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Novel Hierarchical Recursive

Nonsingular Terminal Sliding Mode

Control for Inverted Pendulum.

Actuators 2023, 12, 462. https://

doi.org/10.3390/act12120462

Academic Editors: Bin-tang Yang,

Yikun Yang and Xiaoqing Sun

Received: 3 November 2023

Revised: 8 December 2023

Accepted: 9 December 2023

Published: 11 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

A Novel Hierarchical Recursive Nonsingular Terminal Sliding
Mode Control for Inverted Pendulum
Hiep Dai Le * and Tamara Nestorović
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Abstract: This paper aims to develop a novel hierarchical recursive nonsingular terminal sliding
mode controller (HRNTSMC), which is designed to stabilize the inverted pendulum (IP). In contrast
to existing hierarchical sliding mode controllers (HSMC), the HRNTSMC significantly reduces the
chattering problem in control input and improves the convergence speed of errors. In the HRNTSMC
design, the IP system is first decoupled into pendulum and cart subsystems. Subsequently, a recursive
nonsingular terminal sliding mode controller (RNTSMC) surface is devised for each subsystem to
enhance the error convergence rate and attenuate chattering effects. Following this design, the
HRNTSMC surface is constructed by the linear combination of the RNTSMC surfaces. Ultimately, the
control law of the HRNTSMC is synthesized using the Lyapunov theorem to ensure that the system
states converge to zero within a finite time. By invoking disturbances estimation, a linear extended
state observer (LESO) is developed for the IP system. To validate the effectiveness, simulation
results, including comparison with a conventional hierarchical sliding mode control (CHSMC) and
a hierarchical nonsingular terminal sliding mode control (HNTSMC) are presented. These results
clearly showcase the excellent performance of this approach, which is characterized by its strong
robustness, fast convergence, high tracking accuracy, and reduced chattering in control input.

Keywords: adaptive sliding mode control; uncertainties; inverted pendulum; nonsingular terminal
sliding mode; under-actuated system; hierarchical sliding mode

1. Introduction

The inverted pendulum (IP) system has been widely used in various industrial ap-
plications, such as balancing robots, rocket propellers, and humanoid robots [1–3], due to
its cost-effectiveness and simple structure. However, the IP is an under-actuated system
with fewer actuators than the degree of freedom to be controlled [4], which has strong
nonlinearities, coupling properties, and is highly unstable [5]. Therefore, it provides many
challenging problems with respect to linear and nonlinear control theories.

Since the 1950s, the IP has been employed as a platform for designing, evaluating, and
comparing different control techniques [6]. Over the past decades, many controllers have
been proposed for the IP to balance the pendulum at desired positions. One of the most
straightforward controllers, a proportional–integral–derivative (PID) [7] controller, operates
based on error values, which represent the difference between the actual values of the
process and the desired ones. Thus, Ghosh [8] proposed the PID controllers to balance the
IP at the desired cart position. This approach involved the use of two controllers: the first
one for regulating the angular pendulum and the other for controlling the cart position. The
robustness and performance of the PID controller were verified by simulations and practical
experiments. However, a poorly tuned PID controller can drastically reduce system perfor-
mance and lead to instability [9]. Thus, Wang [10] proposed a linear quadratic regulator
(LQR) controller for the IP, with the response time and overshoot depending directly on
the selection of the matrices Q and R. Although PID and LQR are known for their simple
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structures and easy implementation, they usually fail to effectively reject disturbances [11]
such as system parameter uncertainties, friction forces, unmodeled dynamics, vibration,
wind forces, and unpredictable collisions. In practice, these disturbances are present in
most systems and can significantly degrade the control performance. To address this issue,
numerous nonlinear control methods have been developed, such as fuzzy design [12], neu-
ral networks [13], and sliding mode control (SMC) [14]. Their performance outcomess have
been investigated for the IP system in Ref. [15]. The authors of that study noted that none of
these single controllers could meet the best comparative criteria, including simplicity, fast
response, precision, disturbances rejection, adaptability, robustness, tracking capabilities,
and reduced chattering. Among these approaches, the SMC has been considered to be
an effective controller for the IP due to its ability to provide fast responses, precision,
disturbances rejection, adaptability, and tracking capabilities. Conventional sliding mode
control (CSMC), which was first designed by Utkin [16], is based on high-speed switching
control laws to drive the system trajectory to a selected sliding surface [17]. Once the
system states reach the selected sliding surface, the system’s response becomes insensitive
to disturbances and parametric uncertainties. Thanks to this property, the CSMC has been
employed in many applications such as missiles [18], piezos [19], and grippers [20]. Never-
theless, the CSMC is not without its limitations, including slow response and chattering.
Achieving fast convergence with the CSMC often requires high control input, which can
drive actuators to saturation. In response to these limitations, the terminal sliding mode
control [21] (TSMC) was developed to attain finite convergence without using high-control
input. Compared to the CSMC, the TSMC has gained popularity in robust control because
of its faster time convergence and diminished steady-state errors. Nonetheless, the TSMC
suffers two major drawbacks: firstly, it exhibits slower performance than the CSMC when
system states are far from equilibrium points e(t) = 0; secondly, it faces a singularity
problem in its control law. To address this issue, Yu [22] proposed the fast terminal sliding
mode control (FTSMC), which can increase the error convergence while conquering the first
drawback of the TSMC with a faster response. Despite these improvements, the control
design still brings a singularity problem. Therefore, Feng [23] introduced the nonsingular
terminal sliding mode control (NTSMC) to increase the convergence speed and avoid the
singularity problem. Subsequently, Shao [24] combined the NTSMC with the integral
sliding mode to enhance tracking performance outcomes and reduce steady-state errors
in the IP. Besides the convergence speed problems, an inherent challenge in the SMC is
the presence of chattering caused by the signum function. When the chattering occurs,
the control input oscillates at a high frequency, thereby reducing the life of the actuators,
degenerating the control accuracy, causing high wear and tear in mechanical parts, and
generating high power losses in electrical circuits [25]. A possible method to reduce the
level of chattering is using the smooth function instead of the signum function [26,27].
However, it compromises the control’s smoothness and overall system performance. An-
other feasible solution is the integration of a disturbance observer in the control design.
Thanks to its ability to rapidly reject disturbances, disturbance observer-based control
design has been widely used as an effective method to compensate for the disturbances and
uncertainties stemming from both the environment and system [28]. Therefore, combining
the SMC with the disturbance observers is a promising approach because the SMC only
needs to address the disturbance estimation errors [29,30]. A comprehensive review of
these disturbance observers [31] revealed that the linear extended state observer (LESO) is
the most commonly used technique for disturbance estimation without requiring accurate
modeling [32]. Moreover, the simplicity of the design process and parameter adjustments
make the LESO easily implementable in engineering applications such as motor drive
systems [33] and exoskeletons [34].

In previous studies, the SMCs were typically investigated and demonstrated for the
fully actuated system, thus making them useless for direct applications in under-actuated
systems [35]. This challenge arises from the inability to directly calculate control parame-
ters for a sliding mode surface using Hurwitz conditions [4]. To deal with this limitation,
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Utkin [36] transformed the linearized equations of the system to regular forms and then em-
ployed them for SMC design. However, when the initial angular pendulum is far from an
unstable equilibrium point, these control approaches may yield unsatisfactory results [37].
Another approach for designing the SMC without using a linear model for under-actuated
systems is to use the SMC in a hierarchical structure, which not only retains the advan-
tages of the SMC, but also has the ability to simultaneously control different outputs [38].
This method involves decoupling the under-actuated system into subsystems. For each
subsystem, a sliding mode surface is meticulously designed based on the corresponding
state system, thereby forming the initial level of a hierarchical structure. Then, the second
level of the hierachical strucutere is constructed based on the first level. Finally, all the
control laws of the different subsystems are interconnected to form the ultimate control
law. By implementing this method, the high-dimensional system is effectively reduced to
lower-dimensional subsystems, thereby reducing the complexity of the controller design.
The conventional hierarchical sliding mode control (CHSMC) [39–42] was proposed for
underactuated systems by using the CSMC in a hierarchical form. These results proved the
effectiveness of the CHSMC controller for tracking the cart position while balancing the
pendulum. However, using the CSMC to design the CHSMC leads to slow error conver-
gences. Although adjusting controller coefficients can increase the error convergence speed,
the errors of the sliding surface can not converge to equilibrium in a finite time. In response
to this challenge, Refs. [43,44] designed the hierarchical nonsingular terminal sliding mode
control (HNTSMC) for the IP to increase the error convergence speed. Nevertheless, these
control laws contain signum structures that are premultiplied by the bound of the lumped
disturbances, which means that chattering is not effectively reduced [45].

As aforementioned, both the CHSMC and the HNTSMC suffer from chattering prob-
lems in the control input and lack results related to the disturbance observer for the IP
system. To the best of our knowledge, there is no research in the literature regarding
the development of a hierarchical recursive nonsingular terminal sliding mode controller
(HRNTSMC) for the IP. Compared to existing results, the main advantages of the proposed
controller can be outlined as follows: (1) A new HRNTSMC has been introduced to the
IP for reducing chattering phenomena in the control input, thereby increasing the error
convergence speed and saving energy consumption. The RNTSMC has been developed for
each subsystem, including the integration of the NTSMC to enhance the convergence and
tracking precision of the subsystem states [46]. Compared to the CHSMC and HNTSMC,
the proposed controller demonstrated better performance when the IP suffered from more
lumped disturbances and high initial errors of angular pendulum; (2) The disturbances of
the IP were directly estimated by using the LESO, that is, the proposed controller compen-
sated for these disturbances with more accuracy and efficiency; (3) The reaching law of the
proposed controller compensated the estimation errors of the LESO results with respect to
chattering reduction in the control input; (4) The overall stability of the control system was
analyzed using the Lyapunov theorem. The proposed controller can extend to a general
under-actuated system with input coupling.

The remainder of the article is organized as follows: Section 2 formulates the problem
associated with the IP. Section 3 provides a comprehensive description of the proposed
controller and system stability. Section 4 presents the results of numerical simulations
for the IP. Finally, Section 5 draws some conclusions and outlines potential directions for
future works.

2. Problem Formulation

The IP in Figure 1 is considered to be the most exemplary laboratory experiment to
perform nonlinear control techniques. It comprises a cart moving along a guiding rail and
an aluminium rod mounted on a cart, thereby allowing the rod to freely swing within a
vertical plane. The cart is moved by a DC motor connected via a belt. The dynamic model
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of the IP (Figure 1) is derived using the Lagrange equation according to the following set of
equations [47]:

ẋ1(t) = x2(t), (1)

ẋ2(t) = f1(x, t) + b1(x, t)u(t) + n1(t), (2)

ẋ3(t) = x4(t), (3)

ẋ4(t) = f2(x, t) + b2(x, t)u(t) + n2(t), (4)

where f1(x, t), b1(x, t), f2(x, t), b2(x, t) are given as

f1(x, t) =
mtgsin(x1(t))−mpLsin(x1(t))cos(x1(t))x2(t)2

L(4/3mt −mpcos2(x1(t)))
, (5)

b1(x, t) =
cos(x1(t))

L(4/3mt −mpcos2(x1(t)))
, (6)

f2(x, t) =
−4/3mpLx(t)2

2sin(x1(t)) + mpgsin(x1(t))cos(x1(t))
4/3mt −mpcos2(x1(t))

, (7)

b2(x, t) =
4

3(4/3mt −mpcos2(x1(t)))
, (8)

where the system state vector x = [x1, x2, x3, x4]
T , x1(t) is the angular position of the

pendulum from the vertical axis; x2(t) is the angular velocity of the pendulum; x3(t) is
the position of the cart; x4(t) is the velocity of the cart; mt is the total mass (in kg) of the
cart mass mc and pendulum mass mp; L is the half-length of the pendulum (in m); g is the
acceleration of gravity (in m/s2); u(t) is the force applied to the cart (N); and n1(t) and
n2(t) are lumped disturbances, which include the uncertainties and external disturbances
of the system.
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Figure 1. The mechanical model of the IP.

Assumption 1. The unknown lumped disturbances of the system and its first time derivatives
are bounded [48], with the specific bounds being unknown. This assumption represents all of
the continuous and bounded disturbances, including but not limited to constant disturbances,
harmonic disturbances, or neutral stable disturbances, thereby representing various disturbances in
engineering applications.
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Remark 1. When deriving a mathematical model, it is necessary to take into account the accuracy
of the system model. However, a highly accurate model may comprise several terms, which can
be cumbersome to determine. Therefore, in this work, the authors did not consider friction forces,
including viscous, coulomb, and static (dry) friction forces, which can make the IP model more
complex. Instead, these forces were assumed as parts of the lumped disturbance.

Remark 2. The actuator in the IP, consisting of a DC motor with a gearbox, is regarded as a
subsystem of the IP model. While this dynamic can be neglected by comparing it with the dynamics
of the IP, it is important to recognize that the actuator’s dynamic can significantly affect the overall
performance of the control system. This problem can be solved by implementing an internal control
system, such as an open-loop proportional regulator or a PID controller, to control the DC motor [49].

Remark 3. Based on the system model (1)–(4), the same control input u(t) appears in two dynamic
equations. Therefore, the whole system is under-actuated (single input multioutput).

Definition 1. The detailed expressions of the notation sig(e)α can be found in [50], which can be
expressed as follows:

sig(e)α = |e|αsgn(e), (9)

where α > 0∀e ∈ R. Note that the function sig(e)α is smooth and monotonically increasing.

The objective of this work is to propose a new hierarchical sliding mode controller
that can navigate the cart to desired positions while balancing the pendulum on its upright
position with minimal deflection in the presence of disturbances and uncertainties.

3. Control Strategy and Stability Analysis

The proposed controller (Figure 2) comprises a hierarchical structure and an LESO
observer. The hierarchical structure uses the RNTSMC for the first level of the structure.
The LESO is utilized to observe the lumped disturbance of each subsystem. Afterwards,
the reaching law is applied to compensate for the approximation errors of the LESO.

Desired Pole Angular

Desired Cart Position

NTSMC
Hierarchical

sliding
surface Inverted Pendulum

ESO

Reaching
Law

Saturation

Disturbance+
Uncertainties

Actual Pole Angular

Actual Cart Position

Derivative

Derivative

RNTSMC

NTSMC RNTSMC

Figure 2. The structure of proposed control.

3.1. Design Hierarchical Recursive Nonsingular Terminal Sliding Mode Control

According to the dynamic model of the IP, the hierarchical structure in Figure 3
is employed to design controllers for the two subsystems [51]. The first subsystem is
the pendulum, which has state variables [x1(t), x2(t)], and the second is the cart, which
includes state variables [x3(t), x4(t)]. The first layer of the hierarchical structure comprises
the sliding mode surface of each subsystem: the subsystem sliding surface σ1(t) and the
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subsystem sliding surface σ2(t). The second layer of the hierarchical structure comprises
sliding mode surfaces in the first layer. The total control law is synthesized from the
hierarchical structure by employing the Lyapunov theory, thereby ensuring the stability of
each sliding surface within the subsystem.

Figure 3. Hierarchical structure is given by [51].

The error of the angular pendulum is defined as follows:

e1(t) , x1(t)− x1d(t), (10)

where x1(t) is the actual angle of the pendulum, and x1d(t) is the desired angle of the
pendulum. In addition, we define the error of the cart position as follows:

e3(t) , x3(t)− x3d(t), (11)

where x3(t) is the actual position of the cart, and x3d(t) is the desired position of the cart.
The NTSMC surface was presented by [24], who adapted for the first subsystem (1)

and (2) as follows:
s1(t) , ė1(t) + k1e1(t) + γ1sig(e1(t))r1 , (12)

where r1 > 1; γ1 > 0; and k1 > 0 are the control parameters to be designed. Then, the
RNTSMC surface σ1(t) for the first subsystem is defined as follows:

σ1(t) , s1(t) + γ2

∫ t

0
sig(s1(t))r2 , (13)

where the control parameters are 1 > r2 > 0 and γ2 > 0 [52], and the variable s1(t) is
defined in (12).

The first time derivative of (13) becomes the following:

σ̇1(t) = ṡ1(t) + γ2sig(s1(t))r2 , (14)

where the time derivative of s1(t) is defined as follows:

ṡ1(t) = f1(x, t) + b1(x, t)u(t) + n1(t)− ẍ1d(t) + k1 ė1(t) + γ1r1|e1(t)|r1−1 ė1(t). (15)

The NTSMC surface for the second subsystem (3) and (4) is described as follows:

s2(t) , ė3(t) + k2e3(t) + γ3sig(e3(t))r3 , (16)

where the design parameters are set as r3 > 1; γ3 > 0; and k2 > 0.
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We introduce the RNTSMC surface σ2(t) for the second subsystem as follows:

σ2(t) , s2(t) + γ4

∫ t

0
sig(s2(t))r4 , (17)

where 1 > r4 > 0 and γ4 > 0 are the design parameters.
Differentiating (17) with respect to time yields the following:

σ̇2(t) = ṡ2(t) + γ4sig(s2(t))r4 , (18)

where

ṡ2(t) = f2(x, t) + b2(x, t)u(t) + n2(t)− ẍ3d(t) + k2 ė3(t) + γ3r2|e3(t)|r2−1 ė3(t). (19)

The second-level hierarchical structure based on the first level is defined as follows:

S(t) , ασ1(t) + σ2(t), (20)

where α is a positive or negative design constant, and σ1(t) and σ2(t) are defined, respec-
tively, in (13) and (17).

Differentiating S(t) with respect to time yields the following:

Ṡ(t) = ασ̇1(t) + σ̇2(t). (21)

Based on (14) and (18), let σ̇1(t) = 0 and σ̇2(t) = 0; the equivalent control laws u1eq(t)
and u2eq(t) can be obtained for the corresponding subsystems as follows:

u1eq(t) = −1/b1(x, t)( f1(x, t) + n1(t)− ẍ1d(t) + k1 ė1(t) + γ1r1|e1(t)|r1−1 ė1(t)

+γ2sig(s1(t))r2).
(22)

u2eq(t) = −1/b2(x, t)( f2(x, t) + n2(t)− ẍ3d(t) + k2 ė3(t) + γ3r3|e1(t)|r3−1 ė1(t)

+γ4sig(s2(t))r4).
(23)

A constant plus the proportion reaching law [53] Ṡ(t) = −κ1S(t)− κ2sign(S(t)) are
employed to design this controller, where κ1 > 0 is the switching gain; κ2 > 0 is the
reaching control gain; and sign(S(t)) is the signum function defined as the form:

sign(S(t)) =


1 if S(t) > 0,
0 if S(t) = 0,
−1 if S(t) < 0.

Based on [54,55], the total control law is determined as follows:

u(t) ,
αb1(x, t)u1eq(t) + b2(x, t)u2eq(t)− κ1S(t)− κ2sign(S(t))

αb1(x, t) + b2(x, t)
. (24)

ueq(t) ,
αb1(x, t)u1eq(t) + b2(x, t)u2eq(t)

αb1(x, t) + b2(x, t)
. (25)

usw(t) ,
−κ1S(t)− κ2sign(S(t))

αb1(x, t) + b2(x, t)
. (26)

The proposed control law u(t) from (24) consists of ueq(t) and usw(t), which are men-
tioned later.
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To demonstrate the stability analysis of the second-level hierarchical structure, we
choose a Lyapunov function candidate as follows:

V(t) ,
1
2

S(t)2. (27)

The time derivative of the Lyapunov function is thus obtained from the following:

V̇(t) = S(t)Ṡ(t) = S(t)(ασ̇1(t) + σ̇2(t)). (28)

V̇(t) = S(t)Ṡ(t) = S(t)(α( f1(x, t) + b1(x, t)u(t) + n1(t)− ẍ1d(t)

+k1 ė1(t) + γ1r1|e1(t)|r1−1 ė1(t) + γ2sig(s1(t))r2)

+( f2(x, t) + b2(x, t)u(t) + n2(t)− ẍ3d(t)

+k2 ė3(t) + γ3r2|e3(t)|r2−1 ė3(t) + γ4sig(s2(t))r4)).

(29)

We substitute (24) into (29) to yield the following:

V̇(t) = S(t)(−κ1S(t)− κ2sign(S(t))). (30)

V̇(t) = −κ1S(t)2 − κ2|S(t)| < 0. (31)

Therefore, S(t) will converge to zero in finite time [56]. σ1(t) and σ2(t) will converge
asymptotically to zero [4]. Then, the errors e1(t) and e3(t) converge to zero in finite
time [24].

3.2. Design of Extended State Observer

The equivalent control u1eq(t) and u2eq(t) involves the knowledge of the lumped
disturbances n1(t) and n2(t), which can be measured using intrinsic sensors. To estimate
the knowledge of the lumped disturbances, the LESO [31] is employed for the IP system.
The LESO, designed to estimate n1(t), is expressed as follows:

ε1(t) , x1(t)− x̂1(t), (32)

ˆ̇x1(t) , x̂2(t) +
a1ε1

ξ1
, (33)

ˆ̇x2(t) , f1(x, t) + b1(x, t)u(t) + n̂1(t) +
a2ε1(t)

ξ2
1

, (34)

ˆ̇n1(t) ,
a3ε1(t)

ξ3
1

, (35)

where ξ1 > 0; a1, a2, and a3 are positive constants, and the polynomial s3 + a1s2 + a2s + a3 is
Hurwitz; x̂1(t), x̂2(t), and n̂1(t) are the observed values of x1(t), x2(t), and n1(t), respectively.

Proof. The proof is detailed in Appendix A.

Remark 4. The selection of the LESO parameters has a significant effect on the observer’s stability,
as has been thoroughly described in [57]. The estimation states from (32)–(34) depend on the error
between the measured and the estimated angular pendulum. However, when the position error e1(t)
becomes small, it is necessary to select the high gains in (33)–(35) to achieve a reliable estimation
of the lump disturbances. Therefore, to achieve an accurate estimation of the lump disturbances, it
is advisable to select larger values for the parameters a1

ξ1
, a2

ξ1
, and a3

ξ1
. In practical implementation,

the initial observation errors are usually nonzero due to the difference between the initial value of
the LESO and the plant. Since the system employs a small ξ1, the initial peak values of the LESO
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can become relatively large. This can lead to a significant demand for control force, which, in turn,
potentially damages the motor, degrades the overall control performance, and negatively affects the
observer’s convergence. To alleviate the peaking phenomenon, ξ1 is selected as follows [58,59]:

1
ξ1

= R =

{
10t3, 0 ≤ t ≤ 1,
10, t > 1.

(36)

The LESO, designed to estimate n2(t), is expressed as follows:

ε2(t) , x3(t)− x̂3(t), (37)

ˆ̇x3(t) , x̂4(t) +
a4ε2(t)

ξ2
, (38)

ˆ̇x4(t) , f2(x, t) + b2(x, t)u(t) + n̂2(t) +
a5ε2(t)

ξ2
2

, (39)

ˆ̇n2(t) ,
a6ε2(t)

ξ3
2

, (40)

where a4, a5, and a6 are positive constants, and the polynomial s3 + a4s2 + a5s + a6 is Hurwitz;
x̂3, x̂4, and n̂2 are the observed values of x1, x2, and n2, respectively; ξ2 is selected based on (36).

Proof. The proof is similar to Appendix A.

Based on (32) to (40), the lumped disturbances n1(t) and n2(t) are estimated by n̂1(t)
and n̂2(t), respectively. We substitute n̂1(t) and n̂2(t) into (22) and (23), respectively; the
equivalent controls u1eq(t) and u2eq(t) are then rewritten as follows:

u1eq(t) = −1/b1(x, t)( f1(x, t) + n̂1(t)− ẍ1d(t) + k1 ė1(t) + γ1r1|e1(t)|r1−1 ė1(t)

+γ2sig(s1(t))r2).
(41)

u2eq(t) = −1/b2(x, t)( f2(x, t) + n̂2(t)− ẍ3d(t) + k2 ė3(t) + γ3r3|e1(t)|r3−1 ė1(t)

+γ4sig(s2(t))r4).
(42)

To demonstrate the stability of the proposed controller, the Lyapunov is selected
as follows:

V2(t) ,
1
2

S(t)2. (43)

Taking the time derivative of the Lyapunov function, one can obtain the following:

V̇2(t) = S(t)Ṡ(t) = S(t)(ασ̇1(t) + σ̇2(t)). (44)

V̇2(t) = S(t)Ṡ(t) = S(t)(α( f1(x, t) + b1(x, t)u(t) + n1(t)− ẍ1d

+k1 ė1(t) + γ1r1|e1(t)|r1−1 ė1(t) + γ2sig(s1(t))r2)

+( f2(x, t) + b2(x, t)u(t) + n2(t)− ẍ3d(t)

+k2 ė3(t) + γ3r2|e3(t)|r2−1 ė3(t) + γ4sig(s2(t))r4)).

(45)

We denote the estimation errors of n1(t) and n2(t) as follows:

ñ1(t) , n̂1(t)− n1(t), (46)

ñ2(t) , n̂2(t)− n2(t). (47)
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We substitute (24) with the new equivalent control laws (41) and (42) into (45), which
yields the following:

V̇2(t) = S(t)(−κ1S(t)− κ2sign(S(t)) + αñ1(t) + ñ2(t)). (48)

V̇2(t) = −κ1S(t)2 − κ2|S(t)|+ S(t)(αñ1(t) + ñ2(t)). (49)

V̇2(t) < −κ1S(t)2 − κ2|S(t)|+ |S(t)|(|αñ1(t)|+ |ñ2(t)|). (50)

κ2 is selected as follows:
κ2 > |αñ1(t)|+ |ñ2(t)|+ κ3, (51)

where κ3 is a small positive number. Substituting (51) into (50) yields the following:

V̇2(t) < −κ1S(t)2 − κ3|S(t)| < 0. (52)

V̇2(t) < −2κ1V2(t)− κ3
√

2V2(t)1/2. (53)

Therefore, S(t) will converge to zero in finite time:

T ≤ 1
κ1

ln
2κ1V1/2

2 (0) +
√

2κ3√
2κ3

. (54)

Then, σ1(t) and σ2(t) will converge asymptotically to zero [4], and the errors e1(t) and
e3(t) converge to zero in finite time [24].

Remark 5. The proposed control law u(t) of (24) consists of two main components: ueq(t) and
usw(t). While ueq(t) is responsible for compensating the nominal parts, usw(t) is designed to
compensate for the impact of the estimation errors stemming from the LESO. The RNTSMC is
designed for each subsystem, thus inheriting the merits of both the NTSMC and the high-order
sliding mode control (HOSMC) [60] and ensuring finite time convergence and attenuated chattering.

Remark 6. The chattering of the proposed controller is significantly reduced by using the LESO, as
it solely addresses the estimation errors of the lumped disturbances through the switching function
(26) [61]. Despite its advantages, in practical scenarios, it is challenging to achieve a complete
reduction of s to zero due to some factors such as noise, delay, and imperfection of the devices [62].
Consequently, the sign(s) function in the control input is often substituted by the saturation to
reduce the chattering effect. The sat function is given as follows [63]:

sat(s) ,


1, s > ∆,
ks, |s| ≤ ∆, k = 1

∆ ,
−1, s < −∆.

(55)

Remark 7. In practical application, the control input (24) cannot be applied directly to the DC
motor. Instead, some experiments are conducted to determine the relationship between the pulse-
width-modulated (PWM) input duty and the rotation speed of the motor. Subsequently, the
relationship between the rotation speed and the force output of the motor is determined by using
catalog information and a wheel radius. Afterward, the required PWM duty can be calculated and
provided to the DC motor to achieve the desired control input (24).

3.3. Parameters Selection

The selection of the control parameters is of great importance for practitioners in
practical implementation. The control performance can be compromised by factors such as
control saturation, measurement noise, and chattering in the control signal. When choosing
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parameters, it is essential to adhere to two fundamental rules: 1. Ensure that the conditions
(12), (13), (16), (17), and (26) are satisfied in the designed controller. 2. Strive to keep the
parameter values as small as possible to reduce the required force of the actuator.

Selecting the parameters of the sliding surfaces can be referred in Ref. [24]. In addition,
the LESO parameters should align with the recommendation presented in Ref. [64]:

Selection of k1, γ1, and r1: The parameters k1, γ1, and r1 have a direct effect on the
dynamic behaviours of the sliding surface (12). An increased value of these parameters
leads to faster convergence of e1(t), but this comes at the expense of higher demand for the
control input.

Selection of γ2 and r2: A larger γ2 or r2 will increase the convergent speed of the error
e1(t) and reduce the steady-state tracking errors but at the cost of an increased control input
requirement.

Selection of κ1 and κ2: These control parameters affect the robustness of the controller
in (26). Higher values of these parameters improve the robustness but may lead to a less
smooth control signal.

Selection of a1, a2, and a3 : These parameters can be determined using Equation (A19),
which solely requires the value of ω. A higher value of ω improves the accuracy of the
disturbances estimation. However, it is worth noticing that if the measurement signal
contains noise, substantial observer errors may arise when dealing with large ω values.

Remark 8. The HRNTSMC surface can be considered as a general form encompassing both the
CHSMC surface and HNTSMC surface. When k1 = 0, r1 = 1, and γ2 = 0, the HRNTSMC
surface is the same as the CHSMC surface. When k1 = 0, 2 > r1 > 1, and γ2 = 0, the HRNTSMC
surface exhibits similar behavior to the HNTSMC surface. The control parameters for the simulation
results were tuned as follows: Initially, all the control parameters of the proposed controller were set
to zero values. Subsequently, the values of γ1 and κ2 were adjusted, and r1 was fixed at one, which
made the proposed controller similar to the CHSMC [65]. Following that, we gradually increased
the control parameters γ1 and κ2 to reach the optimal performance of the CHSMC, with an emphasis
on minimizing the values of κ2 to reduce chattering in the control input and maximizing γ1 to
increase the convergence speed of the errors. Afterwards, we selected r1 in the range (1–2) while
adjusting γ1 to improve the convergence errors of the proposed controller. Following most related
works of the NTSMC, r1 was fixed at 5/3. To enhance the reaching phase speed of the proposed
control, the values of κ1 were increased, while those of κ2 were adjusted. It is important to note that
the values of κ1 should be large to increase the reaching speed, whereas the values of κ2 should be
kept small to reduce the chattering. At this point, the proposed controller shares the same structure
with the HNTSMC [43], which gains a fast convergence speed. However, since the control input
suffers from more chattering, and there is a need for improved convergence speed, the remaining
control parameters should be tuned to obtain the merit properties for the proposed controller. To
accomplish this, the value ξ1 of the LESO was set according to (36), and the values of ω in (A19)
were selected to determine a1, a2, and a3 for the LESO. Adjusting the ω values is essential to achieve
satisfactory disturbance estimations while simultaneously reducing the values of κ2 as much as
possible. Additionally, gradually adjusting γ2, r2, and k1 from small to large values in the proposed
controller contributes to an improvement in both the convergence speed and accuracy.

Remark 9. The versatility of the proposed controller allows for its widespread applicability in other
under-actuated systems such as acrobot, pendubot, magnetic suspension, beam-and-ball, and the
TORA system. However, the proposed controller has more parameters for tuning to gain the optimal
performance, which could be the limitation of this approach. Therefore, future work endeavors are
expected to employ an optimization algorithm to identify the most suitable control parameters. In
this work, the LESO has been successfully employed to estimate the lumped disturbances, which were
assumed to be constant or low-frequency disturbances. However, a limitation in performance will
arise when dealing with high-frequency disturbances. Therefore, a generalized integrator extended
state observer [66] will be taken into consideration to estimate both slow and rapid disturbances in
future work.
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3.4. Detailed Step for Designing Proposed Controller

The design procedures are summarized as follows:
Step 1: Initialize the control parameters and system states.
Step 2: Design sliding surfaces for two subsystems (13) and (17).
Step 3: Design the observers to determine n̂1 as in (32)–(35) and n̂2 as in (37)–(40).
Step 4: Determine the equivalent control laws in (41) and (42).
Step 5: Obtain the control input for the motor (24).

4. Simulation Verification

This section presents several simulation results to demonstrate the effectiveness of
the proposed controller with respect to tracking errors, energy consumption, and chatter-
ing reduction. A comparative analysis was conducted between the proposed controller
HRNTSMC and two existing controllers: the HNTSMC in [43] and the CHSMC in [65]. The
CHSMC, which is characterized by its simplicity and feasibility, has been widely designed
for under-actuated systems. Meanwhile, the HNTSMC not only inherits the characteristics
of the CHSMC, but also ensures the faster convergence rate of system states to zero in finite
time. The control systems were simulated in the MATLAB SIMULINK environment using
the ODE 45 solver with a fixed step size of 0.001 s.

4.1. Simulation Condition

In the IP system, the system parameters were chosen as g = 9.8 m/s2; mt = 0.8 kg;
mp = 0.188 kg; and L = 0.34 m. In the first and second case, the initial conditions of the IP
were set as follows: [x1 x2 x3 x4] = [−π

15 0 0 0]; the initial conditions in the third case of the IP
were set as [x1 x2 x3 x4] = [−π

3 0 0 0]. The third case was designed to perform the advantage
of the HRNTSMC over the other linear controllers, thus showcasing its ability to balance
the IP even when starting from a large initial error of angular pendulum. The desired angle
and position were obtained from [67,68] and were respectively defined as follows: x1d = 0
rad and x3d = 0 m.

The lumped disturbances of the pendulum and cart were assumed as follows [68]:

n1(t) = 0.0873sin(t) + 0.5sin(x1(t)); (56)

n2(t) = 0.0873sin(t) + 0.5sin(x3(t)); (57)

4.2. Simulation Results

It is worth noticing that the CHSMC, HNTSMC, and HRNTSMC use the same system
parameters, initial conditions, and other common parameters [69]. The magnitude force
was restricted to be less than 30 N [70]. The corresponding parameters of the different
control systems were set with the same values [71,72]. The parameters of the controllers
used in the first and second case are given in Table 1, while Table 2 shows the control
parameters for the third case.

Table 1. Parameter settings of each controller for the first case and the second case.

Controller Tuning Parameters

CHSMC γ1 = 3; γ3 = γ1; α = −2; κ2 = 0.5

HNTSMC γ1 = 3; r1 = 5/3; γ3 = γ1; r3 = r1; α = −2; κ1 = 2; κ2 = 1

HRNTSMC
k1 = 2; γ1 = 3; r1 = 5/3; γ2 = 2; r2 = 0.7; k2 = k1; γ3 = γ1; r3 = r1;
γ4 = γ2; r4 = r2; α = −2; κ1 = 2; κ2 = 0.01;
a1 = 3; a2 = 3; a3 = 1; a4 = a1; a5 = a2; a6 = a3; ξ2 = ξ1
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Table 2. Parameter settings of each controller for the third case.

Controller Tuning Parameters

CHSMC γ1 = 0.5; γ3 = γ1; α = −2; κ2 = 0.5

HNTSMC γ1 = 0.1; r1 = 5/3; γ3 = γ1; r3 = r1; α = −2; κ1 = 0.2; κ2 = 1

HRNTSMC
k1 = 0.1; γ1 = 0.1; r1 = 5/3; γ2 = 2; r2 = 0.7; k2 = k1; γ3 = γ1; r3 = r1;
γ4 = γ2; r4 = r2; α = −2; κ1 = 0.2; κ2 = 0.01;
a1 = 3; a2 = 3; a3 = 1; a4 = a1; a5 = a2; a6 = a3; ξ2 = ξ1

The sliding surfaces for each subsystem of the HNTSMC in [43] were defined as follows:

s1(t) , e1(t) + γ1sig(ė1(t))r1 . (58)

s2(t) , e3(t) + γ3sig(ė3(t))r3 . (59)

S(t) , αs1(t) + s2(t). (60)

Ṡ(t) , −κ1S(t)− κ2sign(S(t)). (61)

The sliding surfaces for each subsystem of the CHSMC [65] were defined as follows:

s1(t) , e1(t) + γ1 ė1(t). (62)

s2(t) , e3(t) + γ3 ė3(t). (63)

S(t) , αs1(t) + s2(t). (64)

Ṡ(t) , −κ2sign(S(t)). (65)

The CHSMC, HNTSMC, and HRNTSMC were compared in two different cases: (1) In
the first case, the lumped disturbances n1(t) and n2(t) did not exist. (2) In the second case,
the lumped disturbances n1(t) and n2(t) existed. (3) In the third case, besides the presence
of the lumped disturbances, a substantial initial error of the angular pendulum was set,
thereby emphasizing the advantages of the hierarchical sliding mode in its comparison
with the other linear control methods.

Figures 4–6 show the simulation results of the three controllers in case 1. In this
scenario, while the CHSMC failed to ensure the convergence of the tracking of the angular
pendulum and the cart position error, the HNTSMC and HRNTSMC showcased their
effectiveness in achieving this objective. In addition, the HRNTSMC demonstrated the
fastest convergence speed and exhibited less oscillation near the equilibrium point, with
e1(t) = 0 and e3(t) = 0. In the beginning, the CHSMC generated a higher cart position
error e3(t) of 0.85 m, whereas the HNTSMC and HRNTSMC exhibited smaller errors,
which measured 0.64 m and 0.53 m, respectively. After 40 s, both the HNTSMC and
HRNTSMC performed satisfactory tracking of the angular pendulum and cart position
with minimal errors. Specially, the maximum values of the steady-state tracking errors for
the cart position were 0.35 m for the CHSMC, a significant improvement to 0.006 m for
the HNTSMC, and an impressive reduction to just 0.001 m for the HRNTSMC. In terms of
the angular pendulum errors of e1(t), the CHSMC, HNTSMC, and HRNTSMC generated
the maximum steady-state errors of 0.179 rad, 0.005 rad, and 0.0005 rad, respectively.
It is worth noticing that the steady-state performance outcomes of the HNTSMC and
HRNTSMC significantly outperformed that of the CHSMC. Upon closer examination
of the cart position and angular pendulum errors, the HRNTSMC’s errors were smaller
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than those of the HNTSMC. Though the HNTSMC requires higher force control than the
HRNTSMC (Figure 6) and experiences more chattering in the control input, the HNTSMC
still converged lower than the HRNTSMC. The convergence time of tracking the cart
position error under the HRNTSMC was about 25 s, while the HNTSMC demanded
about 35 s, thereby demonstrating the faster convergence speed of the HRNTSMC. The
HRNTSMC can effectively alleviate chattering in the control input, use lower energy, and
achieve a fast convergence speed for tracking errors. The results strongly suggest that the
HRNTSMC offers better tracking performance than the CHSMC and HNTSMC. For more
comprehensive qualitative analysis, Table 3 provides the index values of the integrated
absolute errors (IAEs), the energy of control input (ECI), and the absolute input chattering
error (AICE). These indexes are defined from [73]:

IAE =
1
N

N

∑
k=1
|e(k)|, (66)

ECI =
1
N

N

∑
k=1
|u(k)|, (67)

AICE =
1
N

N

∑
k=1
|u(k + 1)− u(k)|, (68)

where N is total number of samples, while e(k) and u(k) denote the position error and
control input, respectively. The IAE index is responsible for qualifying tracking errors.
A smaller IAE means fewer accumulated tracking errors, which in turn signifies better
tracking performance. By contrast, a higher IAE implies a greater accumulation of tracking
errors, thereby indicating a worse tracking capability. While the ECI is responsible for
evaluating the required energy consumption, the AICE assesses the chattering in the control
signal. Remarkably, the proposed controller gained the lowest index values for the IAE,
ECI, and AECI. To be more specific, the IAE values of the tracking cart position in the
CHSMC and HNTSMC were 0.2445 m and 0.0601 m, respectively, while only 0.00448 m
was recorded value for the proposed control HRNTSMC. Similarly, when evaluating the
IAE values for the tracking of the angular pendulum, the CHSMC recorded 0.1214 rad,
the HNTSMC recorded 0.0381 rad, and the HRNTSMC recorded a mere 0.0217 rad. These
results strongly prove the superiority of the proposed controller in terms of achieving the
minimum IAE, which demonstrated fewer tracking errors compared to the CHSMC and
HNTSMC. Additionally, the ECI of the proposed controller was 0.2156, thereby indicating
its superior energy efficiency compared to the HNTSMC, with 0.5212, and the CHSMC,
with 1.1972. In addition, the HRNTSMC significantly reduced the chattering in the control
input, thus resulting in an ACEI value of 0.0605.

Table 3. Index values of control strategies in case 1.

IAEx1 IAEx3 ECI AECI

CHSMC 0.1214 0.2445 1.1972 0.3294
HNTSMC 0.0381 0.0601 0.5212 0.2814
HRNTSMC 0.0217 0.0448 0.2156 0.0605

Figures 7–11 depict the performance outcomes of the three controllers under the effects
of lumped disturbances. In this context, due to the effects of the lumped disturbances, the
tracking errors of the three controllers were higher compared to the first case. At the outset,
the most significant error of the cart position e3(t) was recorded at 0.74 m for the CHSMC,
0.59 m for the HNTSMC, and 0.49 m for the HRNTSMC. Notably, the CHSMC produced
the worst results among the three controllers despite the fact that it requires a higher control
force. The three controllers performed different error convergences of the cart position and
angular pendulum, as presented in Figures 7 and 8. Although the steady-state errors of the
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HNTSMC and HRNTSMC were not precisely zero, they remained bounded and relatively
small. The HRNTSMC stood out by providing the fastest tracking cart position and angular
pendulum measurements compared to the other controllers, while still maintaining smooth
force control. The effectiveness of the HRNTSMC can be attributed to its incorporation of
the LESO, which can effectively estimate the lumped disturbances of the IP system with
small observation errors, as are shown in Figures 10 and 11. These estimation errors of both
the n1 and n2 came out to approximately 0.01 and 0.02, respectively. Table 4 illustrates the
performance indexes of the three controllers, wherein the HRNTSMC clearly gained the
smallest index values of the three controllers. As a result, this contributed to the exceptional
performance of the proposed controller, which was characterized by superior tracking
capability, lower energy consumption, and effective chattering reduction, even in the
presence of lumped disturbances. Between the 50 s to 100 s interval, the CHSMC, HNTSMC,
and HRNFTSMC controllers produced the IAE errors of 0.06 rad, 0.0023 rad, and 0.0023 rad,
respectively, in tracking the angular pendulum, while they produced errors of 0.127 m,
0.0035 m, and 0.0061 m in cart position, respectively. Obviously, the HNTSMC slightly
outperformed the HRNFTSMC due to the higher actuator force requirement (Figure 9)
during the measurement of the steady-state errors. While the HNTSMC experienced high
chattering, the HRNTSMC significantly reduced it by integrating the LESO to estimate the
lumped disturbances. Table 2 provides the performance indexes of each controller, which
clearly indicates that the HRNTSMC reached the lowest values of the IAE, ECI, and AECI
when compared to the CHSMC and HNTSMC.

Table 4. Index values of control strategies in case 2.

IAEx1 IAEx3 ECI AECI

CHSMC 0.1303 0.2629 1.2877 0.3322
HNTSMC 0.0411 0.0651 0.5471 0.3117
HRNTSMC 0.0263 0.0555 0.2672 0.0629

Figures 12–14 demonstrate the performance outcomes of the three controllers under
the condition of a significant initial error in the angular pendulum and the effects of lumped
disturbances. In this scenario, due to the initial error of the angular pendulum, the biggest
errors of the cart position were measured at 4.1 m for the CHSMC, 5 m for the HNTSMC,
and 4.3 m for the HRNTSMC. Generally, despite requiring substantial control forces, the
CHSMC failed to ensure the convergence errors of the angular pendulum and cart position.
The tracking performance of the HNTSMC was drastically reduced, while the performance
of the HRNTSMC was insignificantly affected by the initial error. Figures 12 and 13 present
the different convergence errors of the three controllers. At the steady state, the HRNTSMC
exhibited smaller errors in the angular pendulum compared to the HNTSMC and CHSMC,
while the tracking performance of the cart position in the HRNTSMC outperformed the
other controllers. Figure 14 depicts the control forces of the three controller, thus indicating
that the HRNTSMC required large control input at the initial stages to balance the IP.
However, the chattering problem of the HRNTSMC was significantly reduced compared to
the other controllers, which became apparent after 40 s. Table 5 provides the performance
indexes of the three controllers, thus showing that the HRNTSMC effectively demonstrated
the smallest index values of the IAE and AECI. Despite its advantages, the ECI index value
of the HRNTSMC was slightly higher than the HNTSMC, which is attributed to the large
control force at the initial stage from 20 s. As a result, the proposed controller demonstrates
effective performance of the IP in the case of a large initial error of the angular pendulum.

Table 5. Index values of control strategies in case 3.

IAEx1 IAEx3 ECI AECI

CHSMC 0.6058 1.2271 9.2318 4.0046
HNTSMC 0.0807 0.8674 0.9029 0.6959
HRNTSMC 0.0746 0.1816 1.0154 0.4238
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Figure 4. The error convergence of angular pendulum in case 1.

Figure 5. The error convergence of cart position in case 1.



Actuators 2023, 12, 462 17 of 26

Figure 6. Force control in case 1.

Figure 7. The error convergence of angular pendulum in case 2.
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Figure 8. The error convergence of cart position in case 2.

Figure 9. Force control in case 2.



Actuators 2023, 12, 462 19 of 26

0 10 20 30 40 50 60 70 80 90 100

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Actual
Estimation

Figure 10. The estimated values of lumped disturbances n1.
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Figure 11. The estimated values of lumped disturbances n2.
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Figure 12. The error convergence of angular pendulum in case 3.
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Figure 13. The error convergence of cart position in case 3.
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Figure 14. Force control in case 3.

5. Conclusions

This work proposes the HRNTSMC as an effective approach to increase convergence
speed and reduce control input chattering in the IP system. Throughout this study, the
simulation results confirm the applicability and performance of the proposed controller.
Despite outperforming other compared controllers, it is acknowledged that the proposed
controller contains more parameters for tuning, which could be determined using opti-
mization methods in future work. However, it is essential to note that the present work
is limited to a simulation-based investigation, which is aimed at showing the feasibility
of this approach and establishing a theoretical foundation. Hence, to verify the practical
implementation of the proposed controller in real-world scenarios, the next phase should
involve experimental work.
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Appendix A. Stability of the LESO

We define the scaled estimation error vector of the LESO as follows:

v(t) , [v1(t), v2(t), v3(t)]T , [
x1(t)− x̂1(t)

ξ2
1

,
x2(t)− x̂2(t)

ξ1
, n1(t)− n̂1(t)]. (A1)
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By combining (1), (2), and (32)–(34), we obtain the following:

ξ1v̇1(t) =
ẋ1(t)− ˙̂x1(t)

ξ1(t)
= −a1v1(t) + v2(t). (A2)

ξ1v̇2(t) = ẋ2(t)− ˙̂x2(t) = −a2v1(t) + v3(t). (A3)

ξ1v̇3(t) = ṅ1(t)− ˙̂n(t) = −a3v1(t) + ξ1ṅ1(t). (A4)

The estimation error dynamics equation can be rewritten as follows:

ξ1v̇(t) = Av(t) + ξ1Bṅ1(t), (A5)

where

A =

−a1 1 0
−a2 0 1
−a3 0 0

; (A6)

B =

0
0
1

; (A7)

The characteristic equation of matrix A is defined as follows:

|λI−A| =

λ + a1 −1 0
a2 λ −1
a3 0 λ

 = 0. (A8)

Then,
(λ + a1)λ

2 + a2λ + a3 = 0. (A9)

And,
λ3 + a1λ2 + a2λ + a3 = 0. (A10)

By choosing suitable values for a1, a2, and a3, we can make A a Hurwitz matrix,
which has the real part of its eigenvalues being negative. For any given three-dimensional
symmetric positive definite matrix Q, there exists a symmetric positive definite matrix P,
which satisfies the following condition:

ATP + PA + Q = 0. (A11)

The Lyapunov function of the LESO is defined as follows:

Ve(t) , ξ1v(t)TPv(t). (A12)

The time derivative of Ve(t) is defined as follows:

V̇e(t) = ξ1v̇(t)TPv(t) + ξ1v(t)TPv̇(t). (A13)

V̇e(t) = (Av(t) + ξ1Bṅ1)
TPv(t) + ξ1v(t)TP(Av(t) + ξ1Bṅ1(t)). (A14)

V̇e(t) = v(t)T(ATP + PA)v(t) + 2ξ1v(t)TPBṅ1(t). (A15)

V̇e(t) ≤ −vTQv + 2ξ1||PB|| · |v(t)| · |ṅ1(t)|. (A16)
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We assume that |ṅ1(t)| ≤ L; then:

V̇e(t) ≤ −λmin(Q)||v(t)||2 + 2ξ1||PB|| · |v(t)| · |L|, (A17)

where λmin(Q) is the minimum eigenvalue of Q, where V̇e(t) ≤ 0; the observer error
convergence is defined as follows:

||v(t)|| ≤ 2ξ1||PB|| · |L|
λmin(Q)

. (A18)

To simplify the complexity of the LESO, matrix Q is selected as the identity matrix I [74],
and the polynomial (A10) is selected based on [75]:

λ3 + a1λ2 + a2λ + a3 = (s + ω)3, (A19)

where ω presents the bandwidth of the LESO. It can be seen that the observer error depends
on the bound of the derivative disturbance |L| and ||PB||. The value of ||PB|| is influenced
by the eigenvalues of the matrix A, as P is determined by (A11), with Q being the identity
matrix. To enhance the accuracy of the disturbances estimation, selecting a large ω value
results in a small value of ||PB||. However, in a practical system, ω is limited by the
bandwidth of the controller and the sampling frequency of the system [57]. When the
high-frequency disturbances exist in the IP system, the LESO requires maximum ω values
to achieve the fast convergence of estimation, which can introduce more noise and diminish
the observer performance. Addressing this challenge will be a focus of the future work.
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