𝑂𝑉௩ are information on the horizontal and vertical attitudes,
respectively, taken from the drone.

Figure 22. Network architecture.

Actuators 2023, 12, x FOR PEER REVIEW 18 of 33

Figure 23. The 5 × 5 action space.

4.4. Ultrasonic Sensor
The principle behind employing the HC-SR04 to measure distance is to use an I/O

trigger to send a high-level pulse signal of more than 10 μs, so that 8 periodic 40 kHz
square waves are automatically generated in the module; we then wait for the receiver to
detect the signal after the bumped object rebounds it, as shown in Figure 24.

Figure 24. Illustration of the ultrasonic process.

The equation of the sound velocity in air, with the temperature in degrees Celsius, 𝑇௖, can be written as follows: 𝑣௦௢௨௡ௗ ௜௡ ௔௜௥ ≅ 331.4 + 0.607 ൈ 𝑇௖ ቀ𝑚𝑠 ቁ (13)

Therefore, the distance to the object can be estimated according to the time when the
sound wave travels back. We assume that the temperature is 25 degrees Celsius and that
the air condition of the environment is dry; after calculating the sound wave velocity equa-
tion, which is mentioned above, we can achieve 346.5 m/s or 0.03465 cm/μs, which means
that the time the sound wave takes per centimeter is about 28.86 microseconds. Then, ac-
cording to the width of the high-level pulse signal, 𝑤௥௘௖௜௘௩௘, which is proportional to the
detection distance, the distance, 𝑑௢௕௝, from the object is given as follows: 𝑑௢௕௝ = 12 ൈ 𝑤௥௘௖௜௘௩௘28.86 (13)

Here, in order to make the distance measured by the ultrasonic sensor module more
stable, the received measurement value is filtered. This filtering method was first pro-
posed by the authors of [37].

The steps are as follows.
Step 1. Set the maximum tolerance as 0.3 cm.
Step 2. Send impulse signal and get five data each time from the ultrasonic sensor, then add

in the temporary data list.
Step 3. Sort the received data and calculate the median value of the data list.
Step 4. If there is a previous value, go to step 5, or go to step 6.

Figure 23. The 5 × 5 action space.

Actuators 2023, 12, 57 17 of 32

4.4. Ultrasonic Sensor

The principle behind employing the HC-SR04 to measure distance is to use an I/O
trigger to send a high-level pulse signal of more than 10 µs, so that 8 periodic 40 kHz square
waves are automatically generated in the module; we then wait for the receiver to detect
the signal after the bumped object rebounds it, as shown in Figure 24.

1

Figure 24. Illustration of the ultrasonic process.

The equation of the sound velocity in air, with the temperature in degrees Celsius, Tc,
can be written as follows:

vsound in air
∼= 331.4 + 0.607× Tc

(m
s

)
(13)

Therefore, the distance to the object can be estimated according to the time when the
sound wave travels back. We assume that the temperature is 25 degrees Celsius and that the
air condition of the environment is dry; after calculating the sound wave velocity equation,
which is mentioned above, we can achieve 346.5 m/s or 0.03465 cm/µs, which means that
the time the sound wave takes per centimeter is about 28.86 microseconds. Then, according
to the width of the high-level pulse signal, wrecieve, which is proportional to the detection
distance, the distance, dobj, from the object is given as follows:

dobj =
1
2 × wrecieve

28.86
(14)

Here, in order to make the distance measured by the ultrasonic sensor module more
stable, the received measurement value is filtered. This filtering method was first proposed
by the authors of [37].

The steps are as follows.

Step 1. Set the maximum tolerance as 0.3 cm.
Step 2. Send impulse signal and get five data each time from the ultrasonic sensor, then add

in the temporary data list.
Step 3. Sort the received data and calculate the median value of the data list.
Step 4. If there is a previous value, go to step 5, or go to step 6.
Step 5. Calculate the difference in the current value and the previous value; if the difference

is bigger than the maximum tolerance, then the output is equal to the previous
result, plus or minus the maximum tolerance.

Step 6. Record the current value as the previous value and output the result and go to
step 2.

Comparing the original measurement distance with the filtered measurement distance,
it is obviously improved, and the value can be stabilized for different distances. The
different distances are compared, and the error and the time consumption are calculated.
The data are shown in Table 1. However, the ultrasonic sensor module has a chance of
becoming stuck; the measure values were stopped at the same value. The steps for the
solution are presented as follows:

Actuators 2023, 12, 57 18 of 32

Step 1. Set to enter the protection mode when the output value is continuous and the same.
Step 2. Save 30 values to the temporary data list.
Step 3. Compare the first 29 items of data with the last 29 items of data in the temporary

data list.
Step 4. If the values are the same, close and restart the measurement.

Table 1. The HC-SR04 sensor, with a filter test.

Distreal (cm) Distest (cm) Error (cm) Error Percentage Cost Time (s)

35 34.97 0.03 0.08% 0.0205
60 59.88 0.12 0.20% 0.0311
75 75.69 0.69 0.92% 0.0363

100 100.45 0.45 0.45% 0.0429
200 198.79 1.21 0.605% 0.0812
250 246.42 3.58 1.432% 0.0965
300 297.28 2.72 0.906% 0.1203
350 346.58 3.42 0.977% 0.1299
400 394.56 5.44 1.36% 0.1483
450 443.42 6.58 1.462% 0.1712

Finally, after stabilizing the measured value of the ultrasonic sensor, the UAV must
perform an avoiding distance maneuver, davoid, in the opposite direction and then output
different drone speeds, Vdrone, according to the measured distance, dmeasure. The ultrasonic
dodge rules are set as follows:

250 < dmeasure ≤ 300
150 < dmeasure ≤ 250

0 < dmeasure ≤ 150

Vdrone = 0.5 m
s

Vdrone = 1 m
s

Vdrone = 3 m
s

. (15)

davoid = 300− dmeasure (16)

5. Experimental Results

This section is divided into three parts. The first is used to compare the path-planning
part in the grid world and use a better algorithm to fly in the real world. The second is an
experimental flight with ultrasonic-assisted obstacle avoidance in the real world. The last
part is intended to demonstrate the dodge test in a simulated forest environment after the
reinforcement learning training is completed.

5.1. Path Planning

Both SARSA and Q-learning are algorithms based on MDP. The two are very similar,
and so they are often compared. In Experiment 1, we observed the path difference of the
two algorithms in the same grid world, as shown in Figure 25.

As can be seen from the above figures, the path of the Q-learning algorithm is signifi-
cantly better than that of the SARSA algorithm. In Figure 26a, it can be seen that the reward
part of the Q-learning algorithm is obviously higher and is higher with respect to iteration,
and the number of steps in the exploration target gradually converges. Conversely, the
SARSA algorithm shows no significant reduction in the number of steps to explore the
target and may fall into a local optimum, as shown in Figure 26b. Although the reward
part has a high score, it is not stable. In Figure 24, the reward points after the iteration
are gradually accumulated, and the reward point of the last iteration is the sum of the
maximum value and the minimum value. Figure 27 shows the Q-table after training in
Environment 1. In the process of updating the Q-value, the Q-learning algorithm will select
the action with the largest Q-value among all the actions in the next state. The SARSA
algorithm is more intuitive in terms of choosing the best action that is currently considered;
the Q-learning algorithm will try to maximize the overall benefit. Therefore, it is more

Actuators 2023, 12, 57 19 of 32

suitable for exploring this type of path-planning problem, which only has starting-point
and end-point information, with unknown environmental obstacle information. The path
length and exploration time are shown in Table 2.

Actuators 2023, 12, x FOR PEER REVIEW 20 of 33

(a) (b)

Figure 25. The experiment in Environment 1: (a) SARSA algorithm, (b) Q-learning algorithm.

As can be seen from the above figures, the path of the Q-learning algorithm is signif-
icantly better than that of the SARSA algorithm. In Figure 26a, it can be seen that the re-
ward part of the Q-learning algorithm is obviously higher and is higher with respect to
iteration, and the number of steps in the exploration target gradually converges. Con-
versely, the SARSA algorithm shows no significant reduction in the number of steps to
explore the target and may fall into a local optimum, as shown in Figure 26b. Although
the reward part has a high score, it is not stable. In Figure 24, the reward points after the
iteration are gradually accumulated, and the reward point of the last iteration is the sum
of the maximum value and the minimum value. Figure 27 shows the Q-table after training
in Environment 1. In the process of updating the Q-value, the Q-learning algorithm will
select the action with the largest Q-value among all the actions in the next state. The
SARSA algorithm is more intuitive in terms of choosing the best action that is currently
considered; the Q-learning algorithm will try to maximize the overall benefit. Therefore,
it is more suitable for exploring this type of path-planning problem, which only has start-
ing-point and end-point information, with unknown environmental obstacle information.
The path length and exploration time are shown in Table 2.

(a) (b)

Figure 26. Training results of Q-Learning and SARSA in Environment 1, (a) is Q-Learning training
result, (b) is SARSA training result.

Figure 25. The experiment in Environment 1: (a) SARSA algorithm, (b) Q-learning algorithm.

Actuators 2023, 12, x FOR PEER REVIEW 20 of 33

(a) (b)

Figure 25. The experiment in Environment 1: (a) SARSA algorithm, (b) Q-learning algorithm.

As can be seen from the above figures, the path of the Q-learning algorithm is signif-
icantly better than that of the SARSA algorithm. In Figure 26a, it can be seen that the re-
ward part of the Q-learning algorithm is obviously higher and is higher with respect to
iteration, and the number of steps in the exploration target gradually converges. Con-
versely, the SARSA algorithm shows no significant reduction in the number of steps to
explore the target and may fall into a local optimum, as shown in Figure 26b. Although
the reward part has a high score, it is not stable. In Figure 24, the reward points after the
iteration are gradually accumulated, and the reward point of the last iteration is the sum
of the maximum value and the minimum value. Figure 27 shows the Q-table after training
in Environment 1. In the process of updating the Q-value, the Q-learning algorithm will
select the action with the largest Q-value among all the actions in the next state. The
SARSA algorithm is more intuitive in terms of choosing the best action that is currently
considered; the Q-learning algorithm will try to maximize the overall benefit. Therefore,
it is more suitable for exploring this type of path-planning problem, which only has start-
ing-point and end-point information, with unknown environmental obstacle information.
The path length and exploration time are shown in Table 2.

(a) (b)

Figure 26. Training results of Q-Learning and SARSA in Environment 1, (a) is Q-Learning training
result, (b) is SARSA training result.

Figure 26. Training results of Q-Learning and SARSA in Environment 1, (a) is Q-Learning training
result, (b) is SARSA training result.

Table 2. The results compared for Environment 1.

Environment 1 SARSA Q-Learning

path length 62 steps 42 steps

exploration time 32 min 15 min

In the second experiment, the obstacles in the grid world have been changed. The
central part is blocked by new obstacles and the path becomes narrow just before the
target point. The path of the SARSA algorithm is shown in Figure 28a, and the path of the
Q-learning algorithm is shown in Figure 28b. The path of the Q-learning algorithm is still
better than that of the SARSA algorithm.

Actuators 2023, 12, 57 20 of 32Actuators 2023, 12, x FOR PEER REVIEW 21 of 33

Figure 27. The Q-table for Q-learning and SARSA in Environment 1.

Table 2. The results compared for Environment 1.

Environment 1 SARSA Q-Learning
path length 62 steps 42 steps

exploration time 32 min 15 min

In the second experiment, the obstacles in the grid world have been changed. The
central part is blocked by new obstacles and the path becomes narrow just before the tar-
get point. The path of the SARSA algorithm is shown in Figure 28a, and the path of the Q-
learning algorithm is shown in Figure 28b. The path of the Q-learning algorithm is still
better than that of the SARSA algorithm.

(a) (b)

Figure 28. The experiment in Environment 2: (a) SARSA algorithm, (b) Q-learning algorithm.

Figure 27. The Q-table for Q-learning and SARSA in Environment 1.

Actuators 2023, 12, x FOR PEER REVIEW 21 of 33

Figure 27. The Q-table for Q-learning and SARSA in Environment 1.

Table 2. The results compared for Environment 1.

Environment 1 SARSA Q-Learning
path length 62 steps 42 steps

exploration time 32 min 15 min

In the second experiment, the obstacles in the grid world have been changed. The
central part is blocked by new obstacles and the path becomes narrow just before the tar-
get point. The path of the SARSA algorithm is shown in Figure 28a, and the path of the Q-
learning algorithm is shown in Figure 28b. The path of the Q-learning algorithm is still
better than that of the SARSA algorithm.

(a) (b)

Figure 28. The experiment in Environment 2: (a) SARSA algorithm, (b) Q-learning algorithm. Figure 28. The experiment in Environment 2: (a) SARSA algorithm, (b) Q-learning algorithm.

More obstacles are in place in Environment 2; therefore, the task of finding the best
path becomes more difficult. In terms of rewards, the Q-learning algorithm still maintains
the maximum benefit for exploration, and the difference from the SARSA algorithm can be
seen more clearly. Both algorithms took a lot of time to complete the exploration, but the
results of the Q-learning algorithm still converged at the end of the simulation. The training
results of Q-learning and SARSA are shown in Figure 29. The same reason applies as in the
previous environment result; the reward points after the iteration have accumulated, and
the sum of the highest score and the lowest score is the score for each iteration. Figure 30
shows the Q-table after training in Environment 2. The path length and exploration time
are shown in Table 3.

Actuators 2023, 12, 57 21 of 32

Actuators 2023, 12, x FOR PEER REVIEW 22 of 33

More obstacles are in place in Environment 2; therefore, the task of finding the best
path becomes more difficult. In terms of rewards, the Q-learning algorithm still maintains
the maximum benefit for exploration, and the difference from the SARSA algorithm can
be seen more clearly. Both algorithms took a lot of time to complete the exploration, but
the results of the Q-learning algorithm still converged at the end of the simulation. The
training results of Q-learning and SARSA are shown in Figure 29. The same reason applies
as in the previous environment result; the reward points after the iteration have
accumulated, and the sum of the highest score and the lowest score is the score for each
iteration. Figure 30 shows the Q-table after training in Environment 2. The path length
and exploration time are shown in Table 3.

(a) (b)

Figure 29. Training results of Q-learning and SARSA in Environment 2.

Figure 30. The Q-table of Q-learning and SARSA in Environment 2.

Figure 29. Training results of Q-learning and SARSA in Environment 2.

Actuators 2023, 12, x FOR PEER REVIEW 22 of 33

More obstacles are in place in Environment 2; therefore, the task of finding the best
path becomes more difficult. In terms of rewards, the Q-learning algorithm still maintains
the maximum benefit for exploration, and the difference from the SARSA algorithm can
be seen more clearly. Both algorithms took a lot of time to complete the exploration, but
the results of the Q-learning algorithm still converged at the end of the simulation. The
training results of Q-learning and SARSA are shown in Figure 29. The same reason applies
as in the previous environment result; the reward points after the iteration have
accumulated, and the sum of the highest score and the lowest score is the score for each
iteration. Figure 30 shows the Q-table after training in Environment 2. The path length
and exploration time are shown in Table 3.

(a) (b)

Figure 29. Training results of Q-learning and SARSA in Environment 2.

Figure 30. The Q-table of Q-learning and SARSA in Environment 2. Figure 30. The Q-table of Q-learning and SARSA in Environment 2.

Table 3. The results compared for Environment 2.

Environment 2 SARSA Q-Learning

path length 140 steps 46 steps

exploration time 45 min 25 min

In Experiment 1, the path points explored by the Q-learning algorithm are converted
into real-world latitude and longitude coordinates, according to a given scale. In Figure 31,
the yellow line represents the planned path, and the purple line represents the actual
trajectory of the hexacopter. In the actual environment, we use a square canvas to represent
the position of the no-fly zone. The hexacopter bypasses the no-navigation zone, according
to the converted waypoint coordinates, and reaches the target point on the other side. The
waypoints are the green points in the right-hand figure of Figure 31. The enlarged working

Actuators 2023, 12, 57 22 of 32

area is shown in the left-hand figure of Figure 31. After reaching the destination, the drone
will return to the take-off point.

Actuators 2023, 12, x FOR PEER REVIEW 23 of 33

Table 3. The results compared for Environment 2.

Environment 2 SARSA Q-Learning
path length 140 steps 46 steps

exploration time 45 min 25 min

In Experiment 1, the path points explored by the Q-learning algorithm are converted
into real-world latitude and longitude coordinates, according to a given scale. In Figure 31,
the yellow line represents the planned path, and the purple line represents the actual tra-
jectory of the hexacopter. In the actual environment, we use a square canvas to represent
the position of the no-fly zone. The hexacopter bypasses the no-navigation zone, accord-
ing to the converted waypoint coordinates, and reaches the target point on the other side.
The waypoints are the green points in the right-hand figure of Figure 31. The enlarged
working area is shown in the left-hand figure of Figure 31. After reaching the destination,
the drone will return to the take-off point.

Figure 31. The Q-learning path on the map for Experiment 1.

In Experiment 2, the no-fly zone was increased into two areas, shown as the red square
and rectangle in Figure 32. The enlarged working area is shown in the left-hand figure of Fig-
ure 32. The planned path is the yellow line, which is indicated in the left-hand figure of Figure
32. The UAV follows the converted latitude and longitude coordinates, which are the green
points marked in the right-hand figure of Figure 32 for the path of flight.

Figure 32. The Q-learning path on the map in Experiment 2.

Figure 31. The Q-learning path on the map for Experiment 1.

In Experiment 2, the no-fly zone was increased into two areas, shown as the red square
and rectangle in Figure 32. The enlarged working area is shown in the left-hand figure of
Figure 32. The planned path is the yellow line, which is indicated in the left-hand figure of
Figure 32. The UAV follows the converted latitude and longitude coordinates, which are
the green points marked in the right-hand figure of Figure 32 for the path of flight.

Actuators 2023, 12, x FOR PEER REVIEW 23 of 33

Table 3. The results compared for Environment 2.

Environment 2 SARSA Q-Learning
path length 140 steps 46 steps

exploration time 45 min 25 min

In Experiment 1, the path points explored by the Q-learning algorithm are converted
into real-world latitude and longitude coordinates, according to a given scale. In Figure 31,
the yellow line represents the planned path, and the purple line represents the actual tra-
jectory of the hexacopter. In the actual environment, we use a square canvas to represent
the position of the no-fly zone. The hexacopter bypasses the no-navigation zone, accord-
ing to the converted waypoint coordinates, and reaches the target point on the other side.
The waypoints are the green points in the right-hand figure of Figure 31. The enlarged
working area is shown in the left-hand figure of Figure 31. After reaching the destination,
the drone will return to the take-off point.

Figure 31. The Q-learning path on the map for Experiment 1.

In Experiment 2, the no-fly zone was increased into two areas, shown as the red square
and rectangle in Figure 32. The enlarged working area is shown in the left-hand figure of Fig-
ure 32. The planned path is the yellow line, which is indicated in the left-hand figure of Figure
32. The UAV follows the converted latitude and longitude coordinates, which are the green
points marked in the right-hand figure of Figure 32 for the path of flight.

Figure 32. The Q-learning path on the map in Experiment 2. Figure 32. The Q-learning path on the map in Experiment 2.

5.2. Obstacle Avoidance

The hexacopter’s front obstacle avoidance method is demonstrated using the Microsoft
AirSim simulation software environment. In this simulation environment, many trees are
placed as imaginary as sails on the sea, and there are undulations given to the terrain to
simulate the waves on the sea. The drone continues to fly around in the virtual environment
until it collides with an object.

In this simulation flight test, the input of the photo is 320 × 180 in size; the parameters
are shown in Table 4. The number of training iterations was set to 140,000. We set the batch
size to 32. If the batch size is increased, the convergence speed can be accelerated, but the
hardware memory will not be able to load the data. The discount factor, γ, was set to 0.95,
and the learning rate, α, was set to 0.000006. The smaller the learning rate is, the slower the
convergence speed is.

Actuators 2023, 12, 57 23 of 32

Table 4. Training parameters.

Iterations Batch Size Discount Factor γ Learning Rate α

140,000 32 0.95 0.000006

In the training process, if the number of training times exceeds 150,000, the loss
function will start to diverge, and the training effect will worsen. The loss function graph is
shown in Figure 33.

Actuators 2023, 12, x FOR PEER REVIEW 24 of 33

5.2. Obstacle Avoidance
The hexacopter’s front obstacle avoidance method is demonstrated using the Mi-

crosoft AirSim simulation software environment. In this simulation environment, many
trees are placed as imaginary as sails on the sea, and there are undulations given to the
terrain to simulate the waves on the sea. The drone continues to fly around in the virtual
environment until it collides with an object.

In this simulation flight test, the input of the photo is 320 × 180 in size; the parameters
are shown in Table 4. The number of training iterations was set to 140,000. We set the
batch size to 32. If the batch size is increased, the convergence speed can be accelerated,
but the hardware memory will not be able to load the data. The discount factor, γ, was set
to 0.95, and the learning rate, α, was set to 0.000006. The smaller the learning rate is, the
slower the convergence speed is.

Table 4. Training parameters.

Iterations Batch Size Discount Factor 𝜸 Learning Rate 𝜶
140,000 32 0.95 0.000006

In the training process, if the number of training times exceeds 150,000, the loss func-
tion will start to diverge, and the training effect will worsen. The loss function graph is
shown in Figure 33.

Figure 33. The graph showing the loss function.

After many iterations, the Q-value gradually increases to achieve the overall maxi-
mum benefit, as shown in Figure 34.

Figure 34. The maximum Q-value.

Figure 33. The graph showing the loss function.

After many iterations, the Q-value gradually increases to achieve the overall maximum
benefit, as shown in Figure 34.

Actuators 2023, 12, x FOR PEER REVIEW 24 of 33

5.2. Obstacle Avoidance
The hexacopter’s front obstacle avoidance method is demonstrated using the Mi-

crosoft AirSim simulation software environment. In this simulation environment, many
trees are placed as imaginary as sails on the sea, and there are undulations given to the
terrain to simulate the waves on the sea. The drone continues to fly around in the virtual
environment until it collides with an object.

In this simulation flight test, the input of the photo is 320 × 180 in size; the parameters
are shown in Table 4. The number of training iterations was set to 140,000. We set the
batch size to 32. If the batch size is increased, the convergence speed can be accelerated,
but the hardware memory will not be able to load the data. The discount factor, γ, was set
to 0.95, and the learning rate, α, was set to 0.000006. The smaller the learning rate is, the
slower the convergence speed is.

Table 4. Training parameters.

Iterations Batch Size Discount Factor 𝜸 Learning Rate 𝜶
140,000 32 0.95 0.000006

In the training process, if the number of training times exceeds 150,000, the loss func-
tion will start to diverge, and the training effect will worsen. The loss function graph is
shown in Figure 33.

Figure 33. The graph showing the loss function.

After many iterations, the Q-value gradually increases to achieve the overall maxi-
mum benefit, as shown in Figure 34.

Figure 34. The maximum Q-value. Figure 34. The maximum Q-value.

In the previous section, we mentioned a table with a 5 × 5 action space. The task of
combining the action space with the input image is shown in Figure 35. There are mostly
empty blocks placed in front of the drone; therefore, the rewards are continuously set
to achieve the maximum score of +1. In terms of rewards, the scores are based on the
proportion of colors in the pixels in the processed depth image, as shown in Figure 36.

Actuators 2023, 12, 57 24 of 32

Actuators 2023, 12, x FOR PEER REVIEW 25 of 33

In the previous section, we mentioned a table with a 5 × 5 action space. The task of
combining the action space with the input image is shown in Figure 35. There are mostly
empty blocks placed in front of the drone; therefore, the rewards are continuously set to
achieve the maximum score of +1. In terms of rewards, the scores are based on the pro-
portion of colors in the pixels in the processed depth image, as shown in Figure 36.

(a)

(b)

Figure 35. The first-person views of the drone and the rewards, next to: (a) the original RGB image,
(b) the same image, divided into a 5 × 5 action space.

(a)

(b)

Figure 36. The depth image, divided into a 5 × 5 action space. (a) The original depth image. (b)
The processed depth image.

Figure 35. The first-person views of the drone and the rewards, next to: (a) the original RGB image,
(b) the same image, divided into a 5 × 5 action space.

Actuators 2023, 12, x FOR PEER REVIEW 25 of 33

In the previous section, we mentioned a table with a 5 × 5 action space. The task of
combining the action space with the input image is shown in Figure 35. There are mostly
empty blocks placed in front of the drone; therefore, the rewards are continuously set to
achieve the maximum score of +1. In terms of rewards, the scores are based on the pro-
portion of colors in the pixels in the processed depth image, as shown in Figure 36.

(a)

(b)

Figure 35. The first-person views of the drone and the rewards, next to: (a) the original RGB image,
(b) the same image, divided into a 5 × 5 action space.

(a)

(b)

Figure 36. The depth image, divided into a 5 × 5 action space. (a) The original depth image. (b)
The processed depth image.

Figure 36. The depth image, divided into a 5 × 5 action space. (a) The original depth image. (b) The
processed depth image.

Figure 37 shows a scene full of trees and undulating terrain. Figure 38a is the first-
person-view (FPV) depth image of the drone in Figure 37, while Figure 38b is the processed
depth image and the yellow part represents proximity, so that the distances can be displayed
more clearly.

Actuators 2023, 12, 57 25 of 32

Actuators 2023, 12, x FOR PEER REVIEW 26 of 33

Figure 37 shows a scene full of trees and undulating terrain. Figure 38a is the first-
person-view (FPV) depth image of the drone in Figure 37, while Figure 38b is the pro-
cessed depth image and the yellow part represents proximity, so that the distances can be
displayed more clearly.

Figure 37. A scene full of trees and undulating terrain.

Figure 38. The depth image from Figure 37, (a) is the first-person-view depth image of the drone
in Figure 37, (b) is the processed depth image.

At this point, there is a tree directly in front of the drone. The drone sees the tree, as
shown in Figure 39a, from a distance, and then starts to select the left-hand direction,
based on the Q-table that has been trained. Figure 39b shows that the drone changes
direction and the tree is unobstructed in front of the drone. Figure 39c shows the tree that
was originally blocking the front of the drone but is now on the right-hand side of the
drone. Finally, the UAV completely bypassed the obstacle, as shown in Figure 39d.

Figure 37. A scene full of trees and undulating terrain.

Actuators 2023, 12, x FOR PEER REVIEW 26 of 33

Figure 37 shows a scene full of trees and undulating terrain. Figure 38a is the first-
person-view (FPV) depth image of the drone in Figure 37, while Figure 38b is the pro-
cessed depth image and the yellow part represents proximity, so that the distances can be
displayed more clearly.

Figure 37. A scene full of trees and undulating terrain.

Figure 38. The depth image from Figure 37, (a) is the first-person-view depth image of the drone
in Figure 37, (b) is the processed depth image.

At this point, there is a tree directly in front of the drone. The drone sees the tree, as
shown in Figure 39a, from a distance, and then starts to select the left-hand direction,
based on the Q-table that has been trained. Figure 39b shows that the drone changes
direction and the tree is unobstructed in front of the drone. Figure 39c shows the tree that
was originally blocking the front of the drone but is now on the right-hand side of the
drone. Finally, the UAV completely bypassed the obstacle, as shown in Figure 39d.

Figure 38. The depth image from Figure 37, (a) is the first-person-view depth image of the drone in
Figure 37, (b) is the processed depth image.

At this point, there is a tree directly in front of the drone. The drone sees the tree, as
shown in Figure 39a, from a distance, and then starts to select the left-hand direction, based
on the Q-table that has been trained. Figure 39b shows that the drone changes direction and
the tree is unobstructed in front of the drone. Figure 39c shows the tree that was originally
blocking the front of the drone but is now on the right-hand side of the drone. Finally, the
UAV completely bypassed the obstacle, as shown in Figure 39d.

In the second test, there are two dense trees positioned in front of the drone. It can be
seen from the depth map that the two trees can be passed between, as shown in Figure 40a.
As the drone moves closer to the trees, it can be seen that the gap in the middle is wide
enough to pass through, as shown in Figure 40b. During the crossing, the drone does not
fly in a straight line. As shown in Figure 40c, the direction of the UAV is slightly offset, but
afterward, the path has been adjusted to the open area. Finally, the UAV has successfully
passed through the obstacles, as shown in Figure 40d.

The experiments show that the improved Q-learning algorithm, with the use of new
reward and Q-value-updating rules, shows better performance in path planning than
the classical reinforcement learning algorithm, SARSA. When we compare the improved
Q-learning algorithm with the SARSA algorithm, the improved Q-learning algorithm can
reduce computation time by 50% and shorten the path length by 30%. In terms of obstacle
avoidance, the proposed deep-learning neural network with deep Q-learning can provide
discrete action selections to enable UAVs to avoid obstacles. Real-time visual collision
avoidance can be performed successfully. In addition, the proposed ultrasound obstacle
avoidance method can achieve a distance error of less than 1.5% and a computing time of
less than 0.2 s.

Actuators 2023, 12, 57 26 of 32Actuators 2023, 12, x FOR PEER REVIEW 27 of 33

(a)

(b)

Figure 39. Cont.

Actuators 2023, 12, 57 27 of 32Actuators 2023, 12, x FOR PEER REVIEW 28 of 33

(c)

(d)

Figure 39. The experiment for testing obstacle avoidance in the simulation environment (part 1),
(a) is the starting point, (b) shows the drone changes direction, (c) shows the tree is now on the
right-hand side of the drone, (d) shows the UAV completely bypassed the obstacle.

In the second test, there are two dense trees positioned in front of the drone. It can be
seen from the depth map that the two trees can be passed between, as shown in Figure 40a.
As the drone moves closer to the trees, it can be seen that the gap in the middle is wide

Figure 39. The experiment for testing obstacle avoidance in the simulation environment (part 1), (a) is
the starting point, (b) shows the drone changes direction, (c) shows the tree is now on the right-hand
side of the drone, (d) shows the UAV completely bypassed the obstacle.

Actuators 2023, 12, 57 28 of 32

Actuators 2023, 12, x FOR PEER REVIEW 29 of 33

enough to pass through, as shown in Figure 40b. During the crossing, the drone does not
fly in a straight line. As shown in Figure 40c, the direction of the UAV is slightly offset,
but afterward, the path has been adjusted to the open area. Finally, the UAV has success-
fully passed through the obstacles, as shown in Figure 40d.

(a)

(b)

Figure 40. Cont.

Actuators 2023, 12, 57 29 of 32Actuators 2023, 12, x FOR PEER REVIEW 30 of 33

(c)

(d)

Figure 40. The experiment for testing obstacle avoidance in the simulation environment, part 2, (a)
is the starting point, (b) shows the drone moves closer to the trees, (c) shows the drone does not fly
in a straight line, (d) shows the UAV has successfully passed through the obstacles.

The experiments show that the improved Q-learning algorithm, with the use of new
reward and Q-value-updating rules, shows better performance in path planning than the
classical reinforcement learning algorithm, SARSA. When we compare the improved Q-
learning algorithm with the SARSA algorithm, the improved Q-learning algorithm can
reduce computation time by 50% and shorten the path length by 30%. In terms of obstacle

Figure 40. The experiment for testing obstacle avoidance in the simulation environment, part 2, (a) is
the starting point, (b) shows the drone moves closer to the trees, (c) shows the drone does not fly in a
straight line, (d) shows the UAV has successfully passed through the obstacles.

Actuators 2023, 12, 57 30 of 32

6. Conclusions

Research studies into UAVs have been booming in the past few years, and the methods
of reinforcement learning also present a relatively challenging research field. This paper
mainly focuses on the flight processes of UAVs, with a research background of dropping
sensors from land to the net-cages used in sea-farming. In this study, UAV path planning
using Q-learning and SARSA are placed under new reward and punishment rules, and
the Q value updating rules are changed. The results for these two reinforcement learning
algorithms are compared. In the real world, the coordinates are converted into latitude
and longitude positions and the actual flight route. Using reinforcement learning methods
to train UAVs in the real world will be expensive in terms of UAV cost consumption.
Therefore, we chose to conduct our research in a virtual environment. The suggested
obstacle avoidance method uses a deep Q-learning network (DQN) with an appropriate
learning rate, batch size, and iteration, subsequently observing the obstacle-dodging results
after training. Depth images from the UAV comprise the inputs of the DQN. The DQN
provides discrete action selections for the UAV to avoid obstacles. Real-time visual collision
avoidance can thus be performed. For dynamic obstacles to the side of the drone (out
of sight), ultrasonic sensors are used; then, the sensing signals are filtered to maintain a
stable sensing distance and to adjust UAV displacement after detecting the obstacle. Since
drones are susceptible to airflow changes in the external environment and this can affect
the fineness of flight, we used a simple control method that maintained a safe distance from
objects to ensure that the UAV stayed away from the obstacles.

Path planning and obstacle avoidance are very important and basic functions for UAVs.
The use of the Q-learning algorithm, a reinforcement learning method, can solve many of
the complex problems that traditional algorithms cannot solve; therefore, there is plenty
of room for development in the field of artificial intelligence. In this study, a Q-learning
algorithm is proposed for application to path planning in an unknown environment. In
terms of path planning, the reward design and action selection in the SARSA algorithm and
Q-learning algorithm are similar to the methods of real-world learning. In terms of updating
the Q-table, it is obvious that the Q-learning algorithm offers better benefits because the
benefits of the overall path are considered fully. When we compared the modified Q-
learning algorithm with the SARSA algorithm, the modified Q-learning algorithm showed
better performance by reducing computation time by 50% and path length by 30%. In terms
of obstacle avoidance, the application of UAV dodging is presented. Deep learning, when
combined with reinforcement learning, can solve many complex problems, and obstacle
avoidance is indeed a complex problem. The design method of experience replay allows
the drone to access past states and actions that are similar to deep learning methods, which
generally provide a label for learning. The side of the drone used for ultrasonic sensing
obstacle avoidance will also effectively keep the drone at a safe distance from approaching
objects. The proposed obstacle avoidance method can achieve a distance error of less than
1.5% and a computing time of less than 0.2 sec. For path planning and obstacle avoidance in
more complex environments, reinforcement learning is expected to show further amazing
results; there is no standard answer to this method, therefore the results will be different
each time, and this is expected to enable even more amazing results. The main limitation
of this work is the obstacle avoidance distance. The proposed system utilizes ultrasonic
sensors to measure the distance between the UAV and the obstacles, but the measuring
distance is short. In the case of high-speed moving objects, the UAV does not have enough
time for computing a path and avoiding dynamic obstacles. In the future, a laser detector
with a long measurement range will be needed to replace the ultrasonic sensors.

Author Contributions: Conceptualization, G.-T.T. and J.-G.J.; methodology, G.-T.T. and J.-G.J.; soft-
ware, G.-T.T.; validation, G.-T.T. and J.-G.J.; formal analysis, G.-T.T. and J.-G.J.; investigation, G.-T.T.
and J.-G.J.; resources, G.-T.T. and J.-G.J.; data curation, G.-T.T.; writing—original draft preparation,
G.-T.T.; writing—review and editing, J.-G.J.; visualization, G.-T.T. and J.-G.J.; supervision, J.-G.J.;
project administration, J.-G.J.; funding acquisition, J.-G.J. All authors have read and agreed to the
published version of the manuscript.

Actuators 2023, 12, 57 31 of 32

Funding: This research was funded by Ministry of Science and Technology (Taiwan), grant number
MOST 110-2221-E-019-075-MY2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
2. Stentz, A. Optimal and efficient path planning for unknown and dynamic environments. Int. J. Robot. Autom. Syst. 1995, 10,

89–100.
3. LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
4. Sen, Y.; Zhongsheng, W. Quad-Rotor UAV Control Method Based on PID Control Law. In Proceedings of the 2017 International

Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 23–26 September 2017; pp. 418–421.
[CrossRef]

5. Kamel, B.; Yasmina, B.; Laredj, B.; Benaoumeur, I.; Zoubir, A. Dynamic Modeling, Simulation and PID Controller of Unmanned
Aerial Vehicle UAV. In Proceedings of the 2017 Seventh International Conference on Innovative Computing Technology (INTECH),
Porto, Portugal, 12–13 July 2017; pp. 64–69. [CrossRef]

6. Lee, S.; Shim, T.; Kim, S.; Park, J.; Hong, K.; Bang, H. Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial
Vehicle using Reinforcement Learning. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 108–114. [CrossRef]

7. Sugimoto, T.; Gouko, M. Acquisition of Hovering by Actual UAV Using Reinforcement Learning. In Proceedings of the 2016 3rd
International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016; pp. 148–152.
[CrossRef]

8. Lampersberger, T.; Feger, R.; Haderer, A.; Egger, C.; Friedl, M.; Stelzer, A. A 24-GHz Radar with 3D-Printed and Metallized
Lightweight Antennas for UAV Applications. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid,
Spain, 23–27 September 2018; pp. 1413–1416. [CrossRef]

9. Udvardy, P.; Jancsó, T.; Beszédes, B. 3D Modelling by UAV Survey in a Church. In 2019 New Trends in Aviation Development
(NTAD); IEEE: Piscataway, NJ, USA, 2019; pp. 189–192. [CrossRef]

10. Ma, Z.; Ai, B.; He, R.; Wang, G.; Niu, Y.; Zhong, Z. A Wideband Non-Stationary Air-to-Air Channel Model for UAV Communica-
tions. IEEE Trans. Veh. Technol. 2020, 69, 1214–1226. [CrossRef]

11. Feng, K.; Li, W.; Ge, S.; Pan, F. Packages Delivery Based on Marker Detection for UAVs. In Proceedings of the 2020 Chinese
Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 2094–2099. [CrossRef]

12. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489.
[CrossRef] [PubMed]

13. Yan, C.; Xiang, X. A Path Planning Algorithm for UAV Based on Improved Q-Learning. In Proceedings of the 2018 2nd
International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 23–25 June 2018; pp. 1–5. [CrossRef]

14. Zhang, T.; Huo, X.; Chen, S.; Yang, B.; Zhang, G. Hybrid Path Planning of a Quadrotor UAV Based on Q-Learning Algorithm. In
Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 5415–5419. [CrossRef]

15. Li, R.; Fu, L.; Wang, L.; Hu, X. Improved Q-learning Based Route Planning Method for UAVs in Unknown Environment. In
Proceedings of the 2019 IEEE 15th International Conference on Control and Automation (ICCA), Edinburgh, UK, 16–19 July 2019;
pp. 118–123. [CrossRef]

16. Hou, X.; Liu, F.; Wang, R.; Yu, Y. A UAV Dynamic Path Planning Algorithm. In Proceedings of the 2020 35th Youth Academic
Annual Conference of Chinese Association of Automation (YAC), Zhanjiang, China, 16–18 October 2020; pp. 127–131. [CrossRef]

17. Anwar, A.; Raychowdhury, A. Autonomous Navigation via Deep Reinforcement Learning for Resource Constraint Edge Nodes
Using Transfer Learning. IEEE Access 2020, 8, 26549–26560. [CrossRef]

18. Singla, A.; Padakandla, S.; Bhatnagar, S. Memory-Based Deep Reinforcement Learning for Obstacle Avoidance in UAV With
Limited Environment Knowledge. IEEE Trans. Intell. Transp. Syst. 2021, 22, 107–118. [CrossRef]

19. Duc, N.; Hai, Q.; Van, D.; Trong, T.; Trong, T. An Approach for UAV Indoor Obstacle Avoidance Based on AI Technique with
Ensemble of ResNet8 and Res-DQN. In Proceedings of the 2019 6th NAFOSTED Conference on Information and Computer
Science (NICS); 2019; pp. 330–335. [CrossRef]

20. Çetin, E.; Barrado, C.; Muñoz, G.; Macias, M.; Pastor, E. Drone Navigation and Avoidance of Obstacles Through Deep Reinforce-
ment Learning. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA,
8–12 September 2019; pp. 1–7. [CrossRef]

http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1109/ICCNEA.2017.24
http://doi.org/10.1109/INTECH.2017.8102445
http://doi.org/10.1109/ICUAS.2018.8453315
http://doi.org/10.1109/ICISCE.2016.42
http://doi.org/10.23919/EuMC.2018.8541615
http://doi.org/10.1109/NTAD.2019.8875580
http://doi.org/10.1109/TVT.2019.2961178
http://doi.org/10.1109/CCDC49329.2020.9164677
http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://doi.org/10.1109/ICRAS.2018.8443226
http://doi.org/10.23919/ChiCC.2018.8482604
http://doi.org/10.1109/ICCA.2019.8899478
http://doi.org/10.1109/YAC51587.2020.9337581
http://doi.org/10.1109/ACCESS.2020.2971172
http://doi.org/10.1109/TITS.2019.2954952
http://doi.org/10.1109/NICS48868.2019.9023811
http://doi.org/10.1109/DASC43569.2019.9081749

Actuators 2023, 12, 57 32 of 32

21. Wu, T.; Tseng, S.; Lai, C.; Ho, C.; Lai, Y. Navigating Assistance System for Quadcopter with Deep Reinforcement Learning.
In Proceedings of the 2018 1st International Cognitive Cities Conference (IC3), Okinawa, Japan, 7–9 August 2018; pp. 16–19.
[CrossRef]

22. Tu, G.; Juang, J. Path Planning and Obstacle Avoidance Based on Reinforcement Learning for UAV Application. In Proceedings of
the 2021 International Conference on System Science and Engineering, Ho Chi Minh City, Vietnam, 26–28 August 2021.

23. Zheng, Y.; Wang, L.; Xi, P. Improved Ant Colony Algorithm for Multi-Agent Path Planning in Dynamic Environment. In
Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17
August 2018; pp. 732–737. [CrossRef]

24. Zhang, D.; Xian, Y.; Li, J.; Lei, G.; Chang, Y. UAV Path Planning Based on Chaos Ant Colony Algorithm. In Proceedings of the
2015 International Conference on Computer Science and Mechanical Automation (CSMA), Washington, DC, USA, 23–25 October
2015; pp. 81–85. [CrossRef]

25. Yujie, L.; Yu, P.; Yixin, S.; Huajun, Z.; Danhong, Z.; Yong, S. Ship Path Planning Based on Improved Particle Swarm Optimization.
In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 20 November–2 December 2018; pp. 226–230.
[CrossRef]

26. Markov, A.A. Extension of the Limit Theorems of Probability Theory to a Sum of Variables Connected in a Chain; Reprinted in Appendix
B of: R. Howard. Dynamic Probabilistic Systems, Volume 1: Markov Chains; John Wiley and Sons: Hoboken, NJ, USA, 1971.

27. Sammut, C.; Webb, G.I. (Eds.) Bellman Equation. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011. [CrossRef]
28. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. 16 Greedy Algorithms. In Introduction to Algorithms; MIT Press: Cambridge,

MA, USA, 2001; p. 370. ISBN 978-0-262-03293-3.
29. Tokic, M. Adaptive ε-greedy Exploration in Reinforcement Learning Based on Value Differences. In KI 2010: Advances in Artificial

Intelligence; Lecture Notes in Computer Science, 6359; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 203–210. [CrossRef]
30. Watkins, C.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
31. Xu, D.; Fang, Y.; Zhang, Z.; Meng, Y. Path Planning Method Combining Depth Learning and Sarsa Algorithm. In Proceedings of

the 2017 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 9–10 December
2017; pp. 77–82. [CrossRef]

32. Zhou, B.; Wang, W.; Wang, Z.; Ding, B. Neural Q Learning Algorithm based UAV Obstacle Avoidance. In Proceedings of the 2018
IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–6. [CrossRef]

33. Xiaodong, Y.; Rui, L.; Yingjing, S.; Xiang, C. Obstacle Avoidance for Outdoor Flight of a Quadrotor Based on Computer Vision.
In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp.
3841–3846. [CrossRef]

34. Hu, J.; Niu, Y.; Wang, Z. Obstacle Avoidance Methods for Rotor UAVs Using RealSense Camera. In Proceedings of the 2017
Chinese Automation Congress (CAC); 2017; pp. 7151–7155. [CrossRef]

35. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

36. Airsim Open Source Platform at Github. Available online: https://github.com/Microsoft/AirSim (accessed on 23 July 2020).
37. Huang, T.; Juang, J. Real-time Path Planning and Fuzzy Based Obstacle Avoidance for UAV Application. In Proceedings of the

2020 International Conference on System Science and Engineering (ICSSE), Kagawa, Japan, 31 August–3 September 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/IC3.2018.00013
http://doi.org/10.1109/SDPC.2018.8664885
http://doi.org/10.1109/CSMA.2015.23
http://doi.org/10.1109/CAC.2018.8623037
http://doi.org/10.1007/978-0-387-30164-8_71
http://doi.org/10.1007/978-3-642-16111-7_23
http://doi.org/10.1007/BF00992698
http://doi.org/10.1109/ISCID.2017.145
http://doi.org/10.1109/GNCC42960.2018.9018854
http://doi.org/10.1109/CCDC.2017.7979173
http://doi.org/10.1109/CAC.2017.8244068
https://github.com/Microsoft/AirSim

	Introduction
	System Description
	Path Planning
	Markov Decision Process (MDP)
	Bellman Equation
	Policy
	Q-Learning Algorithm
	Reward
	State–Action–Reward–State–Action (SARSA) Algorithm
	SARSA Algorithm, Compared with the Q-Learning Algorithm

	Obstacle Avoidance
	Deep Q-Learning Algorithm
	Microsoft AirSim Environment
	Obstacle Avoidance System in the AirSim Environment
	Ultrasonic Sensor

	Experimental Results
	Path Planning
	Obstacle Avoidance

	Conclusions
	References

