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Abstract: In this study, an adaptive dynamic programming (ADP) control strategy based on the strain
measurement of a fiber Bragg grating (FGB) sensor array is proposed for the vibration suppression of
a complicated flexible-sloshing coupled system, which usually exists in aerospace engineering, such
as launch vehicles with a large amount of liquid propellant as well as a flexible beam structure. To
simplify the flexible-sloshing coupled dynamics model, the equivalent spring-mass-damper (SMD)
model of liquid sloshing is employed, and a finite-element method (FEM) dynamic model for the
beam structure coupled with the liquid sloshing is mathematically established. Then, a strain-based
vibration dynamic model is derived by employing a transformation matrix based on the relationship
between displacement and strain of the beam structure. To facilitate the design of a strain-based
control, a tracking differentiator is designed to provide the strains’ derivative signals as partial states’
estimations. Feeding the system with the strain measurements and their derivatives’ estimations,
an ADP controller with an action-dependent heuristic dynamic programming structure is proposed
to suppress the vibration of the flexible-sloshing coupled system, and the corresponding Lyapunov
stability of the closed-loop system is theoretically guaranteed. Numerical results show the proposed
method can effectively suppress coupled vibration depending on limited strain measurements
irrespective of external disturbances.

Keywords: fiber Bragg grating (FBG) sensors; finite element method (FEM); Euler–Bernoulli beam;
spring-mass-damper model; adaptive dynamic programming (ADP); tracking differentiator

1. Introduction

Flexible-sloshing coupling problems are crucial in many fields [1], such as aerospace,
architecture, and ocean engineering. Particularly in aerospace fields [2], modern spacecraft
typically carry a large amount of liquid fuel and are also equipped with large flexible
structures such as solar panels, communication antennae, and space manipulators. During
attitude and orbit motion, the spacecraft is easily disturbed by liquid sloshing and flexible
appendage vibrations. For flexible-sloshing coupling systems, elastic vibration can trigger
liquid sloshing, resulting in the production of sloshing forces. Additionally, the coupling
of sloshing and elastic vibration exerts a profound influence on the performance of the
systems [3]. Therefore, the coupling dynamic and control of elastic vibration and liquid
sloshing have received significant attention. In response to this issue, researchers continue
to study the influence of structural elasticity and liquid sloshing on the control system.
Specifically, they have (1) established equivalent beam models for elastic vibration [4];
(2) established equivalent mechanical models for liquid sloshing, including the spring-
mass-damper model [5,6], single pendulum model [7], etc.; (3) modified equivalent models
through ground modal analysis [8] and experimentation [9].
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For elastic vibration, specific devices such as displacement sensors and accelerators
can be employed to obtain vibration motion parameters, while the accelerators and gyro-
scopes installed on structures primarily serve to provide motion parameters for control
systems. In these systems, error signals resulting from vibration-induced deformations
can influence the accuracy of control performance. In contrast, fiber Bragg grating (FBG)
sensors exhibit advantages, including lighter weight, stronger resistance to electromagnetic
interference, easier integration, and higher accuracy. Therefore, they can be more conve-
niently integrated with control systems [10–12]. In addition, the exploration of sloshing
dynamics encompasses theoretical analysis, numerical simulation, experimental methods,
and theoretical and numerical synthesis methods. In the 1960s, NASA provided an ana-
lytical solution for the sloshing dynamics of several fixed-shape tanks [13]. Meanwhile,
the advancement of computational fluid dynamics (CFD) technology has enabled more
precise modeling of sloshing dynamics through FEM, the boundary element method, and
finite difference method. Nevertheless, due to the constraints of onboard computer speed,
memory, and the intricate nature of sloshing dynamics, a simple and efficient method is still
required to replace complex calculation tasks in practical applications. Therefore, equiva-
lent mechanical models are commonly employed in engineering to depict liquid sloshing
by capturing sloshing patterns inside the tank using the motion of a rigid body [13].

In engineering practice, some novel vibration control devices, such as the tuned mass
damper (TMD) [14] and negative stiffness mechanisms [15] (KDamper [16,17]), have been
widely used. In addition, in the field of control algorithms, the classical control theory has
been applied with great maturity. However, the classical controller can no longer satisfy
the demand for stability in flexible-sloshing coupling systems. In response to practical
needs [18,19] and theoretical challenges [20], several control methods have received great
attention, including positive position feedback (PPF) control [21,22], independent modal
space control (IMSC) [23,24], sliding mode control [25], boundary control [26,27], adaptive
control [28], and intelligent control [29–32]. Among them, the PPF method is used to select
the appropriate zeros and poles of the second-order filter to ensure the stability margin
of closed-loop systems. The PPF method was first proposed in [21], and a modified PPF
vibration active control method based on an adaptive controller was proposed in [22]. Vi-
bration active control based on PPF can be numerically simulated to prove the effectiveness
of this algorithm. The IMSC method involves discretizing the control object into various
modal features of different orders and controlling the discrete modes. Active vibration
control methods based on IMSC, as proposed in [23,24], can effectively suppress vibration.
In [25], a sliding mode controller that only uses boundary information is proposed for the
stabilization problem of an Euler–Bernoulli beam system. Boundary control is recognized
as a highly practical approach for vibration control of flexible structures. In [26], a novel
barrier Lyapunov function was employed to design a vibration boundary controller for an
Euler–Bernoulli beam with boundary output constraints. This approach successfully sup-
pressed beam vibrations without violating the constraints. Additionally, for the problem of
vibration attenuation of Euler–Bernoulli beam systems with imprecise system parameters,
external disturbances, asymmetric input saturation, and output constraint, the boundary
controllers in [27,28] were designed by constructing adaptive laws. Furthermore, intelligent
control has received significant attention due to its robust self-learning and self-adaptive
ability. Ref. [29] conducted a study on the delay feedback control of cantilever vibration
based on a genetic algorithm. Ref. [30] proposed a decomposed parallel fuzzy control with
the adaptive neuro-fuzzy concept. Additionally, [31,32] proposed active vibration control
algorithms based on reinforcement learning (RL). In particular, the adaptive dynamic pro-
gramming (ADP) method, which leverages a critic-action network structure based on RL,
has gained widespread recognition [33]. This approach boasts two key advantages: (1) ADP
operates as a data-driven learning control method, eliminating the need for mathematical
models; (2) the parameters of ADP can be adaptively updated over time when the system
is disturbed. Drawing from these advantages, the ADP method is considered in this paper
for vibration and sloshing suppression control.
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In summary, this paper explores the control of a beam attached to a tank. To construct
the flexible-sloshing coupling dynamic model, the vibration of the beam is analyzed using
an Euler–Bernoulli beam and FEM, while the liquid sloshing in the tank is equivalent to
a spring-mass-damper model. Drawing on the benefits of FBG sensors, a vibration and
sloshing suppression control algorithm based on FBG strain information is developed
in this paper. A strain-based vibration dynamic model is established by employing a
transformation matrix that relies on the relationship between displacement and strain.
Additionally, a tracking differentiator is designed to provide real-time first-order derivatives
of the strain. Finally, based on the strain-based vibration dynamic model, an ADP method
based on FBG strain information is proposed to suppress elastic vibration and sloshing.
The main innovations of this paper are as follows:

(1) Compared with complex dynamic models, the Euler–Bernoulli beam model and spring-
mass-damper equivalent model provide a simpler and more convenient way to construct
the flexible-sloshing coupling dynamic model. The development of a strain-based
vibration dynamic model facilitates the full utilization of FBG sensors’ information.

(2) Compared with control methods that require motion parameters, the control method
proposed in this paper can effectively suppress elastic vibration and sloshing even
when only partial strain information is applied. Furthermore, the utilization of FBG
strain information allows for direct measurement, eliminating the need for estimation
of vibration parameters. This controller’s advantages in practicality make it highly
suitable for engineering applications.

The rest of the paper is organized as follows. In Section 2, the flexible-sloshing coupling
dynamic model and the strain-based vibration dynamic equation are described. Section 3
presents the ADP controller based on FBG strain information and corresponding theoretical
analysis. Numerical simulations are provided in Section 4. Finally, Section 5 concludes
this paper.

2. Preliminaries and System Descriptions
2.1. Flexible-Sloshing Coupling Dynamic Model

As illustrated in Figure 1, to investigate the flexible-sloshing coupling dynamic model,
a combined structure consisting of a tank attached to a beam is considered. The vibration of
the beam stimulates the liquid sloshing within the tank, which in turn generates a sloshing
force that impacts the tank and alters the vibration of the beam.

Assumption 1. The flexible-sloshing coupling dynamic model is applicable to the case of small
amplitude vibration and sloshing. The beam is slender and uniform, i.e., the shear deformation is
not considered [34]. In addition, the spring-mass-damper model must satisfy the conditions that the
liquid in the tank is incompressible, non-viscous, and non-rotating [35].

According to Figure 1, the base coordinate system OBXBYBZB and the tank coordinate
system OSXSYSZS are established. The origins OB and OS are located at the end of the
beam and the center of the tank’s bottom, respectively. Both coordinate systems are right-
hand systems. Note that the base coordinate system is a global coordinate system, and
the tank coordinate system changes with the vibration of the beam. MSB is the rotation
transformation matrix from the tank coordinate system to the base coordinate system,
which is defined as

MSB =


cosθB

OS sinθB
OS 0

−sinθB
OS cosθB

OS 0

0 0 1

, (1)

where θB
OS is the rotation angle of the beam’s position relative to the origin of the tank

coordinate system in the base coordinate system, which varies with time.
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Figure 1. Flexible-sloshing coupling system including spring-mass-damper model and Euler–
Bernoulli cantilever beam’s FEM model.

Further, mb(x) is the mass of the beam; EIZB(x) is the bending stiffness with respect
to OBZB axis; w(x, t) is the transverse displacement of the beam related to time t and the
position on the beam x; L is the length of the beam; u is control input acts on the end of the
structure; d(x, t) represents the unknown disturbance force applied to the beam; fms(x, t)
denotes the sloshing force in the tank coordinate system. Note that d and fms are distributed
load and concentrated load, respectively.

Assumption 2. For the unknown disturbance d(t), we assume that there exists a constant d, such
that |d(t)| < d, ∀t ∈ [0, ∞). The time-varying d(t) has finite energy and, thus, is bound, i.e.,
d(t) ∈ L∞ [26].

Remark 1 [36]. When the force fd acting on the beam is distributed load, the unit force of fd is
provided as

f e
d =

fd
12

[
6l l2 6l − l2

]
,

and the unit force of concentrated load fc is

f e
c = fc[N1(x0), N2(x0), N3(x0), N4(x0)]

T ,

where Ni(x) is the Hermite shape function, and x0 is the coordinate of position where fc acts on the
beam. We define ξ = x0/l, and Ni(x0) is provided as

N1(x0) = 1− 3ξ2 + 2ξ3, N2(x0) =
(
ξ − 2ξ2 + ξ3)l

N3(x0) = 3ξ2 − 2ξ3, N4(x0) =
(
−ξ2 + ξ3)l .�

The analytical solution of the Euler–Bernoulli cantilever beam’s motion equation is
difficult to obtain in the case of non-uniform inertia and stiffness properties. So the FEM is
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often used to model the motion of the beam, and the second-order differential Equation [4]
is obtained:

M
..
δ + C

.
δ + Kδ = u + d, (2)

which includes n beam nodes and can be considered as a 2n degree-of-freedom system.
Each node consists of two degrees of freedom, namely translation w and rotational θ, i.e.,

{δi} =
{

wi
θi

}
=

{
wi
wi′

}
, i = 1, . . . , n. (3)

M, C, and K are the mass, damping, and stiffness matrices, respectively. M and K are
assembled by the following elemental matrices:

Me =
l

420


156 22l 54 −13l
22 4l2 13l −3l2

−54 13l 156 −22l
−13l −3l2 −22l 4l2

, Ke =
EI
l3


12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

, (4)

where l is the length of the beam’s element. Additionally, the corresponding damping
matrix is C = α1M + α2K.

By introducing the influence of the sloshing force fms
, Equation (2) becomes

M
..
δ + C

.
δ + Kδ = F, (5)

where M, C, and K are mass, damping, and stiffness matrices, and F = u+d+ fms
represents

the force driving the coupling system, including control force u, disturbance d, and sloshing
force fms

.
As shown in Figure 2, the spring-mass-damper equivalent mechanical model is em-

ployed in this paper to estimate the liquid sloshing force. The liquid sloshing dynamic
model in the tank can be regarded as a spring-mass-damper system [6], allowing for the
calculation of the sloshing force fms

. The mass of the liquid in the tank is mp, and the spring-
mass-damper system divides the liquid into sloshing mass ms and non-sloshing mass mn.
On the translation plane, along the two axes perpendicular to the central axis of the tank,
the sloshing mass is connected to the tank through springs and dampers. Therefore, the
sloshing mass is a secondary damping vibration perpendicular to the symmetry axis.

The mass of the liquid mp is
mp = ρd2h, (6)

where ρ is the density of the liquid, d is the length of the bottom side of the tank, and h is
the height of the liquid level.

According to Equation (6), h can be calculated as

h =
mp

ρd2 . (7)

For the first-order sloshing mode of the rectangular tank, according to Section 5.2 of [37],
the following equivalent parameters are established.

k =
8mpg tan h2(3πh/d)

9h
ms = mp

8
π3

tan h(3πh/d)
9h/d

mn = mp −ms

ls =
tan h(3πh/2d)

3πh/2d
ln = − 1

mn/mp
ms ls
mp

, (8)
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where ls and ln are the distances of sloshing and non-sloshing mass from the free liquid
surface, respectively. k is elastic constant, and the relation between it and natural frequency
ωns is k = ω2

ns .
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Note that the energy dissipation model in the oscillating system is approximately
provided by the equivalent second-order damping ratio γs. Due to the lack of effective
data for the tank design, according to [38], the equivalent second-order damping ratio of
all sloshing modes is presumed to be γs = 0.08.

According to [35], the dynamic equation of liquid sloshing is as follows:

.
sS

ms = vS
ms

.
vB

ms =
1

ms
As

[
∆

.
sS

ms
vS

ms

]
+ Ex

[ .
vB

+
.

ϕ
S
ms

]
+ Eyzg

.
vS

ms =
.
vB

ms −
.
vB − .

ϕ
S
ms

, (9)

where ∆ represents the perturbation from the nominal reference. Ex only selects the axial
acceleration component and Eyz only selects the normal component. The sloshing mass
acceleration relative to the body in the axial direction is zero. As is

As =

0 0 0 0 0 0
0 −ω2

ns 0 0 −2γsωns 0
0 0 −ω2

ns 0 0 −2γsωns

, (10)

and the rotation term ϕS
ms is

ϕS
ms = 2ωB × vS

ms +
.

ω
S × sS

ms + ωS ×ωS × sS
ms . (11)

The force generated by the sloshing liquid is opposite to the force exerted on the liquid
by the translation and rotation of the body, and the axial acceleration of the sloshing mass
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relative to the body must be considered. Assuming that most of the acceleration occurs
along the xB axis, this component acts on the force applied by the sloshing mass such that:

fB
ms

= −ms
.
vB

ms −msEx
.
vB. (12)

Note that fB
ms

acts on the beam as a concentrated load.

2.2. Strain-Based Vibration Dynamic Model

In this paper, the strain information is used to design the controller for the system (5).
To acquire the strain-based vibration dynamic model, the relationship [39] between the
strain and the node displacement of the beam is established as



ε1
ε2
...
...

ε2n−1
ε2n


=



T1
T2

. . .
. . .

T2n−1
T2n





w1
θ1
w2
θ2
...

wn−1
θn−1
wn
θn


. (13)

The element transfer matrix [40] is[
T2i−1

T2i

]
=

1
l2

[
−6 −4l 6 −2l

−6 + 12l l(−4 + 6l) 6− 12l l(−2 + 6l)

]
× ht

2
, i = 1, . . . , n, (14)

where ht is the height of the beam’s cross-section.
Thus, Equation (13) is written as

ε = Tδ. (15)

According to Equation (15), Equation (5) is rewritten as

T−TF = T−TMT−1 ..
ε + T−TCT−1 .

ε + T−TKT−1ε. (16)

The dynamic model can be obtained as

Mε
..
ε + Cε

.
ε + Kεε = Fε, (17)

where Mε, Cε, and Kε are the mass, damper, and stiffness matrices, which satisfy Mε = T−TMT−1,
Cε = T−TCT−1, and Kε = T−TKT−1. Additionally, force Fε is provided as

Fε = T−TF = T−T
(

u + d + fms

)
.

By defining variables Xε =
[
εT,

.
ε

T
]T

, the state equation with strain and the first-order
derivatives of the strain as state variables can be obtained as follows:

.
Xε =

[
0 I
−M−1

ε Kε −M−1
ε Cε

]
Xε +

[
0
M−1

ε

](
uε + dε + fεms

)
= AεXε + BεFε

. (18)
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In engineering applications, due to the installation of FBG sensors at regular intervals
on the structure, only the strain values at some locations on the structure can be measured.
Therefore, Equation (18) is rewritten as

.
Xεr = AεrXεr + BεrFεr, (19)

where Xεr is the reduced state vector, and Aεr and Bεr are the system matrices.
The dimension of the dynamic model (18) is 2n, and n represents the number of

elements divided by FEM. To ensure accuracy, the value of n is relatively high, which
will make real-time calculations on the onboard computer challenging. Therefore, the
dimension of the system (19) is set as 2r, and r < n is the number of FBG sensors, such that
the dimension of the system is reduced.

Remark 2. The above method of associating the dimension of the system with the actual number of
FBG sensors can better meet the requirements of engineering. This method has the same effect as
the dynamic model reduction technology, which includes two main types: the physical reduce-order
model and the agent model. The agent model is used to approximate the original complex structure
through mathematical expressions with less computation, and the characteristics of the complex
structure are obtained in the form of solving mathematical expressions, including the artificial neural
network model. On the other hand, a neural network-based ADP control method is adopted in this
paper. As a type of agent model, a neural network takes partial strain information as the input,
which can better reflect the response characteristics of the whole structure. Moreover, the proposed
ADP method in this paper is an optimal control method, which enables the elastic vibration and
sloshing suppression control of the beam on the basis of only partial strain information through
reasonable parameters design of the ADP method.

On the other hand, FBG can only measure the strain value ε and cannot directly
measure the first-order derivative of the strain

.
ε. Hence, it is necessary to introduce a

tracking differentiator to estimate the state vector Xεr. According to references [12,41], the
tracking differentiator is designed as follows:

.
ε̂0 = ε̂1 + k1(εm − ε̂0).
ε̂1 = ε̂2 + k2(εm − ε̂0).
ε̂2 = k3(εm − ε̂0)

, (20)

where ki(i = 1, 2, 3) are the designed parameters; εm is the strain value measured by
FBG; ε̂i(i = 1, 2, 3) is the states of the differentiator. The real-time designed differentiator
provides estimations of strain ε and its first-order derivative

.
ε from the measurement εm.

Note that, according to [12], the estimation errors e = εm− ε̂ of the tracking differentia-
tor (20) exponentially converge into a region of hyperball when given an appropriate choice
of ki(i = 1, 2, 3). This paper does not describe the proof process, and the detailed process
is shown in [12]. In summary, based on the characteristics of the proposed differentiator,
the states ε̂0 and ε̂1 are used as the estimations of the strain measurement εm as well as its
first-order derivative

.
ε.

Substituting the estimations of tracking differentiator into Equation (19), we can obtain

.
X̂εr = AεrX̂εr + Bεr

(
uεr + dεr + fεrms

)
= AεrX̂εr + BεrFεr

, (21)

where X̂εr =

[
ε̂T,

.
ε̂

T
]T

. According to the strain-based vibration dynamic model (21), the

intelligent controller is designed in the next section.
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3. Control Strategy Design
3.1. Design of ADP Control Method Based on Strain Information of FBG

This paper proposed an ADP control method based on FBG strain information and
neural networks. In contrast to previous work using motion parameters or modal parame-
ters, this method can enable control performance using only strain information. The basic
strategy of ADP [42] entails utilizing function approximators, such as linear function and
neural network approximators, to construct critic networks to approximate the perfor-
mance index function in the Hamilton–Jacobi–Bellman (HJB) function. For Equation (21),
action-dependent heuristic dynamic programming (ADHDP) is adopted, and the system
diagram is shown in Figure 3.
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First, the cost function with a discount factor γ is defined as follows:

J(t) =
∫ ∞

i=t
γi−tU

(
X̂εr(t), u(t)

)
, (22)

where 0 < γ < 1 is produced for the infinite horizon problem. U is the utility function, and
the quadratic performance index [33] is the most commonly used; that is,

U
(
X̂εr, u

)
= X̂T

εrQX̂εr + uTRu, (23)

where Q and R are state and input utility weight matrices and positive-definite diagonal matrices.
The goal of the proposed method is to determine the appropriate control input u(t) to

minimize J(t). We define J∗(t) as the optimal cost function, which is shown as

J∗(t) = min
u(t)

∫ ∞

i=t
γi−tU

(
X̂εr(t), u(t)

)
. (24)

Based on the optimal control theory, J∗(t) satisfies the following Bellman equation:

J∗(t) = min
u(t)

{
U
(
X̂εr(t), u(t)

)
+ γJ∗(t + 1)

}
. (25)
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ADHDP adopts an action-critic network structure to obtain the approximate solution
of the Bellman equation. The input of the critic network is the state and control input
of the system, and the output Ĵ(t) is the estimation of J∗(t). The action network’s input
and output are, respectively, the state of the system and the approximate optimate control
input u∗(t). In addition, both the action and critic networks adopt the three-layer neural
network, which contains the input, hidden, and output layers. A hyperbolic tangent
transfer function [33] is used as the activation function Φ. For any variable z, the hyperbolic
tangent transfer function is defined as follows:

fh(z) =
1− e−z

1 + e−z

Remark 3 [43]. The approximation error of the neural network can be arbitrarily small as long
as there are enough hidden layer neurons when the weights of the input layer–hidden layer are
randomly initialized and kept constant. Consequently, in the learning process of the critic and action
neural network, this paper only updates the weights of the hidden output layer. The update rules
adopt the gradient descent method, which will be described later.

The design of the critic neural networks is

Ĵ(t) = ω2
c Φ(hc(t))

hc(t) = ω1
c
[
X̂εr(t), u

(
X̂εr
)] , (26)

where ω1
c and ω2

c are the weight matrices of the hidden input and hidden output layers.
To train the critic network through the backpropagation method, the prediction error

ec(t) is defined as follows:

ec(t) = γ Ĵ
(
X̂εr(t)

)
−
[

Ĵ
(
X̂εr(t− ∆t)

)
−U

(
X̂εr(t), u(t)

)]
. (27)

Then, the error function to be minimized by the critic network is

Ec(t) =
1
2

e2
c (t). (28)

The output of the action network, namely the optimal control strategy, is

u∗ = ω2
aΦ
(
ha
(
X̂εr
))

ha
(
X̂εr
)
= ω1

aX̂εr(t)
, (29)

where ω1
a and ω2

a are the weight matrices of the hidden input and hidden output layers.
The prediction error ea(t) is defined as the difference between the estimated cost

function Ĵ(t) and the desired ultimate object function Uc, which is backpropagated to the
network to train the action network. The expression of ea(t) is

ea(t) = Ĵ(t)−Uc. (30)

The error function to be minimized by the action network is

Ea(t) =
1
2

e2
a(t). (31)

The purpose of the controller proposed in this paper is to make the whole structure
stable; that is, the FBG strain value is zero as a result. Hence, we can set the desired ultimate
object function to Uc = 0.
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Note that, according to Remark 3, ω1
c and ω1

a are randomly initialized and kept
constant, and ω2

c and ω2
a are updated based on the gradient descent method. Therefore, the

expression of weight updating policy by the chain rule is

ω2
c (t + ∆t) = ω2

c (t)− βc

(
∂Ec(t)
∂ω2

c (t)

)
∂Ec(t)
∂ω2

c (t)
= ∂Ec(t)

∂ Ĵ(t)
∂ Ĵ(t)

∂ω2
c (t)

, (32)

ω2
a(t + ∆t) = ω2

a(t)− βa

(
∂Ea(t)
∂ω2

a (t)

)
∂Ea(X̂εr(t))

∂ω2
a (t)

= ∂Ea(t)
∂ Ĵ(X̂εr ,u∗)

∂ Ĵ(X̂εr ,u∗)
∂u∗

∂u∗
∂ω2

a (t)

, (33)

where βc > 0 and βa > 0 denote the learning rates of the critic and action networks,
respectively.

3.2. Stability Analysis

This section will analyze the Lyapunov stability of the above control system. Firstly,
the following assumptions and lemmas are held.

Assumption 3. Let ω2∗
c and ω2∗

a are the optimal weights of the hidden output layer in the critic
and action neural network. Both of them are bound, i.e., ‖ω2∗

c ‖ ≤ ωcm, ‖ω2∗
a ‖ ≤ ωam, where ωcm

and ωam are positive, satisfying the following equations:

ω2∗
c = argmin

ω2
c

‖γ Ĵ(t)−
[

Ĵ(t− ∆t)−U(t)
]
‖,

ω2∗
a = argmin

ω2
a

‖ Ĵ(t)‖.

Lemma 1 [44]. Assumption 3 is held. The outputs of the critic and action networks are
(26) and (29). The weights ω1

c and ω1
a of the critic and action networks are initialized and re-

main unchanged after initialization. The weights ω2
c and ω2

a are updated based on (32) and (33).
Then, the errors between the optimal weights, ω2∗

c and ω2∗
a , and the weights ω2

c and ω2
a , obtained

based on the above update rules, are uniformly ultimately bound.

The proof process of Lemma 1 can be seen in [44] and is not repeated in this paper.
According to Lemma 1, when the neural network settings and weight updating rules are
used in this paper, the estimation errors of the critic and action networks are uniformly
ultimately bound [44]; that is, the method proposed in this paper can obtain the optimal
control law.

Theorem 1. For the dynamic model (21), the control law (29) is designed. If Assumption 3 and
Lemma 1 are satisfied, the flexible-sloshing coupling control system is uniformly ultimately bounded.

Proof of Theorem 1. Consider the Lyapunov function candidate defined as follows:

V =
1
2

X̂T
εrQX̂εr. (34)

The time derivative of (34) is

.
V = X̂T

εrQ
.

X̂εr. (35)
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Substituting (21) into (35) yields

.
V = X̂T

εrQ
(
AεrX̂εr + BεrFεr

)
= X̂T

εrQ
(
−X̂εr + (Aεr + I)X̂εr + BεrT−T

(
u + d + fms

)) . (36)

According to the control law (29), (36) is rewritten as
.

V ≤ −X̂T
εrQX̂εr

+‖X̂εr‖‖Q‖
(
‖(Aεr + I)‖‖X̂εr‖+ ‖Bεr‖‖T−T‖

(
‖ω2

a‖‖Φ
(
ha
(
X̂εr
))
‖+ ‖fms

‖+ ‖d‖
))

= −2V + ‖Q‖‖(Aεr + I)‖‖X̂εr‖
2
+ ‖X̂εr‖‖Q‖‖Bεr‖‖T−T‖

(
‖fms
‖+ ‖d‖

)
+‖X̂εr‖‖Q‖‖Bεr‖‖T−T‖‖ω2

a‖‖Φ
(
ha
(
X̂εr
))
‖

= −2V + Θ

, (37)

where Θ satisfies

Θ = ‖Q‖‖(Aεr + I)‖‖X̂εr‖
2
+ ‖X̂εr‖‖Q‖‖Bεr‖‖T−T‖

(
‖fms
‖+ ‖d‖

)
+‖X̂εr‖‖Q‖‖Bεr‖‖T−T‖‖ω2

a‖‖Φ
(
ha
(
X̂εr
))
‖

.

In this paper, the flexible-sloshing coupling system is simplified according to the
actual physical system, and the parameters in the actual physical system are bound, so
the parameters of the proposed systems are bound; that is, ‖Aεr‖, ‖Bεr‖, ‖T−T‖, ‖d‖, and
‖X̂εr‖ and are bound. The weight is bound according to Assumption 3 and Lemma 1.
Based on the definition of the hyperbolic tangent transfer function, Φ

(
ha
(
X̂εr
))
∈ [−1, 1],

then ‖Φ
(
ha
(
X̂εr
))
‖ is bound; Q is a positive-definite diagonal matrix and ‖Q‖ is bound.

In summary, we can see that Θ > 0 is bound. Therefore, the system (21) based on the
proposed control law (29) is uniformly ultimately bound [45].�

4. Numerical Simulations

The following numerical simulation demonstrates the effectiveness of the proposed
ADP control strategy with strain information compared with the PD controller. An alu-
minum alloy cantilever beam and a cuboid tank are considered in this simulation. This
tank is lightweight and thin-walled, so its weight can be ignored. The liquid in the tank is
water. The parameters of the combined structure are shown in Table 1.

Table 1. Parameters of the structure.

Parameters Value

Aluminum alloy beam

Density (kg/m2) 2690
Elastic modulus (Pa) 6.98e10

Length (m) 0.972
Width (m) 0.02
Height (m) 0.003

Cuboid tank
Height of tank(m) 0.1

Length of bottom (m) 0.04
Height of liquid level (m) 0.04

Water Density (kg/m2) 1000

The initial conditions in this simulation are provided as w(0) = 0, sS
ms(0) = 0, and

Xεr(0) = [0, 0]T. The parameters of the tracking differentiator are set as k1 = 1/δ2,
k2 = 2/δ2, and k3 = 3/δ2, where δ satisfies δ = 0.015. The damping matrix is set as
C = 0.001M + 0.001K. The simulation time is 0.001s, and the total simulation time is
15s. A sinusoidal disturbance d(t) = 0.1(sin(5πt) + cos(10πt)) is applied. The dynamic
responses of the structure are examined in the following cases.

Free Case: There is no control input in this simulation, i.e., u(t) = 0, and the spatial
time representation is shown in Figure 4.
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ADP Case 1: The ADP controller applies 10 FBG sensors’ information. The number of
hidden layer nodes is 30, the learning rates are lc = la = 10, and the state and input utility
weight matrices are Q = diag{ones(20, 1)} and R = [1]. The spatial time representation is
shown in Figure 5.

ADP Case 2: The ADP controller applies 20 sensors’ information. The number of
hidden layer nodes and learning rates are set the same as ADP Case 1. The state and input
weight matrices are Q = diag{ones(40, 1)} and R = [1]. The spatial time representation is
shown in Figure 6.

PD Case: For comparison, the spatial time representation of the displacement with the
PD controller is shown in Figure 7. The PD controller is designed as u(t) = −kpw(L, t)−
kd

.
w(L, t), and the parameters are set as kp = 20, kd = 0.1.

As shown in Figure 4a, it can be observed that there are significant vibrations along
the structure subjected to the sinusoidal disturbance d(t). In Figure 4b–d, both the ADP
and PD controllers can suppress the vibration of the coupling systems when the system
is subjected to external disturbance d(t). Furthermore, it is evident that the displacement
under ADP control is smaller than that under PD control.
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Figure 5. Results of displacement. (a) Displacement of the structure’s free end in free case, PD case,
and ADP case 1; (b) sloshing displacement in free case, PD case, and ADP case 1.
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Figure 6. Results of displacement. (a) Displacement of the structure’s free end for ADP control with
10 and 20 sensors; (b) sloshing displacement for ADP control with 10 and 20 sensors.

For further analysis, the displacements of the structure’s free end and sloshing in
the free case, PD case, and ADP case 1 are shown in Figure 5. The displacement errors
(between PD case and free case, between ADP case 1 and free case) of the structure’s free
end and sloshing are shown in Figure 7a,b. As illustrated in Figures 5a and 7a, the ADP
controller with 10 sensors and a PD controller can suppress the vibration at the small
neighborhood of its equilibrium position. Moreover, the output position in ADP case 1 is
smaller than that in the PD case. Similarly, Figures 5b and 7b demonstrate that both the
ADP controller with 10 sensors and the PD controller can suppress the sloshing in the
tank subject to disturbance, with the ADP case 1 producing smaller sloshing displacement
than the PD case. The simulation results in Figures 5 and 7 indicate that the ADP method
has better performance of elastic vibration and sloshing suppression in comparison to the
PD controller.
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Figure 7. Error results of displacement relative to free case. (a) Displacement of the structure’s free
end in PD case and ADP case 1; (b) sloshing displacement in PD case and ADP case 1.

To analyze the performance of the ADP controller using varying numbers of sensors,
the displacement of the structure’s free end and sloshing are shown in Figure 6a,b, respec-
tively. The displacement errors of the structure’s free end and sloshing between ADP case
1 and ADP case 2 are shown in Figure 8a,b. We can observe that the displacement of the
structure’s free end and sloshing in ADP case 2 is smaller than that in ADP case 1. As the
amount of sensor information increases, the performance of the ADP controller becomes
more effective. However, the displacement of sloshing and control input within 2 s changes
drastically under ADP control using 20 sensors’ information. Finally, the ADP and PD
control inputs are shown in Figure 9.
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Figure 9. ADP control inputs with 10 and 20 sensors and PD control input.

In conclusion, the simulation results have demonstrated the effectiveness of the ADP
method in suppressing the elastic vibration and sloshing of the coupling system when
disturbance is exerted. Compared with other methods, the designed ADP controller
only requires partial strain information and does not need the motion parameters of the
coupling system. Additionally, as the amount of sensor information applied increases, the
performance of the ADP controller becomes more effective. However, the displacement of
sloshing undergoes significant changes, which means that the selection of the appropriate
number of sensors depends on the compromise between the final performance of the ADP
control and the initial violent sloshing during control.

5. Conclusions

In this paper, the elastic vibration and sloshing suppression control problem is in-
vestigated via the ADP algorithm based on strain information measured from FBG. The
controller is designed using the strain information measured by FBG, with its first-order
derivative estimated by a tracking differentiator. The Euler–Bernoulli theory and spring-
mass-damper equivalent mechanical model are employed to establish the flexible-sloshing
coupling dynamic model. Additionally, the strain-based vibration dynamic model is de-
rived through the relationship between the strain and the node displacement based on
the FEM. Furthermore, the controller is designed based on ADHDP structure with neural
networks. The main advantages of the proposed method can be concluded as follows:

(1) The usages of the Euler–Bernoulli beam model and the spring-mass-damper equiva-
lent model provide a simpler and more convenient way for constructing the flexible-
sloshing coupling dynamic model.

(2) The development of a strain-based vibration dynamic model facilitates the full utiliza-
tion of FBG sensors’ strain information.

(3) This controller can effectively suppress elastic vibration and sloshing with only partial
strain information, eliminating the process of estimating the vibration motion parame-
ters. The control strategy indicates important implications in engineering applications.

In the future, we will conduct further research on three-dimensional vibration sup-
pression control and the control performance of different numbers of sensors.
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