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Abstract: We propose to study the nonlinear stroke and lower-order modal interactions of a clamped–
clamped shallow-arch flexible micro-electrode. The flexible electrode is electrically actuated through
an in-plane parallel-plates field superimposed over out-of-plane electrostatic fringing fields. The
in-plane electrostatic fields result from a difference of potential between the initially curved flexible
electrode and a lower stationary parallel-grounded electrode. Moreover, the out-of-plane fringing
fields are mainly due to the out-of-plane asymmetry of the flexible shallow arch and two respective
surrounding stationary side electrodes (left and right). A nonlinear beam model is first introduced,
consisting of a nonlinear partial differential equation governing the flexible shallow-arch in-plane
deflection. Then, a resultant reduced-order model (ROM) is derived assuming a Galerkin modal
decomposition with mode-shapes of a clamped–clamped beam as basis functions. The ROM coupled
modal equations are numerically solved to obtain the static deflection. The results indicate the
possibility of mono-stable and bi-stable structural behaviors for this particular device, depending on
the flexible electrode’s initial rise and the size of its stationary side electrodes. The eigenvalue problem
is also derived and examined to estimate the variation of the first three lower natural frequencies of
the device when the microbeam is electrostatically actuated. The proposed micro-device is tunable
with the possibility of pull-in-free states in addition to modal interactions through linear coupled
mode veering and crossover processes. Remarkably, the veering zone between the first and third
modes can be electrostatically adjusted and reach 22.6 kHz for a particular set of design parameters.

Keywords: MEMS; shallow arch; combined effect; fringing-field; eigenvalue problem

1. Introduction

The Micro Electromechanical Systems (MEMS) industry has been acknowledged
as one of the most auspicious technologies of the past century, primarily in developing
both industrial and domestic products by combining silicon-based microstructures with
micromachining technology [1]. Microbeams remain the principal building blocks for
many MEMS-based microstructures. These were predominantly used as actuators [2]
in activating the motion of most MEMS devices, and as sensors [3] in spotting physical
quantities such as small masses, pressure, forces, accelerations, etc. These small-scaled
beams can contemplate several actuation methods, the most important of which include [4]
electrostatic, electrothermal, electromagnetic, and even piezoelectric actuation.

Electrostatic actuation is known to be the most prevalent transduction mechanism for
actuating microbeams for several reasons [5]. They are simple to design and fabricate, have
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a relatively fast activation time, and, most importantly, have low-power consumption capa-
bilities. This electrostatic transduction technique can have several arrangements, including
the parallel-plates configuration shown in Figure 1 which previously represented the most
reputable and common actuation method because of its easiness and high efficiency [3].
However, this nonlinear actuation method is limited by a common structural instability,
known as pull-in stiction instability, which occurs when the actuating voltage exceeds a
certain limit value, leading to a collapse of the parallel-plates capacitor [6–8]. Within this
instability, the microstructure collapses toward the actuating electrode at a critical threshold
value called the pull-in voltage. While regularly observed as a shortcoming, the pull-in
instability has been suggested on several occasions as a working strategy for sensitivity
improvement of MEMS devices. However, when the electronically actuated microstructure
is activated very close to this instability threshold, even a tiny abrupt change in the loading
or any environmental parameters may result in the immediate collapse of the device and
loss of its response tracking. This would definitely result in irreversible damage, affecting
the long-term usability of the MEMS device. For this purpose, most MEMS sensors were
driven far enough from the pull-in point, at the expense of inferior performance.

Figure 1. 3D schematic and side view of the in-plane and out-of-plane electrostatically actuated and
initially curved flexible electrode-based micro-actuator.

Therefore, and in order to benefit from the increased sensitivity near such critical
instability while avoiding the associated hazards, alternative operational strategies were
suggested. Indeed, several research works have been communicated to possibly suggest
ways to suppress the effect of this pull-in instability. Among these ideas we can cite
delayed feedback, stochastic optimal control, the boundary control feedback law [9–11],
operating the MEMS structure in dielectric liquid mediums [12], geometry incorporating
raised side electrodes [13], considering high-frequency AC tensions [14], integrating lateral
electrostatic transducers employing repulsive force [15], etc. Though these methods were
successful in suppressing the effect of pull-in, they do have challenges, ranging from
additional fabrication steps to high actuation voltages. Bi-stable curved micromechanical
beams [16–18] and non-contact electrostatic microactuators using slit structures [19–22]
were also some of the arrangements examined for bi-stability with extended range of
operation and pull-in-free stable systems with reversible processes, respectively. A bi-stable
structure can be defined as a structure capable of operating within two different equilibrium
states at the same while actuating voltage. These kinds of structures have been intensively
examined in the literature for extending the range of travel of the micro-actuator while
extending the pull-in instability threshold. However, the main limitation of such bi-stable
microstructures is that they were shown to be prone to temperature, residual stress, and
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even fringing fields variations in the parallel-plates actuation [23,24]. Furthermore, few
out-of-plane (fringing field) non-contact electrostatic actuation arrangements were reported
to be useful for different pull-in-free operations [16,25–27].

From the published research in the historical and recent literature, one can realize the
continuous need for stable and sensitive MEMS micro-actuators with a large stable range
of travel (stroke) and delayed pull-in instability. Hence, this work theoretically investigates
the feasibility of both stroke and frequency tunability improvements when combining
both parallel plates and fringing fields actuator-based micro-devices. In contrast to a
previous work [26], a detailed analysis of the micro-actuator static and eigenvalue problem
characteristics are presented. To this end, the paper is organized as follows: Modeling
information about the electrostatic actuator design is first outlined, where the analytical
expressions of both parallel plates and the fringing fields electrostatic forces are presented.
A description of the reduced-order modeling (ROM) process is then exposed. The static as
well as eigenvalue problems of the electrostatic actuator are solved and examined case by
case. The key results of this investigation are finally summarized in a concluding section.

2. Problem Formulation and Beam Equation of Motion

The nonlinear beam equation governing the in-plane stroke of the electrostatic actuator
shown in Figure 1 is first introduced. The actuator consists of a doubly clamped prismatic
shallow-arched microbeam (Figure 1) with length L, width b, thickness h, cross-section area
A = bh, and moment of area Iyy = bh3

12 . The flexible electrode is made of polycrystalline
silicon, which can be assumed to be a homogeneous isotopic elastic material of mass density
ρ = 2332 kg/m3, Young’s modulus E ≈ 154 GPa, and Poisson’s ratio ν ≈ 0.22. Since we
will assume a case study below where the width of the microbeam is to be relatively greater
than its thickness, an effective modulus of elasticity E′ = E

2(1−ν2)
will then be considered.

Neglecting any axial and rotary inertia effects as compared to the transverse inertia
effect, which is mainly dominant in our case, supposing that the microbeam’ thickness
h� L and its respective in-plane deflection w(x, t)� L, and assuming a nonlinear Euler–
Bernoulli beam theory, the resultant equation governing the in-plane displacement w(x, t)
and its respective boundary conditions can be written as:

E′ Iw′′′′ + ρAẅ + c̃ẇ =
E′A
2L

(dx̂)
(
w′′ − w0

′′)+ FPP(w)+

+ FFF(w)

(
H
(

x− L− Le

2

)
H
(

L + Le

2
− x

))
, (1)

w(0, t) = 0,
∂w
∂x

(
0, t̂

)
= 0, w(L, t) = 0,

∂w
∂x

(L, t) = 0, (2)

where c̃ symbolizes the viscous damping coefficient, w0 = b0
(
1− cos

(
2π x

L
))

is the initial
rise of the microbeam, FPP and FFF represent the distributed electrostatic force per unit
length functions arising from the out-of-plane fringing field, respectively, and H(x) is the
Heaviside step function. The in-plane electrostatic force can be analytically approximated
using the following expression:

FPP(w) =
ε0bV2

PP

2(d + w0 − w(x, t))2 . (3)

Note that the function FFF cannot be obtained analytically in a closed form and will
be only approximated using the fitting function available from the literature. As a case
study, we consider a polysilicon shallow arch of length L = 1000µm, width b = 16µm,
thickness h = 3µm, and two horizontal offsets of g = 1µm and 3µm. The motivations
behind the selection of the above geometrical and material properties for the simulated
actuator design stemmed from an existing design examined in [17]. The proposed MEMS
structure can be adjusted, minimizing elaborate features and ensuring compatibility with
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standard microfabrication processes commonly used in the MEMS field while conserving
the targeted electromechanical behavior.

The out-of-plane electrostatic force per unit length is a nonlinear function of the
microbeam in-plane deflection and is estimated using the following numerical fitting
function [26]:

FFF(w) = αV2
FF

Sinh(β(w0 − w(x, t)))
Coshγ(β(w0 − w(x, t)))

, (4)

where α, β, and γ are curve-fitting coefficients and their respective values are summarized
in Table 1.

Table 1. The fitting coefficients of the out-of-plane fringing fields electrostatic resultant force [26].

Case Study α β γ

g = 1µm 12.36× 10−6 0.427 1.83
g = 3µm 2.15× 10−6 1.05 1.4

3. Numerical Reduced-Order Model

To get a numerical solution for the above Partial Differential Equation (PDE) and its re-
spective boundary conditions governing the actuator’s in-plane deflection, Equations (1)–(4),
have to be first discretized using the Galerkin expansion technique to yield an appropriate
Reduced-Order Model (ROM) consisting of a set of coupled Ordinary-Differential Equations
(ODEs) [16,23]. For this, the deflection of the micro-actuator can be approximated as:

w(x, t) =
n

∑
i=1

ui(t)φi(x), (5)

where the test functions φ1≤i≤N(x) denote the linear normalized undamped mode-shapes
of a doubly clamped beam, and the time-varying functions u1≤i≤N(t) are their normalized
modal amplitude coordinates. The ROM equations are to be constructed as follows: we
first substitute Equation (5) into Equations (1)–(4), then multiply the outcome by φi(x)
for 1 ≤ i ≤ N, use the associated orthogonality conditions of the mode shapes, and then
integrate the resultant equations from 0 to 1. The outcome is a set of N coupled ODEs
functions of the modal amplitudes ui(t) where 1 ≤ i ≤ N.

3.1. Static Equation

Since we are considering getting the static behavior of the actuator, we calculate its
stationary deflection by setting all time-dependent terms in the ROM differential equations
equal to zero and applying only constant DC voltages. Then, the modal amplitudes ui(t)
are replaced by unknown constant quantities ci. This results in a system of nonlinear
algebraic equations in terms of those coefficients. The system is then solved numerically
using the Newton–Raphson method.

The static solution is denoted by ws(x) and it is given by

ws(x) =
n

∑
i=1

ciφi(x).

3.2. Eigenvalue Problem Equations

The eigenvalue problem of the actuator is carried out to calculate the variation of its
natural frequencies under the effect of different DC voltages. For this, we consider the ROM
modal amplitudes’ discretized equations, which can be written in a state-space form as:

Ẇ = R(W), (6)
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where W = [u1, u2, . . . ,un, u̇1, u̇2, . . . ,u̇n]
T and R(W) denote the actuator normalized modal

coordinates vector and a right-hand-side vector which is a nonlinear function of the modal
coordinates ui(t), respectively. In order to capture all possible eigenfrequencies of the pro-
posed actuator structure, the derived ROM includes symmetric and antisymmetric mode
shapes. Next, we split the overall displacement W into a static component ci, which consti-
tutes the equilibrium state under DC voltage, and a dynamic component ηi(t) as follows:

ui = ci + ηi(t). (7)

Equation (7) can be rewritten in matric form as W = Ws + η(t). Assuming minimal
perturbation ηi(t), the Taylor series expansion is employed while suppressing the higher-
order terms, and, considering R(Ws) = 0, the following equation can be derived:

η̇(t) = J(Ws)η(t), (8)

Here, the Jacobian matrix is denoted by J(Ws) and it is evaluated at the MEMS
equilibrium points. At a given DC voltage, the MEMS natural frequencies can be obtained
by substituting the static solution ci into the matrix J and evaluating its corresponding
eigenvalues λ based on the numerical solving of the following characteristic equation:

det(J(Ws)− λI) = 0, (9)

where I and det denote the identity matrix and the determinant operator, respectively.

4. Results

As a case study, we consider a shallow arch to be made of polycrystalline silicon with
length L = 1000µm, width b = 16µm, thickness h = 3µm, and two horizontal offsets
of g = 1µm and 3µm. First, in one of our previous papers [26], we have compared the
simulated static deflection of the out-of-plane fringing-fields-based actuator arrangement
with some experimental data that showed an acceptable level of agreement. Furthermore,
in a separate publication [28], we have conducted a comparative analysis between the
numerical simulations and data presented by another research group [17], resulting in a
satisfactory level of agreement.

4.1. In-Plane Parallel Plates Actuation

Next, we consider investigating, as a first study, the variation of the maximum static
deflection and the first three natural frequencies of the actuator under only parallel-plate DC
electrostatic force. Figure 2 clearly demonstrates that the shallow arch would not experience
a “bi-stability”-like behavior for all values of the actuator’s initial curvature, when the
in-plane and out-of-plane voltages VPP and VFF are varied. As can be seen in Figure 2, for
the case of b0 = 2.5µm and lower, only one stable equilibrium position at one DC voltage
parameter load is registered. For this particular case, the beam’s mid-point deflection
starts to increase gradually, with a softening-like behavior, as revealed by a decrease in
the first three natural frequencies, mainly governed by the quadratic nonlinearity which is
dominated by the initial curvature, Figure 3a. Formerly, when reaching the flat arrangement,
the arch displacement upsurge was swiftly accompanied by an increase in all natural
frequencies, Figure 3a, indicating a strong cubic stiffening nonlinearity governed by the
mid-plane stretching effect. Finally, the microbeam’s maximum deflection curve shows a
slope going to infinity which indicates that pull-in instability has been reached (when the
arch reaches the lower stationary electrode) and this is complemented by a drop to zero for
the fundamental first frequency, Figure 3a.
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Figure 2. Variation of the mid-point static deflection of the initially curved micro-electrode under
parallel-plates DC load and for three different values of the initial rise.

(a) b0 = 2.5µm (b) b0 = 3.5µm

(c) b0 = 4.5µm

Figure 3. Variation of the first lowest natural frequencies of the initially curved micro-electrode under
parallel-plated DC load and for three different values of the initial rise.

For the cases of b0 = 3.5µm and 4.5µm, respectively, the shallow arch static curves
show a bi-stable-like behavior with a possibility of coexistence between two stable equilib-
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rium positions: one when the beam is curved up away from the lower stationary electrode
(initial curvature) and a second one when the beam is concave down close to the lower
electrode (counter curvature), Figure 2. In both cases, the static curves depicted in this
figure are showing two slopes going to infinity illustrating both snap-through (when
the beam travels from initial to counter curvature solutions or vice versa) and pull-in
instabilities, respectively.

Nevertheless, only the case of b0 = 3.5µm is showing that the arch can undergo the
snap-through instability before the pull-in with the increase in the DC voltage because
the registered snap-through voltage, in this particular case, is found to be lower than
the pull-in voltage. Contrarily, for the case of b0 = 4.5µm, the arch is forced to pull-in
without snap-through, having recorded a snap-through voltage greater than the pull-in
one. Regarding the variation of the natural frequencies, both cases show a monotonic
decrease in all three first natural frequencies when the beam is in the first equilibrium
state, concluded by a drop to zero for the fundamental frequency, indicating that instability
corresponding to the snap-through voltage has been reached. Afterward, the shallow arch
regains stability, accompanied by an increase in the three lowest natural frequencies when
the arch is deflected in the neighborhood of the second stable state. This increase is then
completed by a drop to zero for the fundamental frequency, corresponding to the pull-in
instability. It is worth noting that all the frequency variation curves portrayed in Figure 3
are not displaying possible mode interactions, neither mode-veering nor mode-crossing.

4.2. Out-of-Plane Parallel-Plates Actuation

Next, the variation of the shallow arch maximum static mid-point deflection
(Figures 4 and 5) and their three lowest natural frequencies (Figures 6–8) are examined for
various out-of-plane DC fringing fields loads, while considering two lateral gap sizes of
g = 1µm and 3µm.

As can be seen from Figures 4 and 5, all the static curves show a slow increase
(bending regime) followed by a rapid one (catenary regime) for small DC loads [26]. Also,
all displacement curves are concluded by a slow variation trend until the shallow arch
static deflection converges to its initial rise-assumed value b0 (elastic regime). In both
Figures 4 and 5, we have also investigated the effect of assuming quarter and half-sized
side stationary electrodes, both considered symmetrically from the midspan of the flexible
electrode. It is worth noticing that only a single stable equilibrium position was registered
for each case, with a faster increase in the static deflection, with a higher DC load, for
the case of the half-size electrode as compared to the quarter one. Nevertheless, when
considering g = 3µm, quarter-sized electrode, and higher initial rise value, two stable
equilibria were possible at certain DC loads, illustrating a symmetry-breaking of the shallow
arch under out-of-plane DC load actuation. Therefore, this is a good indication that such
out-of-plane fringing field types of actuation are very interesting when considered from
two different perspectives: increasing the electrostatic load through decreasing the lateral
gap size and/or increasing the side electrode sizes, both resulting in faster stroke regarding
the applied DC voltage. On the contrary, when considering the opposite case (higher lateral
gap size and lower side electrode size), one can get a possible bi-stable stroke-like behavior.

In the following, Figures 6–8 portray the effects of the shallow arch initial rise b0, the
lateral gap size, and side electrodes size on the lowest three natural frequency variations.
Figure 6 examines the case of g = 1µm with quarter-sized side electrodes. As can be
seen, for a lower value of initial rise, b0 = 4µm, all three lowest frequencies are formerly
decreasing with the DC load, certainly because of the dominance of the initial curvature
effect, Figure 6a. Then, increasing further the DC load, the shallow arch reaches the
near-flat shape, and consequently the mid-plane stretching effect induces an increase in
the fundamental frequency until crossing the second natural frequency before departing
away from each other. This is well known as the crossover phenomena, where both
modes are considered to be linearly decoupled. Next, additional DC amplitude brings
the second mode frequency to higher values until again crossing the first frequency in a
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second crossover occurrence. For the case of higher values of b0, Figure 6b,c, the same
crossover occurrences were recorded, moreover the second mode frequency is showing
two drops to lower values indicating the occurrence of the symmetry-breaking singularity:
the arch static shape switching from a symmetric pattern to an antisymmetric one. It is
worth noting here that for all above cases, the first and third frequencies did not show
any clear indication of mode interaction among their variation with the DC load. On the
contrary, when considering the case of the half-sized side electrode, Figure 7, and for higher
values of b0 = 6 and 8µm, the first and third frequencies showed affirmative signs of
modal interaction as their variation clearly exhibited an attraction-like behavior where
both frequencies are coming close to each other with the increase in the DC load. The
frequencies deviate away from each other in a manner of mode-veering as the DC voltage
is further increased, Figure 7b,c. One concludes that such frequency veering occurs when
both first and third frequencies are very close to each other. This fact could represent a
positive mark of a strong mode localization, which could in turn be very practical for many
MEMS applications ranging from energy harvesting to mass sensing.

(a) Quarter electrode Le = 0.25L (b) Half electrode Le = 0.5L

(c) b0 = 8µm and Le = 0.25L (d) b0 = 8µm and Le = 0.5L

Figure 4. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude
only and assuming different values of the initial rise for the case of g = 1µm.
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(a) Quarter electrode Le = 0.25L (b) Quarter electrode Le = 0.25L

(c) Half electrode Le = 0.5L (d) b0 = 8.5µm and Le = 0.25L

(e) b0 = 8.5µm and Le = 0.5L

Figure 5. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude
only and assuming different values of the initial rise for the case of g = 3µm.
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(a) b0 = 4µm (b) b0 = 6µm

(c) b0 = 8µm

Figure 6. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude
only, and assuming different values of the initial rise for the case of g = 1µm and Le = 0.25L.

(a) b0 = 4µm (b) b0 = 6µm

Figure 7. Cont.
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(c) b0 = 8µm

Figure 7. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude
only, and assuming different values of the initial rise for the case of g = 1µm and Le = 0.5L.

(a) b0 = 4µm (b) b0 = 6µm

(c) b0 = 8µm

Figure 8. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude
only, and assuming different values of the initial rise for the case of g = 3µm and Le = 0.5L.
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The same process is also obtained when considering the case of g = 3µm with half-
sized side electrodes, as the first–second mode-crossings and the first–third mode-veering
are arising at higher values of DC voltage, as compared to the case of g = 1µm, Figure 8.

4.3. Combined Parallel-Plate and Fringing Field Actuations

It would be of great interest to many MEMS designers to understand the difference
between the behavior of the shallow-arch actuator once actuated with a combined in-
plane and out-of-plane electrostatic arrangement. Therefore, the case to be examined
subsequently is the superposition of both parallel plates (PP) and fringing fields (FF)
DC actuation arrangements, Figures 9 and 10, for the case of g = 1µm and half-sized
side electrodes.

Figure 9 shows the mid-point static deflection of the shallow arch considering three
different values of b0, two fixed values of the PP DC load and when varying the out-of-plane
FF DC voltage. Recall, from Figure 2, that for lower values of b0, such as 2.5 µm, the shallow
arch possesses only one stable equilibrium under PP DC load. Therefore, for this particular
case, and when assuming lower (50 V) or higher (100 V) PP DC voltages (Figure 9a and
Figure 9b, respectively), the shallow arch mid-point static displacement showed only one
stable solution in spite of having two opposite stroke directions: downward toward the
lower stationary electrode for the case of 50 V and upward away from the same electrode
for the case of 100 V, both when increasing the FF DC load.

(a) VPP = 50 V (b) VPP = 100 V

Figure 9. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude,
assuming different values of the initial rise and two values of parallel-plate DC voltages, for the case
of g = 1µm and Le = 0.5L.

However, when increasing the initial rise to higher values, such as 3.5µm and 4.5µm.
the shallow arch static deflection may exhibit two distinct but coexisting stable positions:
one for lower values of PP DC load (i.e., 50 V) and one for higher values of PP DC load
(i.e., 100 V). For the case of 50 V PP DC load and increasing the FF DC load, Figure 11a, the
shallow-arch static deflection is showing a mono-stable-like behavior with greater stroke
when considering the higher initial rise values. Controversially, when increasing the PP DC
load to 100 V, the shallow arch static profile displayed a bi-stable-like hysteresis behavior:
two distinct and coexisting stable strokes: one downward increasing motion toward the
lower stationary when the arch is initially in its first stable upper position and one upward,
turning away from the same electrode when the arch is initially in its second lower stable
position, both when increasing the FF DC load. When the FF DC load reaches a threshold
value, the registered bi-stable behavior switches to a mono-stable one, attracting the shallow
arch to the straight-like outline under the effect of the FF DC load.
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Figure 10. Variation of the mid-point static deflection under out-of-plane fringing fields DC amplitude,
assuming different values of the initial rise and two values of parallel-plate DC voltages, for the case
of b0 = 3.5µm, g = 1µm and Le = 0.5L.

Figure 10 shows the mid-point static deflection of the shallow arch for the case of
b0 = 3.5µm, four fixed values of the FF DC load (g = 1µm and half sized side electrodes),
and when varying the in-plane PP DC amplitude. Recall, from Figure 2, that for such an
initial rise case, the shallow arch possesses a hysteresis bi-stable-like static behavior under
PP DC load. Then, for this particular case, and when we gradually increased the FF DC
amplitude (Figure 10), the shallow-arch mid-point static displacement bi-stable band is
reduced until showing a mono-stable-like response with limited stroke. The existence of an
invariant displacement for different VFF voltages, corresponding to the point where the
microbeam is almost straight, can also be noticed (Figure 10), with a maximum displacement
equal to the initial rise wmax = b0. At this point, the out-of-plane fringing fields have no
effect on the microbeam because the electrostatic forces are balanced from the upper and
lower side of the microbeam.

The combined effect of the microbeam static deflection under in-plane parallel-plate
and out-of-plane fringing fields DC amplitudes, is shown in Figure 11. One can remark
that with a highly applied VFF voltage (more than 100 V), the microbeam is strongly bound
to a straight beam-like configuration where the maximum displacement is equal to the
initial rise wmax = b0. This behavior is verified for the three different tested initial rises
b0 = 2.5µm, b0 = 3.5µm, and b0 = 4.5µm shown in Figure 11a–c, respectively. For lower
VFF voltages, the behavior is dominated by VPP with a classical response of a parallel plate
actuator. Nevertheless, the introduction of relatively low values of VFF can mitigate the
effect of VPP, leading to an attenuation of the amplitudes which reduces nonlinear responses
such as snap-through and pull-in. In Figure 11b,c, the introduction of VFF can even switch
the response from mono- to bi-stable potential well solutions. Since the transition between
these regimes requires relatively low applied VFF voltages, this behavior could be further
investigated with a dynamic actuation to develop new detection mechanisms, such as
mass-sensing applications.

Figure 12 shows the variation of the lowest three natural frequencies of the shallow
arch when considering a combined effect of PP and FF actuations. The effect of varying
the FF and PP voltages, and for several values of the initial rise, is portrayed. As seen,
the first/second frequencies’ crossover and first/third frequencies’ veering are further
noticeable at higher values of the arch’s initial rise and PP DC load, respectively, when
varying the FF load. On the contrary, when allowing the PP DC load to vary for discrete
values of FF amplitude lower than 100 V, all of the lowest three frequencies are monotoni-
cally varying without a single sign of mode-veering nor mode-crossing. For VFF around
100 V, VPP < 100 V and for relatively large initial rises (b0 = 3.5µm and b0 = 4.5µm in
Figure 12b,c, the existence of a bi-stable solution in the static domain generates new natural
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frequencies corresponding to each of the static solutions. On the other hand, the responses
shown in Figure 12 indicate that, for such a combined actuation design, it would be more
practical to vary the FF DC load rather than the PP load if one needs to design a localized
mode-based sensor with better stroke and improved tunability.

(a) b0 = 2.5µm (b) b0 = 3.5µm

(c) b0 = 4.5µm

Figure 11. Variation of the mid-point static deflection under a combination of in-plane parallel-plate
and out-of-plane fringing fields DC amplitudes and assuming different values of the initial rise for
the case of g = 1µm and Le = 0.5L.

To detect possible veering and crossover between the different modes of the shallow
arch microbeam calculated and displayed by Figure 12, density plots are generated for
three possible configurations: (i) crossing between the first and second natural frequencies
shown in Figure 13a–c, (ii) veering between first and third natural frequencies shown
in Figure 13d–f, and (iii) crossing between two times the first natural frequency and the
third one shown in Figure 13g–i. For the first and third cases, the idea is to show possible
one-to-one and three-to-one internal resonances that could arise in the microbeam dynamic
response, such as those reported in the literature [29]. The second case can be used to
detect possible localization phenomena between the first and third modes [30]. Figure 13a,b
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shows that crossing can be obtained between the first and second natural frequencies for
any applied VFF voltage until 120 V. For the applied voltage VPP, the crossing occurs around
220 V for the case where b0 = 2.5µm. However, for the other initial rises (b0 = 3.5µm and
4.5µm), the crossing occurs for two different values of VPP: 190 V and 250 V for b0 = 3.5µm
and 130 V and 255 V for b0 = 4.5µm.

(a) b0 = 2.5µm (b) b0 = 3.5µm

(c) b0 = 4.5µm

Figure 12. Variation of the first three lowest natural frequencies under a combination of in-plane
parallel-plate and out-of-plane fringing fields DC amplitudes and assuming different values of the
initial rise for the case of g = 1µm and Le = 0.5L.

Crossing between the third and double of the first natural frequencies, corresponding
to the second case, is found to be specific to nearly a single VPP voltage and almost
independent of the VFF voltage, as shown in Figure 13g–i. It is located around VPP = 110 V
for all value of b0, with a very small decrease of VPP as b0 is increased, and also a very small
increase of VPP as VFF is increased.

For the second case, where the difference between first and third natural frequencies
is shown in Figure 13d–f, three different behaviors are observed here for the plot region
where the minimum frequency value of the difference is calculated. For b0 = 2.5µm, in
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Figure 13d, the applied VFF voltage is around 240 V and VPP can vary from 0 to 100 V, with a
minimum frequency difference of 31 kHz. While for b0 = 3.5µm, in Figure 13e, we detected
that VPP can vary from 0 to 50 V and VFF should be around 240 V. The minimum frequency
difference is around 28.2 kHz. For b0 = 4.5µm, in Figure 13f, the minimum frequency
difference is about 22.6 kHz, and it is obtained for the applied voltages VPP = 50 V and
VFF = 220 V.

(a) Difference between the second and
first natural frequencies, b0 = 2.5µm

(b) Difference between the second and
first natural frequencies, b0 = 3.5µm

(c) Difference between the second and
first natural frequencies, b0 = 4.5µm

(d) Difference between the third and
first natural frequencies, b0 = 2.5µm

(e) Difference between the third and
first natural frequencies, b0 = 3.5µm

(f) Difference between the third and first
natural frequencies, b0 = 4.5µm

(g) Difference between the third and
double of the first natural frequencies,

b0 = 2.5µm

(h) Difference between the third and
double of the first natural frequencies,

b0 = 3.5µm

(i) Difference between the third and
double of the first natural frequencies,

b0 = 4.5µm

Figure 13. Density plot of the natural frequency differences under a combination of in-plane parallel-
plate and out-of-plane fringing fields DC amplitudes and assuming different values of the initial rise
for the case of g = 1µm and Le = 0.5L.

5. Conclusions

The nonlinear static behavior and eigenvalue problem of a clamped–clamped ini-
tially curved flexible electrode when actuated by in-plane parallel-plates and out-of-plane
fringing fields electrostatic loads was investigated. The respective problems’ nonlinear
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equations were solved numerically for various values of DC loads using a reduced-order
mode obtained through a Galerkin modal expansion discretization technique. Possible
scenarios of mono-stable and bi-stable large-stroke micro-actuator were exhibited based
on how the micro-electrode is actuated: either by individual actuation through allowing
only PP voltage or FF load at one time, or by a combined PP/FF actuation process. Results
also displayed possible mode interaction such as linearly coupled interaction between the
first and third natural frequencies that were shown to be highly dependent on the shallow
flexible electrode’s initial rise and the size of the side out-of-plane actuating stationary
electrodes. The proposed MEMS device is tunable in terms of modal interactions and mode
veering. For a particular set of design parameters, the veering zone between the first and
third modes can be electrostatically adjusted and can reach 22.6 kHz.

This work will be extended to solve the full dynamic behavior of such a combined
in-plane and out-of-plane electrically actuated resonator. This actuation method holds
great promise as a highly sensitive mass sensor. As shown in this work, it demonstrates
a greater flexibility in coupling multiple vibrational modes, including both lower-order
and higher-order modes, by only varying the applied DC voltages. The introduction of
mass onto the sensor disrupts these vibrational modes, leading to the localization of the
dynamic motion of the device over a single mode. This, in turn, establishes the foundation
for the development of a highly sensitive mass sensor using a single cantilever beam. We
also intend to study the influence of electrodes’ geometrical properties while looking at
any probability of mode localization for mass-sensing applications.

Future work will include the experimental analyses of such actuators, incorporating
the combined influence of out-of-plane fringing electrostatic fields and in-plane parallel-
plate fields. This effort aims to comprehensively explore potential occurrences of modal
interaction resonance within the vicinity of the frequency veering.
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