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Abstract: This article proposes a servo control strategy for compensating matched and mismatched
perturbations in flexible ball screw feed systems to improve their tracking performance. The pertur-
bations that satisfy or dissatisfy the matching conditions include external disturbances, parameter
uncertainties, and unmodeled dynamics. The flexible ball screw feed model includes both a rigid
body and first-order axial structural dynamics. A generalized extended state observer is adopted to
observe the matched and mismatched perturbations and various state variables of the system, and an
improved integral sliding mode controller is proposed that can simultaneously compensate for the
perturbations of the system that satisfy and dissatisfy the matching conditions. In addition, vibration
compensation is designed for first-order axial vibration of the system to develop a controller that can
quickly and accurately track the ideal reference trajectory, suppress system structural vibrations, and
be robust to time-varying uncertainties and external disturbances. Finally, the tracking performance,
anti-interference performance, and vibration suppression performance of the designed controller are
verified via simulation and comparative experiments.

Keywords: ball screw feed system; matched and mismatched perturbations; generalized extended
state observer; integral sliding mode controller; vibration compensation

1. Introduction

In industrial production, cutting through machine tools is the most common way of
part production and manufacturing. The ball screw has high rigidity and transmission
efficiency and has been widely used in the feed system of machine tools as a functional part
of linear motion [1]. With the continuous improvement of manufacturing requirements for
high-end CNC machine tool performance, high-speed cutting requires machine tools to
improve production efficiency and reduce production costs under the premise of ensuring
the quality of part processing. It is moving toward high-speed and precise directions.
However, the tracking accuracy of the feed system is also affected by factors such as the
mechanical dynamic characteristics of roller screws, the control algorithm used, external
disturbances, and the feedback quality of sensors. During the high-speed cutting process,
especially under heavy load and high acceleration conditions, the vibration mode of the feed
system is stimulated, and system deformation and vibration will be particularly serious,
resulting in an unstable control system and limiting the servo bandwidth [2]. In addition, a
ball screw feed system is a time-varying system with uncertainty, and its vibration mode
changes with the position of the table and the quality of the loaded workpiece [1,3]. During
the cutting process, the feed system is also affected by external disturbances such as cutting
force and nonlinear friction [4]. At the same time, there are random interferences and noises
in the feedback signals collected by the controller from the rotary encoder and the grating
ruler. Therefore, to improve the tracking accuracy of a ball screw feed system, it is necessary
to fully study its dynamic characteristics and establish an accurate control model. Secondly,
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the servo control algorithm is designed according to the control model to achieve two main
goals: (1) it can track the ideal reference trajectory quickly and accurately in a high-speed
environment, reduce the tracking error, and improve the bandwidth of the servo system,
and (2) it can suppress the vibration of the system structure, and has robustness to the
time-varying uncertainty of the system, external disturbances, and unmodeled dynamics.

Classical control methods, such as PID or P-PI (proportional integral) cascade control,
have the advantages of simple principle, convenient use, and strong robustness, among
others, and these methods have been widely used in industrial motion control [5,6]. How-
ever, a traditional control algorithm only considers the control model of the rigid-body
dynamics of the system, ignoring the significant influence of structural vibration on the
servo bandwidth [1,7]. In addition, a traditional controller is still limited by the uncertainty
and nonlinear factors of the system. To obtain a higher servo system bandwidth and
better tracking accuracy of the feed system, researchers have conducted extensive research
work in this field in recent years, and a large number of advanced control algorithms have
emerged [8–11]. Erkorkmaz and Kamalzadeh [7] first designed an adaptive sliding mode
control to control the rigid body motion of ball screw drives, and the notch filtering and
active cancellation techniques were used to compensate for the first-order vibration mode
in the control law. In order to accurately describe the axial vibration mode of the ball screw
feed system, a two-degree-of-freedom model was applied to the motion controller design
to achieve high positioning bandwidth [12]; furthermore, Erkorkmaz and Kamalzadeh
modeled the lead errors of the ball screw and removed them from the loop by offsetting
their effect from the command trajectory and position feedback signals. After that, various
control methods were used in the controller design for the two-degree-of-freedom model
of the ball screw feed system, such as discrete-time sliding mode control [13], backstep-
ping sliding mode control [14], pole placement technique [15] and optimal non-collocated
control [16,17] et al. Altintas and Khoshdarregir [18] presented a vibration avoidance and
contouring error compensation algorithm for feed drives; they reduced residual vibrations
in CNC machine tools by applying input shaping filters on the reference commands. Fric-
tion compensation is also one of the main research directions for motion control of ball
screw feed systems. To compensate for the contour tracking errors caused by friction forces
only, Jamaludin et al. [19] proposed a method that combines feedforward based on the
Generalized Maxwell-slip friction model and the disturbance observer. Fujimoto [20] intro-
duced a repetitive perfect tracking controller with n-times learning filter to compensate for
ball screw friction without a specific friction model. For precise control of ball-screw-driven
stages, Hayashi et al. [21,22] used projection-based iterative learning control to deal with
both variations in position reference and rolling friction compensation. In addition, more
advanced methods were used for tracking and vibration control of ball screw feed systems.
Tsai et al. [23] proposed an integrated iterative learning control with empirical mode decom-
position to filter out undesired signals from the reference commands, thereby avoiding the
resonance modes excitation in high-precision machining. To compensate for unmodeled
dynamics, parameter perturbations, variable cutting load, and other uncertainties of ball
screw drives, an active-disturbance-rejection control (ADRC) and a proportional-integral
(PI) control are employed by Zhang [24] to ensure the performance of the closed-loop
system. Rajabi et al. [25] proposed a trajectory tracking control of a ball-screw-driven ser-
vomechanism based on the sliding mode approach with state estimation using an extended
Kalman filter/unscented Kalman filter. A constrained nonsingular terminal sliding mode
controller with a super-twisting state observer was proposed by Park et al. [26] to compen-
sate for unknown dynamics and unmeasured velocity signals in the ball screw drive system.
To increase the bandwidth of the position loop without any extra sensor or actuator, Sun
et al. [27] added a weakly set motor speed controller and a disturbance observer with the
feedback velocity of the machine table into the traditional PD controller. Simba et al. [28]
proposed an iterative learning contouring controller consisting of a classical PD controller
and disturbance observer, and the proposed controller was evaluated experimentally by
using a typical sharp-corner trajectory. Li et al. [29] presented a dynamic model of ball screw
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drives as a feedforward compensation to offset the position commands and thus reduce
dynamic mechanical tracking errors. Yang et al. [30] proposed a dual-position feedback
control method by introducing position information on the drive side with a filter in the
position loop feedback channel and designed an adaptive backlash error compensation
method that could reduce over-quadrant errors. Then, Shirvani et al. [31] used adaptive
feedforward cancellation to address the problem of harmonic positioning error suppression
in ball screw drives. Recently, Huang et al. [32] used an adaptive sliding mode control
based on fuzzy exponential convergence law to solve the sliding mode jitter problem and
to improve the tracking performance of the ball screw feed system.

The controller designs mentioned above did not explicitly focus on the dynamic time-
variant characteristics of ball screw drives. The gain-scheduled methods based on a linear
parameter-varying (LPV) system [33–36] can cope with time-varying characteristics, but
their applications for industrial ball screw drives are complicated. In this paper, the time-
varying characteristics of a ball screw feed system are fully considered as part of the total
perturbations of the system. Because of the variation in parameters of the system, external
disturbances and other disturbances exist in both the motor and table sides at the same time;
therefore, the ball screw feed system also has system perturbations that satisfy or dissatisfy
the matching conditions. To compensate for system perturbations, a generalized extended
state observer is used to observe both system perturbations and each state variable. Finally,
an improved integral sliding mode controller is designed based on the observed values,
which can compensate for the system’s matched and mismatched perturbations at the
same time. Vibration compensation is designed to address first-order axial vibration of the
system, and a controller is proposed that can track the ideal reference trajectory quickly
and accurately, suppresses the vibration of the system structure, and is robust to the time-
varying uncertainty of the system, external disturbances, and unmodeled dynamics. Finally,
simulation and experimental comparisons between the proposed controller and an ordinary
ISMC are presented.

The structure of this paper is organized as follows: The model for the flexible ball
screw drive system is presented in Section 2. In Section 3, a tracking controller based
on ISMC is designed; then, a GESOISMC is designed for both tracking performance
and disturbance suppression; finally, a vibration compensation is designed for structural
vibration suppression. The experimental setup, simulation, and results are presented in
Section 4. The conclusions are drawn in Section 5.

2. Ball Screw Drive Model

Figure 1 shows the structure of a typical ball screw feed system. Such a system is
usually composed of servo motors, lead screws, nuts, linear guides, worktables, bearings,
and couplings. During the operation of the system, the control voltage output by the
controller acts on the servo motors, and the servo motors generate a torque to drive the
screws to rotate. Then, the rotating motion is converted into the linear motion of the tables
by the nuts. Afterward, the rotational displacement and speed of the motors and the
linear displacement and speed of the tables are, respectively, transmitted as feedback to the
system by the rotary encoder and the linear grating ruler. In addition, during operation, the
system is also affected by external disturbances, including cutting forces along the screw
axis and nonlinear friction. In the process of high-speed operation, the axial vibration mode
of the system is excited, which will deteriorate the stability of the closed-loop system and
greatly limit the dynamic accuracy of the ball screw drives.

To accurately describe the rigid body and first-order vibration mode characteristics
of the system, the system can be simplified into a two-degree-of-freedom mass model, as
shown in Figure 2, which not only can effectively describe the system’s characteristics but
can also be easily applied to the controller design. According to the two-degree-of-freedom
mass model, the kinetic equation of the system can be expressed as follows [37]:

m2
..
x2 = −b2

.
x2 + k(x1 − x2) + c(

.
x1 −

.
x2) + d2(t)

m1
..
x1 = −b1

.
x1 + k(x2 − x1) + c(

.
x2 −

.
x1) + u + d1(t)

(1)
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where m1 represents the equivalent mass of the rolling element of the system; m2 is the
equivalent mass of the moving components of the system; b1 is the viscous damping of
motors and bearings, while b2 is the viscous damping of linear guides; k is the overall
axial stiffness of the system, including the axial stiffness of screw nuts, couplings, and
angular contact bearings; c is the damping of the preload nut; u is the motor torque control
instruction; d1 and d2 represent external equivalent disturbances acting on the rotating
and moving components, respectively; x1 and x2 indicate the rotation displacement of
the ball screw and the linear displacement of the table, respectively; and

.
x1 and

.
x2 are,

respectively, the rotation speed of the ball screw and the linear speed of the table. According
to Equation (1), the state-space expression of the system can be expressed as{ .

x = Ax + Bu + Dd
y = Cx

(2)

and expanded as


.
x2.
x1..
x2..
x1

 =


0 0 1 0
0 0 0 1

− k
m2

k
m2

− b2 + c
m2

c
m2

k
m1

− k
m1

c
m1

− b1 + c
m1




x2
x1.
x2.
x1

+


0
0
0
1

m1

u +


0 0
0 0
1

m2
0

0
1

m1


[

d2(t)
d1(t)
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]
=
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1 0 0 0
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x2.
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(3)
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Figure 2. Two-degree-of-freedom mass model.

By imposing the Laplace transform on Equation (3) and combining similar terms, the
dynamic transfer function between the control signal input, external disturbances, motor
output, and table can be obtained as follows:
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[
y1
y2

]
=

[
G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)

] u
d1
d2


=

1
Q(s)

[
m2s2 + (b2 + c)s + k m2s2 + (b2 + c)s + k k + cs

k + cs k + cs m1s2 + (b1 + c)s + k

] u
d1
d2

 (4)

and Q(s) is

Q(s) = m1m2s4 + (m2b1 + m2c + m1b2 + m1c)s3

+(b1b2 + b1c + b2c + m2k + m1k)s2 + (b1k + b2k)s
(5)

where G11(s) and G21(s), respectively, represent the transfer functions between the motor
drive torque, the rotation displacement, and the linear displacement of the table. G11(s)
and G21(s) are, respectively, the transfer functions between external disturbances d1 and the
rotation displacement and linear displacement of the table. Similarly, G13(s) and G23(s) are
the transfer functions between external disturbances d2 and the rotation displacement and
linear displacement of the table, respectively. Therefore, Equation (5) describes the flexible
and dynamic characteristics of the ball screw feed system in the form of a transfer function.

In actual operation, stiffness k and damping c vary due to variations in the table
position and the workpiece mass, and the equivalent mass m1 and m2 also change due to
variations in the workpiece mass. Therefore, when the table position and the workpiece
mass fluctuate within a certain range, the four physical parameters m1, m2, k, and c exhibit
uncertainties. If the above physical parameter values vary over a bounded range, there are
uncertainties of 40%, 40%, 30%, and 20% for m1, m2, k, and c, respectively, the frequency
response curve of the transfer function G21(s) exhibits the characteristics shown in Figure 3.
Due to the uncertainties of the parameters, the frequency of the amplitude peak fluctuates
within a certain range, which indicates that the first-order natural frequency of the system
changes with variations in the equivalent mass, stiffness, and damping of the system.
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Figure 3. Frequency response curve of transfer function G21(s) with parameter uncertainty.

The parameter uncertainties of the ball screw feed system are added to the spatial
expression (2) as a part of system perturbations, and the system can be expressed as follows:

.
x = Ax + Bu + D f (x, d(t), t)
y = Cx
y2 = c2x

(6)
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where, f (x, d(t), t) = [f 2 f 1]T represents the total perturbations to the feed system, including
external disturbances, parameter uncertainties, and unmodeled dynamics. External distur-
bances usually include the nonlinear friction existing in the system and the cutting force in
the mechanical cutting process. Parameter uncertainties are mainly caused by variations in
the machined workpiece mass and table position. Unmodeled dynamics mainly include
high-frequency dynamics, lead error of the lead screw, and axial elastic deformation. So f 1
represents the total perturbations existing in the rotational motion of the feed system, which
exists in the same channel as the motor input signal u, and thus, the matching conditions
are satisfied. On the contrary, f 2 represents the total perturbations existing in the linear
motion of the feed system, which is not in the same channel as the motor input signal u,
and thus, it does not meet the matching conditions. Both f 1 and f 2 are bounded.

3. Integral Sliding Mode Control with Generalized Extended State Observer
3.1. Design of Integral Sliding Mode Controller for Flexible Drives

When the ordinary sliding mode control tracks any trajectory, it will appear to have a
steady-state error if there are some external disturbances and cannot achieve the desired
tracking performance. The integral sliding mode control can enhance the initial state of the
system located on the sliding mode surface, effectively eliminating the steady-state error of
the system [38]. Moreover, the integral sliding mode control is applicable to both minimum-
phase systems and non-minimum-phase systems and is robust to matched perturbations
of such systems [39]. Therefore, for the feed system described in formula (6), an integral
sliding mode controller is designed without considering mismatched perturbations. Then,
the system can be expressed as follows:{ .

x = Ax + B(u + f1(x, d(t), t))
y = Cx

(7)

To eliminate the influence of f 1 on system performance, the integral sliding mode
surface can be designed as follows:

σ(x, t) = CI(x(t)− x0)− CI
∫ t

0 (A + BKI)x(τ)dτ
x0 = x(0)

(8)

where CI∈R1×4 is an integer vector and an appropriate CI is designed to ensure that CIB is
a positive definite non-singular matrix [40]; x0 is the initial state of the system state variable;
and KI∈R1×4 is the coefficient matrix that needs to be designed. When the system state is
in the corresponding sliding mode plane, its condition is σ(x,t) =

.
σ(x,t) = 0, and then

.
x(t) = (A + BKI)x(t) (9)

To obtain the desired control effect, appropriate KI is designed so that A + BKI is
the Hurwitz matrix. It should be noted that the linear term CI(x(t) − x0) is continuous
in the integral sliding mode surface, and the integral term CI

∫ t
0 (A + BKI)x(τ)dτ is also

continuous. When each state of the system Equation (7) is switched, the integral sliding
mode surface remains continuous [41]. The state variable error e and the state variable
reference value xref are defined as follows:

e(t) = x(t)− xre f (t) (10)

Similarly, the controller is designed to minimize the error e of the state variable; thus,
the integral sliding mode surface can be redesigned as

σ(e, t) = CI(e(t)− e0)− CI
∫ t

0 (A + BKI)e(τ)dτ
e0 = e(0)

(11)
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The derivative of the integral sliding mode surface (11) is obtained as

.
σ = CI

.
e− CI(A + BKI)e = CI(

.
x− .

xre f )− CI(A + BKI)e (12)

Substituting system (7) into Equation (12) yields

.
σ = CI [(Ax + Bu + B f1)−

.
xre f − Ae− BKIe] = CI [Axre f + Bu + B f1 −

.
xre f − BKIe] (13)

To satisfy the sliding mode condition, the control law u can be designed as

u = −(CI B)−1(CI Axre f − CI
.
xre f ) + KIe− (η + f 1)sgn(σ) (14)

where f 1 is the upper bound of the perturbation f 1 and can be expressed as f 1 ≥ |f 1|; sgn()
represents the sign function; and η > 0 is the parameter to be designed.

The control law u (14) is substituted into Equation (13) as follows:

.
σ = CI B[ f1 − (η + f 1)sgn(σ)] (15)

The Lyapunov function is defined as

V1 =
1
2

σ2 (16)

The derivative of the Lyapunov function (16) is taken as

.
V1 = σ

.
σ = CI B(σ f1 − f 1|σ| − η|σ|) ≤ 0 (17)

Therefore, according to the Lyapunov stability theory, the designed integral sliding
mode controller meets the condition of reaching equilibrium and is asymptotically stable.

3.2. Design of Generalized Extended State Observer for Flexible Drives

The standard extended state observer method is only available for the integral chain
system [42], but the ball screw feed system (6) does not satisfy the standard form. On the
other hand, ESO cannot observe disturbances that do not satisfy the matching conditions.
To observe both matched and mismatched perturbations contained in the flexible model of
the ball screw feed system, it is necessary to design a generalized extended state observer
based on the system in Equation (6). First, the total perturbation f of the system is taken as
the extended state variable of the system as follows:

x5 = f2, x6 = f1 (18)

Combined with the new state variables x5 and x6 and system Equation (6), the new
extended system can be expressed as{ .

x = Ax + Bu + Eh(t)
y = Cx

(19)

where

x =

 x
x5
x6

, h(t) =
d f
dt

(20)

The system matrix can be expressed as

A =

[
A4×4 D4×2
02×4 02×2

]
6×6

, B =

[
B4×1
02×1

]
6×1

, E =

[
04×2
I2×2

]
6×2

, C =

[
C2×4
02×2

]T

2×6
(21)
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For system Equation (19), the generalized extended state observer can be designed
as follows: { .

x̂ = Ax̂ + Bu + L(y− ŷ)
ŷ = Cx̂

(22)

where x̂ = [x̂T x̂n+1 x̂n+2]
T , and x̂, x̂, x̂5, and x̂6 represent estimates of the state variables x, x,

x5, and x6 of the extended system Equation (19), respectively. Matrix L is the observer gain of
dimension 6 × 2, and selecting an appropriate observer gain can ensure the convergence of
the system. It is supposed that the perturbation function f satisfies the following conditions:

(1) Both f 1 and f 2 are bounded;
(2) In the steady state, f 1 and f 2 are constant, that is, limt→∞f = limt→∞h(t) = 0, and

limt→∞f = Dc, where Dc is a constant matrix.
The estimated error of each state variable of the observer is defined as

ex = x̂− x
e f 2 = f̂2 − f2 = x̂5 − x5

e f 1 = f̂1 − f1 = x̂6 − x6

(23)

Combined with Equations (19), (22) and (23), the estimated error equation can be
expressed as

.
eGESO = AeeGESO − Eh(t) (24)

In this equation,

eGESO =

 ex
e f 2
e f 1

, Ae = A− LC (25)

If an appropriate observer gain matrix L is selected and the matrix Ae is guaranteed to
be a Hurwitz matrix, then the observation error eGESO of the extended state observer is also
bounded for any bounded h(t) [43].

3.3. Integral Sliding Mode Controller with GESO for Flexible Drives

An integral sliding mode controller is designed for the flexible model of the ball screw
feed system based on Equation (6), which can simultaneously compensate for two kinds of
system perturbations. Combined with the GESO design, the new integral sliding mode
surface designed for the state variable error e can be expressed as follows:

σ(e, t) = CI(e(t)− e0)− CI
∫ t

0 (A + BKI)e(τ)dτ + Cd f̂
e0 = e(0)

(26)

where Cd ∈ R1×2 is the positive integer vector to be designed, and f̂ = [ f̂2 f̂1]
T is the

observed value of system disturbance obtained via GESO observation.
The derivative of the integral sliding mode surface (26) is obtained as

.
σ = CI

.
e− CI(A + BKI)e + Cd

.
f̂ = CI(

.
x− .

xre f )− CI(A + BKI)e + CdL f (y− ŷ) (27)

By bringing Equation (6) into Equation (27),

.
σ = CI [Axre f + Bu + D f − .

xre f − BuKIe]− CdL f Cex (28)

In the above formula, Lf is the 5th and 6th row of the designed observer gain L.
To satisfy the sliding mode condition and compensate for the perturbations f, which

satisfy and dissatisfy the matching conditions, the control law uGEOISMC can be designed
as follows:

uGESOISMC = −(CI B)−1(CI Axre f − CI
.
xre f ) + KIe + Kd f̂ − ηsgn(σ) (29)
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where Kd is the disturbance compensation gain to be designed. The control law uGEOISMC
(29) is substituted into Equation (28) as

.
σ = CI [(BKd + D) f + BKde f − Bηsgn(σ)]− CdL f Cex (30)

where Kd designed in this section can be expressed as

Kd = −(CI B)−1CI D (31)

It will be shown next that the matched and mismatched perturbations can be elimi-
nated from the output channel in a steady state by the proposed control law.

3.4. Stability and Perturbation Rejection Analysis

The disturbance compensation gain Kd obtained from Equation (31) is substituted into
Equation (30) as follows:

.
σ = CI De f − C f L f Cex − CI Bηsgn(σ) (32)

It can be seen from Equation (32) that the total perturbations of the system are elimi-
nated from the sliding mode surface.

Proof. The Lyapunov function is defined as

V1 =
1
2

σ2 (33)

The derivative of the Lyapunov function (33) is taken as

.
V1 = σ

.
σ = CI Bu(σ(−Kde f − (CI Bu)

−1CdL f Cex)− η|σ|) (34)

According to Equation (34), the value of (−Kdef − (CIBu)−1CdLfCex) depends on the ob-
servation error eGESO of the generalized extended state observer for each state variable. Ac-
cording to Section 3.1, for ball screw drives with bounded perturbations f, since the designed
GESO observation error eGESO converges to an arbitrarily small predictable range in a finite
time, there must be a constant δ > 0 that satisfies δ = supt>0|−Kdef − (CIBu)−1CdLfCex|.

Therefore, if η > δ is guaranteed to result in
.

V1 ≤ 0, then the designed integrated sliding
mode controller can satisfy the reaching condition and ensure asymptotic stability of the
system with both matched and mismatched perturbations.

To eliminate the perturbations presented in the system output under steady-state
conditions, CI can be designed as

CI = c2(A + BKI)
−1 (35)

In the case of convergence of the designed GESO, if the matrices Ae and AI = A + BKI
are Hurwitz matrices, and coAI

−1B is invertible, by designing integrated sliding mode
control laws (29), (31), and (35) based on GESO, the perturbations existing in the output
channel of the ball screw drive system (6) can be eliminated under steady-state conditions.

Proof. By bringing the control law (29) into the ball screw feed system (6), the system
state variables can be expressed as

x = (A + BKI)
−1[

.
x− B(−(CI B)−1(CI Axre f − CI

.
xre f )− KI xre f )− BKde f − (D + BKd) f + Bηsgn(σ)] (36)

By bringing system Equation (6), Formula (31), and Formula (35) into Formula (36),

y2 = c2(A + BKI)
−1[

.
x− .

xre f + De f + Bηsgn(σ)] + c2xre f (37)

According to Equation (37), the total perturbations of the flexible ball screw feed
system are eliminated from the output channel. The appropriate selection of observer gain
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matrix L and feedback control gain KI guarantees that Ae and AI = A + BKI are Hurwitz
matrices, and c2AI

−1B is reversibly available according to the following equation:

lim
t→∞

.
x(t) =

.
xre f , lim

t→∞
eGESO(t) = 0, lim

t→∞
σ(t) = 0 (38)

Then, the combination of formula (37) and (38) results in

lim
t→∞

y2(t) = y2re f (39)

where y2ref is the reference value of the table position. Formula (39) shows that the de-
signed GESO-based integral sliding mode controller can eliminate perturbations in the
table position output channel of the flexible ball screw feed system (6) under steady-state
conditions, and the feed system output accurately tracks its reference value.

When each state variable x of the system is unknown, the system state variable x̂
obtained via GESO can be used as controller feedback. In this case, the integral sliding
mode surface can be expressed as

σ̂(e, t) = CI(ê(t)− e0)− CI
∫ t

0 (A + BKI)ê(τ)dτ + Cd f̂
e0 = e(0)

(40)

In the formula, ê = x̂ − xre f . Then, the integral sliding mode control law uGEOISMC
based on GESO can be expressed as

uGESOISMC = −(CI B)−1(CI Axre f − CI
.
xre f ) + KI ê + Kd f̂ − ηsgn(σ̂) (41)

3.5. Vibration Compensation Design

When the frequency of external disturbances of the system is close to the first-order
axial vibration mode of the ball screw feed system, especially when the friction force and
cutting force are transient, the axial vibration of the system is excited. When the feed system
vibrates in the first-order axial vibration mode, the axial vibration feedback of the rotary
encoder is much smaller than that of the linear grating. According to this phenomenon,
vibration compensation is added to the controller.

The axial deformation of the system is characterized by the difference between the
grating rule feedback displacement y2[m] and the rotary encoder feedback displacement
y2[m]. To separate the exact axial vibration signal from the steady-state axial deformation,
the detected displacement difference signal is passed through a high-pass filter whose
cutoff frequency ωc is slightly less than the first-order axial vibration mode ωn of the feed
system. In order to offset the axial vibration occurring at the free end of the ball screw, the
vibration compensation signal is designed to multiply the displacement difference signal
through high-pass filtering by a proportional gain Kp, which can be expressed as

uVC = Kp
s2

(s + ωc)
2 (y2 − y1) (42)

Finally, the integral sliding mode controller u with an extended state observer and
vibration compensation designed for the flexible model of the ball screw feed system can
be expressed as

u = uGEOISMC + uVC (43)

This approach was found to be effective in damping out the first-order vibration mode.
The high-pass filter gain drops below −3 dB after ωn, making it difficult to dampen out the
second and higher order modes.

The overall structure diagram of the closed-loop system is shown in Figure 4.



Actuators 2023, 12, 387 11 of 20

Actuators 2023, 12, x FOR PEER REVIEW 11 of 21 
 

 

This approach was found to be effective in damping out the first-order vibration 
mode. The high-pass filter gain drops below −3 dB after ωn, making it difficult to dampen 
out the second and higher order modes. 

The overall structure diagram of the closed-loop system is shown in Figure 4. 

f̂

ẑ
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4. Simulation and Experimental Verification
4.1. Experimental Setup and Modeling

The structure of the high-speed ball screw feed experimental system is shown in
Figure 5. To reduce vibration, the bed of the feed bench is made of granite. The system
is powered by a 9 kW servo motor, and the maximum output torque is 85.8 [Nm], the
rated output torque is 28.6 [Nm], the matching servo drive is set to torque control mode,
and the analog control voltage is ±8 [V]. For safety reasons, the torque output is limited
to 20% of the maximum output torque during parameter identification so that the motor
current constant and torque constant are 2.145 [Nm/V]. The lead and diameter of the ball
screw pair are 20 [mm] and 20 [mm], respectively, and the total length of the screw is
1044 [mm], of which the thread length is 867 [mm]. The total mass of the table is 50 [kg]. An
incremental linear grating ruler is installed on one side of the table to feedback the linear
displacement of the table. The ball screw is equipped with an incremental rotary encoder
near the motor side, which is used to feedback the rotary displacement of the screw. The
feedback signal is subdivided through the IBV subdivision box. The subdivision box selects
a subdivision 400 times. After subdivision, the signal resolution of the rotary encoder is
2.5 [nm], and the signal separation rate of the linear grating ruler is 12.5 [nm]. The system
controller adopts the dSPACE DS1103 real-time simulation system.
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The parameters of the flexible model of the ball screw feed system were identified
through a sinusoidal sweep frequency test on the above test equipment. The open-loop fre-
quency response function (FRF) of the system obtained via the sweep frequency experiment
is shown in Figure 6. The parameters in the system state-space Equation (3) were obtained
through fitting using the least-squares method, and the results are shown in Table 1.
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Table 1. Parameters of flexible body model of the ball screw feed system.

m1 (V·s2/m) m2 (V·s2/m) b1 (V·s/m) b2 (V·s/m) k (V/m) c (V·s/m)

0.6512 0.0771 4.1571 × 10−4 0.8052 2.1153 × 104 2.6775

As shown in Figure 6, the structural resonance is located atωn = 94.7(Hz), which is
the first-order axial vibration mode of the experimental system and is usually attributed to
the flexibility of the bearing and lead screw. This vibration mode is easily excited by the
motor torque and dominates the factors that affect the tracking accuracy of the table. The
sensitivity of the ball screw feed system to changes in the workpiece mass is very important.
During machining, the load (table) inertia changes with the cutting process of the material.
Therefore, this work considered changes in the dynamic characteristics of the ball screw
feed experimental system under three different masses. Different masses with loads of 0 kg,
25 kg, and 50 kg were placed on the worktable. The open-loop frequency-domain response
curves obtained through plotting the experimental data and parameter fitting are shown in
Figure 7. As observed, the first-order vibration mode of the system changes with a change
in load mass, the natural frequency decreases gradually with an increase in mass, and the
system stiffness also decreases gradually. Therefore, the designed controller must be robust
to the parameter uncertainties caused by this situation.
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4.2. Simulation Verification

The reference trajectory adopted in the simulation has a maximum stroke of 80 [mm],
a maximum speed of 250 [mm/s], and a maximum acceleration of 0.25 g [mm/s2]. The
reference trajectory diagram obtained from the simulation is shown in Figure 8. The
simulation was carried out in the Matlab/Simulink environment, and the solution algorithm
was selected as ode1 with a frequency of 20 [kHz]. The flexible control model of the ball
screw feed system described in Figure 5 of the controlled object uses the parameters of the
two-degree-of-freedom quality model presented in Table 1. The comparison objects are
as follows:

(1) Case 1: GESOISMC with vibration compensation;
(2) Case 2: ISMC.
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Figure 8. Reference trajectory.

4.2.1. Tracking Performance Only with Matched Perturbation

To verify the robustness of the designed controller against matched perturbation, a
sinusoidal signal f 1 = 1.5sin(2πt) was added to the simulation as an external disturbance.
The tracking error and control signal obtained from the simulation are shown in Figure 8.

As shown in Figure 9, both controllers can fully compensate for the matched external
disturbance in the system, maintain the tracking accuracy of the system, and keep the
tracking error consistent with the scenario when there is an absence of disturbance, with
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the maximum tracking error still being 1.575 [µm]. The simulation results show that the
two controllers have strong robustness to the matched external disturbance.
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Figure 9. Simulation results of tracking performance only with matched perturbation: (a) Case 1 and
(b) Case 2.

4.2.2. Tracking Performance with Matched and Mismatched Perturbations

To verify the robustness of the designed controller against both matched and mis-
matched perturbations, a mismatched sinusoidal signal f 2 = 1.2sin(πt) and a matched
sinusoidal signal f 1 = 1.5sin(2πt) were added in the simulation process at the same time.
The tracking error and control signal obtained from the simulation are shown in Figure 10.
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Figure 10. Simulation results of tracking performance with matched and mismatched perturbations:
(a) Case 1 and (b) Case 2.

As shown in Figure 10b, in the case of an interference that does not meet the matching
conditions, if the ISMC cannot eliminate the influence of disturbances existing in the system
output completely, the tracking error greatly increases, and the maximum tracking error
is 71.076 [µm]. Moreover, the tracking error curve is completely deformed due to the
existence of mismatched external disturbances, and the position of the table does not
return to the original point after the movement, with a positioning error of 71.076 [µm]. In
contrast, the GESOISMC can compensate well for the influence of matched and mismatched
external disturbances. Compared to the case without mismatched external disturbances,
the tracking accuracy is maintained; the maximum tracking error is 2.386 [µm], and the
positioning error is 0.0921 [µm]. This shows that the GESOISMC designed for the ball screw
feed system has high immunity to the interferences existing in the system that both satisfy
and dissatisfy the matching conditions.
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4.2.3. Tracking Performance with Uncertainties

To verify the robustness of the designed controller to uncertainties of system parame-
ters, the system parameters were set to be time-varying parameters during the tracking
performance simulation as k = 2.1153 × 104 + 1.5 × 104sin(4πt), c = 2.6775 + 2sin(4πt), and
m1 = 0.6512 + 0.1sin(4πt). The tracking error and control signal obtained are shown in
Figure 11.
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Figure 11. Simulation results of tracking performance with parameter uncertainties: (a) Case 1 and
(b) Case 2.

As shown in Figure 11b, in the case of system uncertainties, the designed optimal
guarantee coefficient matrix KI has been optimized for system uncertainties. However, if
the ISMC cannot fully compensate for the influence of the system parameter uncertainties,
especially if the parameter uncertainties do not meet the matching conditions, the tracking
error greatly increases, the maximum tracking error is 10.562 [µm], and the system uncer-
tainties deform the tracking error curve. In contrast, the GESOISMC can compensate well
for the effects of system uncertainties. The maximum tracking error is 2.166 [µm], and com-
pared to the condition without system parameter uncertainties, the shape of the tracking
error curve is maintained well, still showing the jerk curve of the reference trajectory. This
shows that the GESOISMC designed for the ball screw feed system has strong robustness
to system parameter uncertainties.

4.2.4. Tracking Performance with Vibration

When the frequency of external disturbances is close to the first-order axial vibration
frequency of the system, the system resonance is excited. To verify the vibration suppression
performance of the designed controller in the presence of vibration interference in the
system, sinusoidal signals that satisfy and dissatisfy the matching conditions were added
in the simulation process, whose frequency is near the natural frequency of the first-order
vibration mode of the system, namely, f 1 = 0.2sin190πt[V] and f 2 = 1.5sin190πt[V]. The
tracking error and control signal obtained from the simulation are shown in Figure 12.

As shown in Figure 12b, high-frequency sinusoidal interference signals excite the
first-order axial vibration of the system, resulting in a great decline in tracking accuracy
and dramatic fluctuations in tracking errors and control signals. The maximum tracking
error of the ISMC is 8.206 [µm], while the fluctuation range of the constant-velocity stage
reaches 13.38 [µm]. The GESOISMC with vibration compensation significantly improves
the vibration suppression effect and the tracking accuracy of the system. The maximum
tracking error is reduced to 2.488 [µm], and the fluctuation of the tracking error curve
is also greatly reduced, while the fluctuation amplitude of the constant-velocity stage is
reduced to 1.856 [µm]. In summary, the GESOISMC with vibration compensation designed
for the flexible model of the system can effectively suppress the first-order axial vibration
of the ball screw feed system and ensure the tracking accuracy of the system.
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Figure 12. Simulation results of tracking performance with vibration interference. (a) Case 1; (b) Case 2.

4.3. Experimental Verification

To verify the comprehensive performance of the designed controller, the controller
was applied to the high-speed ball screw feed experimental system shown in Figure 5
for tracking experiments. The tracking reference trajectory also uses the curve presented
in Figure 8. After subdivision, the signal resolution of the rotary encoder is 0.04 [µm],
and the signal separation rate of the linear grating ruler is 0.2 [µm]. During the process
of the tracking experiment, the linear grating was used to feedback the displacement
signal and speed signal of the table, and the rotary encoder was used to feedback the
displacement signal and speed signal of the motor. The experimental comparison objects
are the following: (1) Case 1: GESOISM with vibration compensation, and (2) Case 2: ISMC.
To ensure the reliability of the experimental results, each test was repeated three times to
obtain repeatable experimental results.

4.3.1. Tracking Performance

Firstly, the tracking performance of the designed controller was verified, and mass
blocks and disturbance signals were not added during the experiment. The tracking error
obtained from the experiment is shown in Figure 13. As illustrated in Figure 13a, the
maximum tracking error of the ISMC is 25.96 [µm], and there is a tracking error much
larger than that in the acceleration stage of the return journey, which may be caused by
the friction of the linear guide rail, which is an external disturbance that dissatisfies the
matching conditions. The RMS of the tracking error is 5.47 [µm], and there is a positioning
error of 2.31 [µm]. In contrast, the maximum tracking error of the GESOISMC is reduced
to 12.79 [µm], the RMS is reduced to 4.02 [µm], and the positioning error is reduced to
8.2 × 10−11 [µm]. This is because GESO compensates for the frictional interference and
unmodeled dynamics present in the system.
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Figure 13. Tracking experimental results: (a) tracking error and (b) control signals.
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4.3.2. Robustness Performance against System Uncertainties

To verify the robustness of the designed controller to the uncertainties of system
parameters, 25 [kg] mass blocks were added to the table during the experiment. Adding the
mass blocks could change the parameters of the system model. The tracking error obtained
from the experiment is shown in Figure 14.
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Figure 14. Comparison of tracking experimental results with no workpiece and with 25 [kg] work-
piece added: (a) Case 1 and (b) Case 2.

As shown in Figure 14b, compared to the tracking error under the scenario without a
workpiece, when a 25 [kg] workpiece is added, the tracking error of the ISMC increases
significantly; the maximum tracking error is 35.51 [µm], and the RMS increases to 7.43 [µm].
In contrast, the GESOISMC maintains a tracking performance that is comparable to the
scenario with no workpiece, with a maximum tracking error of 14.84 [µm] and an RMS of
4.45 [µm]. The results of the tracking experiment after adding the workpiece are consistent
with the simulation results with increases in the parameter uncertainties, indicating that
the GESOISMC designed for the ball screw feed system can compensate for the parameter
uncertainties of the system more effectively.

4.3.3. Vibration Suppression Performance

To verify the tracking performance and vibration suppression performance of the
designed controller in the presence of vibration interference in the system, a sinusoidal
signal f 1 = 1.2sin190πt[V] with a frequency near the first-order vibration frequency of
the system was added to the voltage input signal. The tracking error obtained from the
experiment is shown in Figure 15.
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Figure 15. Tracking experimental results with vibration interference.
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By comparing the tracking error of the two controllers, it can be seen that the tracking
error of the ISMC fluctuates greatly when there is vibration interference in the system. The
maximum tracking error decreases to 24.93 [µm], but the RMS increases to 6.831 [µm], and
the positioning error increases to 3.28 [µm]. The GESOISMC + vibration compensation has
better vibration suppression performance than the ISMC. The fluctuation of the tracking
error is significantly smaller than that of the ISMC, with the maximum tracking error
equal to 15.98 [µm], indicating a slight increase, the RMS increases to 4.86 [µm], and the
positioning error increases to 0.25 [µm]. Additionally, the overall vibration suppression
effect is better than the ISMC. After adding vibration interference, the tracking experimental
results are consistent with the simulation results. The GESOISMC + vibration compensation
designed for the flexible ball screw feed system can effectively suppress the first-order axial
vibration of the system and ensure the tracking accuracy of the system.

The experimental data of the tracking experiment are summarized in Table 2, which
can more directly reflect the performance of different controllers.

Table 2. Summary of tracking experimental data.

Case Maximum Absolute Value of Tracking
Error [µm] RMS [µm] Positioning Error [µm]

No workpiece 1 12.79 4.02 8.2 × 10−11

2 25.96 5.47 2.31

Addition of 25 kg workpiece 1 14.84 4.45 0.42
2 35.51 7.43 1.25

Vibration interference
1 15.98 4.86 0.25
2 24.93 6.831 3.28

5. Conclusions

In this paper, an integral sliding mode controller based on a generalized extended state
observer is proposed for the flexible body model of a ball screw feed system, and vibration
compensation is designed. The purpose of this method is to effectively compensate for
system perturbations that satisfy and dissatisfy the matching conditions of the ball screw
feed system and to further suppress first-order axial vibration induced by system distur-
bances. The simulation and experimental results show that the designed GESOISMC with
vibration compensation has several advantages: Firstly, the addition of GESO effectively
solves the defect that an ordinary ISMC cannot compensate for mismatched perturbations
and significantly improves the anti-interference performance of the controller. Secondly,
the GESOISMC with vibration compensation is more robust to parameter uncertainties
and first-order axial vibration of the ball screw feed system, resulting in better tracking
performance. In conclusion, the developed control method is expected to provide better
dynamic performance for ball screw feed drives.
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