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Abstract: There is a complex coupling relationship between the structural parameters and various
performance indicators of a permanent magnet eddy current coupler. In order to obtain the optimal
combination of structural parameters that can improve the overall performance of the coupler, it is
necessary to reasonably balance the contradiction and competition among performance indicators of
the permanent magnet eddy current coupler. A multi-objective optimization method for permanent
magnet eddy current couplers based on scaled conjugate gradient back propagation neural network
modeling, improved opposition-based learning, and normal distribution crossover operator non-
dominated sorting genetic algorithm-II is proposed. The optimization results are compared with
those of the traditional non-dominated sorting genetic algorithm-II and the Pareto envelope-based
selection algorithm-II, and it is verified that the proposed multi-objective optimization algorithm is
accurate, reliable, and has better convergence and versatility. Compared with the original model,
the output torque of the optimized coupler increased by 8.54%, and the eddy current loss and cost
decreased by 3.71% and 8.74%, respectively. Finally, the correctness of the theoretical analysis was
verified through 3D finite element simulation and an experimental simulation platform.

Keywords: permanent magnet eddy current coupler; multi-objective optimization; scaled conjugate
gradient back propagation neural network; non-dominated sorting genetic algorithm-II; opposition-based
learning mechanism; finite element analysis

1. Introduction

Permanent magnet eddy current coupler (PMECC) is a new type of flexible, energy-
saving driving component that connects motors and loads. It can achieve the transmission
of output torque by adjusting the force between magnetic fields and has the advantages
of no mechanical wear, soft start of the motor, and overload protection [1]. Compared to
traditional mechanical transmission devices, PMECC not only reduces energy loss and
maintenance costs but also extends equipment life and has the characteristics of silent
operation. Compared to magnetic gears, the design of PMECC is relatively simple and does
not require precise magnetic field control, making it more cost-effective in manufacturing
and maintenance. In the field of wind turbines, PMECC connects wind turbine blades
and generators and adjusts the rotational speed of wind turbine blades through precise
torque control to adapt to different wind speed conditions, thereby improving the efficiency
of wind power generation. In the field of water pumps, PMECC connects an electric
drive and a water pump, achieving precise flow regulation of the water pump system
by controlling torque output, improving equipment efficiency and operational accuracy,
and reducing energy waste. In these application fields, permanent magnet eddy current
couplings have improved the performance and operability of equipment through their
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precise control characteristics and have had a positive impact in the fields of energy
conservation and mechanical transmission. Therefore, it has broad application prospects in
related transmission equipment such as fans and water pumps in the agricultural machinery
industry [2–4]. The specific mechanical structure of PMECC is shown in Figure 1.
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Figure 1. Structure of PMECC.

In recent years, research on PMECC has mainly focused on characteristic analysis
and structural improvement design [5,6]. However, research on structural parameter
optimization of PMECC is not yet sufficient. The research on optimizing the structural
parameters of PMECC can help to balance as well as improve multiple performance
indicators of PMECC, improve energy utilization efficiency, and reduce cost expenditure
in order to achieve a more efficient, economical, and environmentally friendly design.
Therefore, how to establish a mathematical model before optimization and how to carry
out reasonable multi-objective optimization to effectively improve the overall performance
of a coupler are currently hot research issues.

In terms of modeling PMECC, it is mainly divided into two categories: numerical
modeling and analytical modeling. Numerical modeling methods can accurately calculate
various physical fields and performance parameters. However, obtaining more accurate
results requires a large amount of computation, lengthy computation time, and high
equipment requirements [7,8]. Therefore, this method is not suitable for use in the early
stages of coupler design and optimization [9,10].

The analytical modeling method simplifies and assumes the geometric shape or ma-
terial properties of the coupler during the calculation process, which will result in the
mathematical model being unable to accurately reflect the impact of all design parameters
on the electromagnetic performance of the equipment [11,12]. The accuracy and generality
of the method are poor.

In terms of optimization, reference [13] utilized the proposed hybrid particle swarm
optimization simplex method algorithm to optimize the design of PM couplings, subject to
several key design constraints. The hybrid algorithm has the prominent feature of combin-
ing global and local search capabilities; however, its analytical model is a two-dimensional
analytical model solved using the separation of variables method with low accuracy. Ref-
erence [14] used artificial neural networks to obtain the mapping relationship between
PMECC output torque and structural parameters and then optimized the structural pa-
rameters using the particle swarm optimization method to improve the output torque.
However, due to the coupling relationship between multiple performance indicators of
PMECC, optimizing only the output torque may lead to a decrease in the performance of
other indicators; therefore, a compromise needs to be made between each performance
indicator. Single-objective performance optimization cannot consider the advantages and
disadvantages of other performances while optimizing one objective, and performance
optimization is not comprehensive. Therefore, its applicability in PMECC optimization
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design is limited. Reference [15] proposed a multi-objective particle swarm optimization
algorithm for modeling and analyzing PMECC devices, which improved the radial mag-
netic flux density and transmission torque of the device and reduced eddy current losses.
However, the weight, cost, and other factors of the PMECC were not considered in the
research, and the optimization research was not comprehensive enough.

Reference [16] comprehensively considered the cost, output torque, and eddy current
losses of permanent magnet drives and used an improved cuckoo search algorithm to
optimize the solution. However, the performance indicators of PMECC in this paper were
all obtained through analytical methods, and the calculation process was complex and
inaccurate. Moreover, the multi-objective optimization algorithm mentioned above may
also have a slow convergence speed and be prone to falling into local optima during the
optimization process. Reference [17] aimed to optimize the electromagnetic torque and
cost of PMECC and conducted multi-objective optimization based on an improved genetic
algorithm. However, the eddy current loss of PMECC was not considered in this study,
making it impossible to comprehensively improve the performance of PMECC. Moreover,
a large amount of experimental sample data was required for modeling, greatly increasing
the workload of the optimization process.

Based on the above analysis, this paper proposes a scheme that combines the scaled
conjugate gradient back propagation (SCG-BP) neural network modeling and fast non-
dominated multi-objective optimization algorithm with an elite reservation strategy based
on improved opposition-based learning and normal distribution crossover operator non-
dominated sorting genetic algorithm-II (ONDX-NSGA-II algorithm), with the output
torque, eddy current loss, and cost of PMECC as the multi-objective optimization per-
formance indicators. Firstly, the SCG-BP neural network is used to establish the models of
the output torque and eddy current loss. Additionally, the cost model of PMECC is intro-
duced as the third objective function. Secondly, the NSGA-II algorithm with an improved
opposition-based learning mechanism and normal distribution crossover operator (NDX)
is used as the optimization method to optimize the structural parameters of PMECC. This
method has advantages such as fast convergence speed, a stable optimization process, and
resistance to trapping in local optima. In addition, this method is compared with some
algorithms in other literature to demonstrate its superiority. Finally, the applicability and
effectiveness of the model established in this paper and the optimization algorithm used
are verified through finite element simulation.

2. BP Neural Network Based on Scaled Conjugate Gradient Algorithm

This paper first established an SCG-BP neural network to achieve the mapping from
PMECC parameters to its performance, thus obtaining the objective function to be es-
tablished [18]. The schematic diagram of the SCG-BP neural network model is shown
in Figure 2.
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The four structural parameters of PMECC, including air gap width, thickness of the
copper disk, thickness of permanent magnet, and relative slip, were selected as decision
variables to optimize its performance. Within the constraint range, these parameters were
changed by the control variables. The corresponding output torque and eddy current loss
were calculated by the finite element model, and a total of 449 sets of structural parameters
were obtained. Then, we randomly selected 315 cases as network learning training data,
67 cases as test data to evaluate the learning effectiveness of the neural network, and the
remaining 67 cases as the validation set of the neural network.

2.1. Design of BP Neural Network Structure Based on Scaled Conjugate Gradient Algorithm

(1) Determine the total number of layers in the network. This design uses a three-layer
network, which is the input layer, the hidden layer, and the output layer.

(2) Determine the number of nodes in the input layer. The number of input layer nodes
depends on the number of input vectors; therefore, the neural network structure in
this paper has four input nodes.

(3) Determine the number of hidden layer nodes. The number of hidden layer neurons
in a BP network determines the complexity of the network [19,20]. The range of the
number of hidden layer neurons is determined by Equation (1).

M =
√
(m + n) + a (1)

In the equation, M is the number of neurons in the hidden layer, m and n are the
number of neurons in the input and output layers, respectively, and a is a constant
between [0, 10].

The specific number of hidden layer neurons is determined by the “step test proce-
dure”. In this paper, the range of the optimal number of hidden layer neurons is first
calculated as [4,13] based on Equation (1) and then debugged one by one within this range.

During the training process, the mean square error (MSE) and regression value (R) are
used to quantitatively analyze the accuracy corresponding to the number of neurons in
each hidden layer.

The experiment started with 4 neurons and increased to 13, adding one neuron at
a time. Each experiment is trained 100 times using 449 sets of samples, and the average
values of MSE and R of all training results are taken as the final reference values. The
experimental results are shown in Figure 3.
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As shown in Figure 3, when the number of hidden layer nodes is 10, the MSE of the
predicted and true values of output torque and eddy current loss in the test set reach their
minimum values of 0.00162507 and 0.0654804, respectively, and the regression values R
reach their maximum values of 0.998752 and 0.999313, respectively. The values of the above
indicators correspond to the values circled in the four circles in Figure 3. Therefore, the
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number of hidden layer nodes in the neural network model for output torque and eddy
current loss is set to 10.

(4) Number of neurons in the output layer. The number of neurons in the output layer is
determined by the output results.

In this section, two neural network structures will be built with the two performance
indicators, PMECC output torque, and eddy current loss, as outputs, respectively, so as
to obtain the two required objective functions. Therefore, each performance indicator
corresponds to a neural network structure, with a corresponding output node count of 1.

In summary, this paper will establish two single hidden layer SCG-BP neural networks
with a structure of 4-10-1, which take parameters such as air gap width and permanent
magnet thickness of PMECC as input variables and output torque and eddy current loss as
output variables, respectively. Set the number of iterations of the neural network to 10,000,
the dynamic factor to 0.9, the learning rate to 0.01, the performance function of the network
to “MSE”, and the training function to “trainscg”.

2.2. Output of Results and Error Analysis

Figures 4 and 5 show the MSE and R obtained from the SCG-BP process for solving the
PMECC output torque and eddy current loss for the test and validation sets of regression
plots. The optimal values of MSE for output torque and eddy current loss are presented at
epoch 112 and epoch 96, 0.0016251 and 0.06548, respectively. The corresponding points are
shown in the two green circles in Figure 4a,b. The values of R for the test and validation
sets of output torque are 0.99832 and 0.99875, respectively, and the values of R for the test
and validation sets of eddy current loss are 0.99915 and 0.99931, respectively.
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From Figure 5, it is evident that the predicted values and sample values have a
high correlation.

The above results indicate that the SCG-BP neural network used in this paper has
good predictive performance and can accurately reflect the nonlinear relationship between
the parameters of PMECC and its output torque and eddy current loss. Therefore, it can be
used as an effective model for predicting the objective function of output torque and eddy
current loss.
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Figure 5. SCG-BP testing and validation set regression for output torque and eddy current loss.

3. The NSGA-II Algorithm with an Improved Opposition-Based Learning Mechanism
and NDX Crossover Operator

This section introduces a fast, non-dominated multi-objective optimization algorithm
(NSGA-II genetic algorithm) to optimize the output torque, eddy current loss, and cost
of PMECC. Compared with multi-objective particle swarm optimization (MOPSO) and
multi-objective differential evolution algorithm (MODE), the NSGA-II algorithm has a
strong global search ability and can provide a better global optimal solution [21]. However,
the NSGA-II algorithm also has some shortcomings. It cannot guarantee the diversity
of searches, and the convergence speed is slow. Therefore, we introduce an improved
opposition-based learning mechanism and NDX cross operator to improve the traditional
NSGA-II algorithm.

3.1. Improved Opposition-Based Learning Mechanism

Opposition-based learning (OBL) was first proposed by HR Tizhoosh et al. in 2006 [22].
It has been proven to accelerate the convergence rate of heuristic optimization algorithms.
Its mathematical model is shown as follows:

Assuming X = (x1, x2, · · · , xn) is a solution vector on the n-dimensional solution
space, with xi ∈ [Li, Ui], ∀i ∈ (1, 2, · · · , n), then the opposite solution of X is X′ =(

x′1, x′2, · · · , x′n
)
, where the vector element is:

x′i = Li + Ui − xi (2)
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In the equation, Li and Ui represent the lower and upper limits of the search domain,
respectively. The above mathematical model is shown in Figure 6.
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In this paper, the opposition-based learning mechanism is applied to the entire pop-
ulation evolution process, including the initialization, crossover, and mutation processes.
This facilitates the expansion of the range of feasible solutions and enhances the diversity
as well as the quality of the populations in each generation, resulting in better performance
of the algorithm.

In addition, considering that the population P in the later stage of evolution has
approached the optimal solution region, calculating its opposite solution for all individuals
will undoubtedly greatly slow down the convergence speed of the population. Therefore,
we introduce the dynamic factor ε in the opposition-based learning of the evolutionary
process, which decreases with the evolution of the population. The expression ε is shown
in Equation (3).

ε = maxε− g
G
(maxε−minε) (3)

In the equation, G is the maximum number of iterations for the population, g is the
current number of iterations, maxε is the maximum value of the dynamic factor, maxε = 1,
and minε is the minimum value of the dynamic factor.

From Equation (3), it can be seen that as the population evolution algebra increases,
the value of dynamic factors gradually decreases. However, if the difference between
each individual is taken into account, the more posterior the dominant relationship in the
population is, the better the opposite solution is likely to perform, so that the individual
should have a greater opposite learning probability. Therefore, under the original trend
of ε changes, the size of minε will also be dynamically adjusted based on the number of
dominant layers in each individual. The value of minε is:

minε =
rank li

lT
·maxε (4)

In the equation, rank li is the number of dominant layers of the i-th individual in the
N-th individual, and lT is the total number of dominant layers of the current generation.

In this way, the opposition-based learning probability of an individual can dynamically
vary with the number of dominance layers while decreasing with the number of evolutionary
generations. This can effectively ensure the convergence speed of the algorithm while taking
into account the differences of each individual during the evolution process.

3.2. Cross Operator Based on NDX

The crossover operator used in the real number encoding of NSGA-II is the simulated
binary crossover operator, abbreviated as the SBX operator. It is defined as: for parents
x1x2, to generate children, c1 and c2 in the following way:{

ci
1 =

[
(1 + β)xi

1 + (1− β)xi
2]/2

ci
2 =

[
(1− β)xi

1 + (1 + β)xi
2]/2

, 1 ≤ i ≤ n (5)

In Equation (5), βa random variable is dynamically generated by the distribution
factor η. Therefore, its search range is limited, making it prone to problems such as local
optimums and unstable evolutionary processes [23] due to the shortcomings of the SBX
operator. This paper introduces the normal distribution into the crossover operation SBX,
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that is, the space search capability is enhanced by using 1.481|N(0, 1)|a parameter instead
of a parameter β to expand the search space, and N(0, 1) is a normal distribution random
variable [24]. Equation (5) can be expressed as follows:

c1/2,i = (x1,i + x2,i)/2± 1.481(x1,i − x2,i)/2|N(0, 1)| (6)

3.3. ONDX-NSGA-II Algorithm
3.3.1. Steps of ONDX-NSGA-II Algorithm

Based on the above analysis, this paper improves the traditional NSGA-II algorithm
in two aspects. On the one hand, it accelerates the convergence speed of the algorithm by
introducing an improved opposition-based learning mechanism so that the algorithm can
find the optimal solution better, enhance the global search ability of the algorithm, and
improve the learning rate. On the other hand, by introducing the NDX crossover operator,
the algorithm can more easily jump out of the local optimum and improve the quality of
the Pareto frontier solution.

The NSGA-II algorithm incorporating the improved opposition-based learning mech-
anism and the NDX operator proceeds is shown in Figure 7.
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Figure 7. Flowchart of ONDX-NSGA-II optimization algorithm.

3.3.2. Establishment of Objective Function

Before the structural parameters of the PMECC can be optimally designed with multi-
ple objectives, it is necessary to construct comprehensive evaluation indicators. For PMECC,
output torque and copper disk eddy current loss are the most important evaluation indi-
cators. Among all losses, copper disk eddy current loss accounts for the main proportion
of PMECC energy conversion and has the most important impact on the performance of
PMECC. Therefore, we chose copper disk eddy current loss as one of the optimization ob-
jectives without calculating other loss terms for PMECC, such as PM loss and iron loss [25].
In addition, the cost indicators of PMECC cannot be ignored. The cost of PMECC is directly
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related to its volume; therefore, we use volume calculation instead in the cost calculation
process. Meanwhile, considering the difference between the price of the permanent magnet
material and the price of the copper conductor, the objective function is calculated by
multiplying the volume of the permanent magnet by a factor of 10, so that the cost objective
function [26] is expressed as:

C = 10V(NdFeB)+V(Cu)
= 10Wpm HpmDpmN + π(Rcop − rcop)

2hcop
(7)

In the equation, Wpm is the radial length of the permanent magnet, Hpm is the height of
the permanent magnet, Dpm is the thickness of the permanent magnet, N is the number of
permanent magnets, Rcop is the outer diameter of the copper disk, rcop is the inner diameter
of the copper disk, and hcop is the thickness of the copper disk.

Therefore, we use the output torque, eddy current loss and the cost of PMECC as
optimization indicators. The objective functions of output torque and eddy current loss
are fitted by the SCG-BP neural network, represented by T and Ploss, respectively. And the
volume expression of PMECC is shown in Equation (7).

Based on the above analysis, a multi-objective optimization mathematical model for
PMECC can be established, as shown in Equation (8).

maxT = f1(X)
minPloss = f2(X)
minC = f3(X)

(8)

In the equation, X = ( x1, x2, x3, x4), x1 represents the width of the air gap in mm,
x2 represents the thickness of the copper disk in mm, x3 represents the thickness of the
permanent magnet in mm, and x4 represents the relative slip in rpm.

In order to make the optimization design more reasonable, a series of constraint
conditions are defined, taking into account factors such as eddy current density limitations
and volume size limitations. The constraints of the mathematical model are shown in
Equation (9). 

2 ≤ x1 ≤ 10
4 ≤ x2 ≤ 12

10 ≤ x3 ≤ 52
25 ≤ x4 ≤ 75

(9)

The specific structural parameters of PMECC are shown in Table 1.

Table 1. Standard model structural parameters.

Model Parameter Value Model Parameter Value

Material of copper BrassH62 Permanent magnet material NdFeB
Inner radius of copper disk/mm 190 Relative slip/rpm 45
Outer radius of copper disk/mm 370 Thickness of copper disk/mm 8
Number of permanent magnets 18 Airgap gap width/mm 4

Radial length of permanent magnet/mm 130 Thickness of permanent magnet/mm 25
Height of Permanent magnet/mm 68 Inner radius of back iron/mm 190

3.4. Optimal Results

The parameter settings of the ONDX-NSGA-II algorithm used are as follows: The
population size is set at 300. The mutation probability of the mutation operator is set to
0.2, and the maximum number of iterations is set to 100. The optimized Pareto frontier is
shown in Figures 8 and 9.
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After optimizing the four structural parameters of the PMECC, the optimal point on
the Pareto frontier solution set is selected after taking into account maximum output torque
with minimum eddy current loss and cost. This point is the optimal solution obtained from
this optimization. The red point marked in Figures 8 and 9 is the optimal solution.

Due to the fact that multi-objective optimization is a highly stochastic process, the
parameter changes of each individual will vary in different iterations due to the randomness
of the algorithm. Additionally, the individual may also be directly eliminated or replaced
during the evolution process. Therefore, this paper does not describe the parameter
evolution process for each individual.

Table 2 shows the comparison of performance indicators before and after PMECC
optimization. The structural parameters corresponding to this point are: air gap width is
2 mm; copper disk thickness is 6.84 mm; permanent magnet thickness is 22.84 mm; and
relative slip is 40.58 rpm.

Table 2. Comparison of performance indicators before and after optimization.

Before Optimization After Optimization Variation (%)

Output torque/kN·m 4.1015 4.4517 8.54
Torque density/N·m/cm3 0.25616 0.29095 13.58

Eddy current loss/kW 19.3027 18.586 3.71
Cost 40,593,888 37,045,484.93 8.74

When researching and designing PMECC, the torque density within the volume is
also a key performance parameter, which directly affects the volume cost and efficiency of
the system. When optimizing, our goal is to maximize the output torque and minimize the
cost of approximate substitution with volume indicators. Therefore, the optimal solution
we ultimately obtain can also represent the solution with the highest torque density in
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PMECC. We have also provided comparative results for torque density in the optimization
results. The torque density within a volume refers to the distribution of torque within a
given volume, and its calculation formula is as follows:

τ =
T
V

where τ is the torque density in N ·m/cm3, T is the output torque, and V is the volume of
space occupied by PMECC.

The volume of PMECC is expressed as:

V = Viron + VPM + Vcopper
= 2× (Roi

2 − Rii
2)× πhi + 18RPMTPM HPM + (Roc

2 − Rio
2)× πhc

According to Table 2, compared with the coupler before optimization, the ONDX-
NSGA-II algorithm optimized the results to achieve the goal of lower eddy current loss and
cost in the case of larger output torque and torque density. This indicates that optimizing
the structural parameters of PMECC is very meaningful.

In addition, we also calculated the efficiency of PMECC before and after optimization
to comprehensively measure its performance improvement. The input power of PMECC is
the output power of the prime mover, mainly divided into two parts: eddy current loss
and output power [27]. The efficiency of PMECC can be calculated as follows:

η =
Pout

Pout + Ploss + Piron
× 100%

The output power Pout is expressed as:

Pout =
T ∗ n
9550

Among them T is the output torque, which n represents the speed of the copper disk.
Ploss can be directly obtained from the previous data, and according to the subsequent

calculations in Reference [27], it is known that the eddy current loss is much greater than
the loss of iron; therefore, the loss of iron can be ignored.

Therefore, it can be calculated that the efficiency of the PMECC before and after
optimization is ηbe f ore = 97.00%, ηa f ter = 97.34% respectively. The efficiency has increased
by 0.34%, indicating that after optimization, the PMECC has improved energy efficiency and
reduced energy consumption, proving the effectiveness and feasibility of the optimization
method proposed in this paper.

3.5. Comparison of Optimization Results

In order to verify the superiority of the ONDX-NSGA-II algorithm, it is compared with
the PESA-II algorithm and the traditional NSGA-II algorithm. The Pareto frontier solutions
obtained by Pareto envelope-based selection algorithm-II (PESA-II) and the traditional
NSGA-II algorithm are shown in Figures 10 and 11. Through comparison, it can be seen
that, due to the wider search space of the ONDX-NSGA-II algorithm, the Pareto optimal
solution has better distribution and a high quality of solution.
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After comparing the pareto frontier solutions of the three algorithms, the validity
and reliability of the proposed algorithm are verified in quantitative terms. The Inverted
Generational Distance (IGD) [28] and Hypervolume (HV) indicators are used as indicators
to evaluate the performance of the algorithm.

IGD is a comprehensive performance evaluation indicator that takes into account the
convergence and diversity of the approximate solution set. The smaller the value of IGD,
the better the convergence of the Pareto frontier obtained by the algorithm and the more
uniform the distribution. The HV indicator is a hypervolume metric that represents the
volume of the hypercube formed by individuals and reference points in the target space in
the solution set obtained by the algorithm. It is mainly used to measure the diversity of the
solution set. The larger the HV value, the better the diversity of the Pareto frontier solution
set obtained.
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Figure 12 shows the IGD and HV convergence curves of the ONDX-NSGA-II algorithm
compared to the other two algorithms. It can be clearly seen that as the number of evolutions
increases, the IGD convergence curve value of the ONDX-NSGA-II algorithm is smaller,
while the HV value is the largest during the evolution process, indicating that the algorithm
has better convergence and diversity.
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4.1. ANSYS Verification

This section verifies and analyzes the results of multi-objective optimization. Using
ANSYS software to conduct finite element modeling of PMECC, the established model is
shown in Figure 13.
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After establishing the ANSYS model of PMECC, the various structural parameters
after optimization are imported into the model, and the output torque and eddy current
loss obtained are shown in Figure 14.
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Through simulation comparison, it can be seen that the output torque and eddy current
loss of PMECC have been significantly improved after optimization.

Compare the data obtained from the optimization in Section 3.4 with the results
obtained from establishing the finite element model in this part, and the results are shown
in Table 3. The data shows that the error between the output torque and eddy current
loss calculated using the ONDX-NSGA-II algorithm and the calculated values of the finite
element model is less than 1%, and the two data are almost identical. The reasons for the
errors are as follows:

• There are differences between the established model and the actual model.
• There are power losses during the simulation verification.

Table 3. Comparison of ONDX-NSGA-II Optimization Data and Finite Element Modelling.

ONDX-NSGA-II Finite Element Error (%)

Output torque/kN·m 4.4517 4.4773 0.56
Eddy current loss/kW 18.586 18.6120 0.14

In summary, based on the error results, it can be concluded that using the ONDX-
NSGA-II algorithm to optimize PMECC results is reliable.

Figure 15 is the distribution diagram of the eddy current density generated on the
PMECC conductor disk before and after optimization. The induced current in the copper
disk, also known as eddy current, plays a very important role in the operation of PMECC.
Firstly, the conductor rotor and the permanent magnet rotor are connected through an air
gap coupling. By adjusting the air gap, the force between the permanent magnet magnetic
field and the magnetic field generated by the induced current is changed, and the output
torque and speed are controlled in real-time. Secondly, one of the main performance
parameters of PMECC, eddy current loss, is generated due to the presence of eddy currents.
Therefore, the analysis of eddy currents generated by PMECC conductors is very important.

From Figure 15, it can be seen that the optimized PMECC copper disk has significantly
higher eddy current density, and the drag force between magnetic fields increases, thereby
improving the output torque. At the same time, the distribution of eddy currents is
more uniform, and the density of stray eddy currents is reduced, thereby reducing eddy
current losses.
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Figure 16 is the vector diagram of the distribution of magnetic field intensity be-
fore and after optimization. As the structural parameters of PMECC have changed after
optimization, the performance of PMECC has been improved, the eddy current is more
concentrated, and the eddy current density has increased significantly, which makes the
magnetic field intensity and magnetic flux density of PMECC significantly improved, which
is more conducive to generating greater output torque.
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Figure 16. Vector plot of PMECC magnetic field intensity before and after optimization.

The output torque of the optimized PMECC is 4.4773 kN·m, and the eddy current loss
is 18.6120 kW by using ANSYS. It can be seen that the optimized PMECC had increased
output torque by 0.3758 kN·m and reduced eddy current loss by 0.6907 kW compared
to the original machine. This further demonstrates the practicality and rationality of the
optimization algorithm proposed in this paper for the multi-objective optimization problem
of PMECC.

4.2. Experimental Testing Results

To confirm the validity of the analytical model, the experiments are carried out on the
experimental simulation platform shown in Figure 17.
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Based on the fixed parameters of PMECC shown in Table 1, the structural parameters
can be obtained. Considering the limitations of processing conditions (the machining size
of all parts is accurate to 0.02 mm), the PMECC prototype is designed, and the experimental
platform is built. The overall structure of the experimental platform is shown in Figure 17.
The main equipment includes a DC motor, an AC motor, a torque meter, a PMECC, and a
prime mover. Among them, the DC motor and the DC governor simulate the load, and
the torque meter is used to measure the torque and speed of the output of the PMECC.
The PMECC is installed between the prime mover and the torque meter. The rated power
of the prime mover is 15 kW, and the rated speed is 1500 rpm. Adjust the PMECC air
gap to 4 mm, and when the slip reaches 45 rpm, use a torque meter to record the output
torques of the prime mover and PMECC at corresponding speeds of 4.0893 kN·m and
4.0872 kN·m, respectively. Then, calculate the corresponding transmission efficiency, and
the test data is ηexp eriment = 96.95%, which shows the loss of the mechanical parts of the
PMECC. Meanwhile, by comparing the transmission efficiency of this section with the
values obtained from finite element simulation, it can be concluded that the transmission
efficiency of the experimental platform is slightly lower than the efficiency obtained from
finite element calculation; however, the difference between the two is small, which verifies
that this paper uses the finite element method to analyze the correctness and reasonableness
of the PMECC.

Subsequently, in order to further verify the effectiveness of finite element simulation,
we measured the output torque of PMECC under different slip through the experimental
simulation platform and compared it with the finite element simulation results.

At the same time, the three-dimensional finite element model of PMECC before
optimization is established according to Table 1.

A numerical simulation of output torque under different slip is performed on the estab-
lished 3D finite element model, and the results are compared with the experimental results
obtained from the experimental platform, as shown in Figure 18. The slip corresponding to
the points marked in Figure 18 is the slip selected for the comparative experiment.

According to the above comparison results, it can be seen that the ANSYS simulation
value of the model before optimization has good consistency with the simulation results of
PMECC output torque under different slips obtained from the experimental platform. It
further confirms the accuracy and reliability of the simulation model and the validity of the
simulation method we have adopted.
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5. Conclusions

This paper conducted research on multi-objective optimization of PMECC perfor-
mance indicators and proposed an ONDX-NSGA-II multi-objective optimization method
based on SCG-BP neural network modeling. Firstly, the SCG-BP neural network was
used to model PMECC, and a nonlinear regression model of PMECC output torque and
eddy current loss was obtained. Secondly, the improved opposition-based learning mech-
anism and NDX crossover operator were introduced into the NSGA-II algorithm, and
the ONDX-NSGA-II multi-objective optimization algorithm was proposed. During the
optimization process, the structural parameters of PMECC were used as design variables,
with output torque, eddy current loss, and cost as optimization objectives. The overall per-
formance of the optimized PMECC had greatly improved compared to before optimization.
Compared with the traditional NSGA-II algorithm and PESA-II algorithm, the proposed
multi-objective optimization algorithm has a wider search space, a better distribution of
the Pareto optimal solution, and can effectively solve the problems of slow convergence,
easy local optimality, and unstable evolutionary processes.

In order to further verify the effectiveness and correctness of the algorithm, this paper
used the finite element simulation software ANSYS to carry out simulation verification of
the optimized results. A three-dimensional finite element model of PMECC was established
using the optimized structural parameters. The final optimized output torque and eddy
current losses were found to be less than 1% compared to the simulated data. In addition,
the distribution of flux density and eddy current density of the PMECC before and after the
improvement were compared. It was found that the PMECC with the optimized structure
parameters can achieve a higher output torque with relatively low eddy current loss and
cost. Through the comparison and validation of results between finite element simulation
experiments and experimental simulation platforms, the effectiveness and reliability of the
proposed PMECC multi-objective optimization method are further confirmed, which is of
great significance for the future design and structural optimization of PMECC.
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