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Abstract: Owing to the competitive advantages of fast response speed, large pushing force, high
reliability, and high precision, the permanent magnet linear synchronous motor (PMLSM) has played
an increasingly vital role in various high-speed and high-precision control systems. However, PMLSM
exhibits nonlinear behavior in actual operation, and position tracking precision is negatively affected
by friction, load changes, and other external disturbances. To meet the growing demand and solve
the position tracking control problem for the PMLSM, the control system is critical. Sliding-mode
control (SMC) has been used extensively in nonlinear control systems due to its superior performance
characterized by simplicity, good dynamic response and insensitivity to parameter perturbation
and external disturbances, and has been implemented in PMLSMs to track practical position. The
objective of this article is to classify, scrutinize and review the major sliding-mode control approaches
for position control of PMLSM. The three different conventional SMC methods, namely the boundary
layer approach, the reaching law approach and the disturbance observer-based SMC, are discussed
in detail. The four advanced forms of SMC, namely terminal SMC, super-twisting SMC, adaptive
SMC and intelligent SMC, are also presented. A comparison of these approaches is given, in which
the advantages and disadvantages of each approach are presented; additionally, they are presented
in table form in order to facilitate reading. It is anticipated that this work will serve as a reference and
provide important insight into position control of PMLSM systems.

Keywords: permanent magnet linear synchronous motor (PMLSM); sliding-mode control (SMC);
terminal sliding-mode control; intelligent SMC; position control

1. Introduction

Permanent magnet linear synchronous motors (PMLSMs) can directly convert elec-
trical energy into linear motion without mechanisms such as screws, belts, etc., in the
middle. Compared with traditional rotary motors, PMLSMs overcome problems such as
structural resonance and stiffness variation. Due to their many advantages, which include
fast response speed, high pushing force, high reliability, and high precision [1,2], PMLSMs
have been widely applied in various high-speed and high-precision control systems, such
as machine tool direct feed drive systems [3], two-axis motion control systems [4], and
three-dimensional (3-D) printers [5].

From a control engineering point of view, PMLSMs are multivariable, strongly cou-
pled nonlinear systems, and their control performance is considerably affected by many
nonlinear factors, such as friction, load change and force ripple [6]. Consequently, the
improvement of the control performance has become an important topic in the PMLSM
field. In recent years, various control methods have been proposed to enhance control
performance, such as modified PID control [7], sliding-mode control (SMC) [8], adaptive
control [9], fuzzy control [10], active disturbance rejection control [11], etc.

SMC is a special kind of the variable structure control. It originated in the late 1950s
and its development has increased sharply since 1977 [12]. K. D. Young performed a com-
prehensive analysis of the sliding-mode control from an engineering point of view, in which
the chattering generated by the sliding-mode control was precisely analyzed and evaluated.
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Seven solutions to chattering suppression in the continuous system were analyzed, and the
sliding mode design was analyzed in three cases of the discrete system, which provides use-
ful guidance for the application of the sliding-mode control in engineering [13]. Gao, W.B.
proposed the probability of approach law for the first time, which improved the dynamic
quality of approach motion [14]. In addition, many other scholars have proposed solutions
to the chattering problem from different perspectives [15]. The essence of SMC is to force
the system states to operate on a prescribed space surface called as sliding-mode surface
in a desired manner, so that the reference signal can be tracked. Importantly, this control
is discontinuous, as it switches between two control functions [16]. The SMC method has
significant characteristics including simplicity, good dynamic response and insensitivity to
parameter perturbation and external disturbances. Thus, SMC has been applied extensively
to other nonlinear control systems, such as permanent magnet rotary motors [17,18] and
permanent magnet synchronous generators [19].

The PMLSM is a typical nonlinear system, and is therefore more suitable for nonlinear
control methods in the implementation of accurate position control. To date, SMC has
been successfully utilized in the position control of PMLSMs, and numerous SMC methods
have been employed, which can be divided roughly into two categories: conventional and
advanced. Conventional SMC methods are simple and easy to implement, and include the
boundary layer approach, the reaching law approach, and disturbance observer-based SMC,
but the performance of chattering suppression and control accuracy is not satisfactory. To
improve the control accuracy and reduce chattering, some modifications have been carried
out, and advanced SMC methods have been developed, including terminal SMC, super-
twisting SMC, adaptive SMC, and intelligent SMC. In light of the continuously expanding
application of sliding-mode control in PMLSMs position control, this paper discusses the
most advanced SMC methods. The rest of this paper is organized as follows. A PMLSM
model is introduced in Section 2. In Section 3, the theory of SMC is introduced. In Section 4,
a comprehensive review of sliding-mode control-based PMLSM position/velocity control
approaches is presented. A discussion and conclusion are presented in Sections 5 and 6,
respectively. In addition, the full names of all abbreviations are given in Table 1.

Table 1. Abbreviations and full name.

Number Abbreviations Full Name

1. ADO Adaptive Disturbance Observer
2. ARTSM Adaptive Recursive Terminal Sliding Mode
3. AFOTSM Adaptive Fractional Order Terminal Sliding-Mode Control
4. ASMC Adaptive Sliding-Mode Control
5. BFASM Barrier Function Adaptive Sliding Mode
6. CSMC Complementary Sliding-Mode Control
7. DFOB-MI Disturbance Force Observer with Mass Identification
8. DTSMC Discrete Time Sliding-Mode Control
9. ELM Extreme Learning Machine
10. FTDO Finite-Time Disturbance Observer
11. FNTSMC Fast Nonsingular-Terminal Sliding-Mode Control
12. FO Fractional Order
13. HOSTO High-Order Super-Twisting Sling Mode Observer
14. IBTSMC Intelligent Backstepping Terminal Sliding-Mode Control
15. MNN Multi-kernel Neural Network
16. MCSMC Modified Complementary Sliding-Mode Control
17. MRAI Minimum Route Advertisement Interval
18. NDOB Nonlinear Disturbance Observer
19. NTSMC Nonsingular Terminal Sliding Mode Control
20. NLESO Nonlinear Extended State Observer

21. OSTNTSMC Super-twisting Nonsingular-terminal Sliding-Mode Control
with High-Order Sliding-Mode Observer

22. OSMC Observer-based Sliding-Mode Control
23. PID Proportional Integral Derivative
24. PFNN Probabilistic Fuzzy Neural Networks
25. RWENN Recurrent Wavelet-based Elman Neural Network
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Table 1. Cont.

Number Abbreviations Full Name

26. RSM-ADO Sliding-Mode Controller combined with an Adaptive
Disturbance Observer

27. RBFN Radial- Basis Function-Network
28. RBF Radial Basis Function
29. RRBFNN Recurrent Radial Basis Function Neural Network
30. SMC Sliding-Mode Control
31. SMO Sliding-Mode Observer
32. STNTSMC Super-Twisting Nonsingular-Terminal Sliding-Mode Control
33. SOSMC Second-Order Sliding-Mode Control
34. TSMC Terminal Sliding-Mode Control
35. TDE Time Delay Estimation

2. Dynamic Model of PMLSM

PMLSMs are composed of permanent magnets, three-phase windings, a linear guide,
etc. Its working principle is shown in Figure 1. When the three-phase sinusoidal current
is applied to the primary three-phase winding, accordingly, the air-gap magnetic field is
generated. Because the magnetic field moves in a straight line, it is also called the traveling
wave magnetic field. This magnetic field interacts with the excitation field generated by
the permanent magnet to generate electromagnetic thrust, such that the PMLSM is able to
overcome a series of resistances and move in a straight line.

Three frames of reference are normally used to describe the dynamic model of a
PMLSM: the a-b-c three-phase stationary reference frame, the α− β stationary reference
frame, and the d-q rotating reference frame. These three reference frames and their rela-
tionship are shown in Figure 2. In order to realize decoupling control, the motor model is
transformed from the a-b-c coordinates to the d-q coordinates. The equations for a PMLSM
in the d-q axis can be expressed as described below [20].

The stator current equation is as follows: did
dt
diq
dt

 =

 1
Ld

(
−Rsid +

npπ
τ Lqviq + ud

)
1
Lq
(−Rsiq −

npπ
τ Ldviq + uq −

npπ
τ λ f v

 (1)

The stator flux equation is as follows:[
λd
λq

]
=

[
Ldid + λ f

Lqiq

]
(2)

The electromagnetic thrust force equation is as follows:

Fe =
3π

2τ
np[λ f iq +

(
Ld − Lq

)
idiq] (3)

For a surface-mounted PMLSM, Ld = Lq = Ls, so Fe can be simplified as

Fe =
3π

2τ
npλ f iq = k f iq (4)

The mechanical motion equation is as follows:

Fe = m
.
v + Bv + FΩ (5)

Stator voltage and current vector are defined as

[
ud
uq

]
= Cα·β

d·q

[
uα

uβ

]
= Cα·β

d·q Ca·b·c
α·β

ua
ub
uc

 (6)
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[
id
iq

]
= Cα·β

d·q

[
iα

iβ

]
= Cα·β

d·q Ca·b·c
α·β

ia
ib
i

 (7)

where Cα·β
d·q and Ca·b·c

α·β denote transformations matrix

Ca·b·c
α·β =

2
3

 1 −1/2 −1/2
0
√

3/2 −
√

3/2
1/2 1/2 1/2

 (8)

Cα·β
d·q =

[
cosθ sinθ
−sinθ cosθ

]
(9)

where iT = (id, iq), uT = (ud, uq) and λT = (λd, λq) are the d axis and q axis current, voltage,
and flux, respectively, and λ f is the permanent magnet flux linkage. Rs and Ls denote
the winding resistance and inductance, respectively, and Ld and Lq equivalent armature
inductance in the d-q rotating reference frame. np is the number of pole pairs, and τ is the
pole pitch. k f represents the thrust force constant. m is motor mass, B is the viscous friction
coefficient, v is the linear velocity, and FΩ denotes the lumped uncertainties, including
the nonlinear friction and load disturbance. (ua, ub, uc)

T and (ia, ib, ic)
T are three-phase

voltages and currents respectively,
(
uα, uβ

)T and
(
iα, iβ

)T are the voltages and currents,
respectively, in an α− β stationary reference frame.

The design of a sliding-mode controller is always based on state-space equations, so
it is necessary to establish the state-space equation of the PMLSM. The continuous-time
dynamic equations can be expressed in the form

.
x(t) = v(t)

.
v(t) = k1u(t) + k2v(t) + D(t)

y = x(t) (10)

where k1 , k2 and D(t) defined as follows:

k1 =
k f

m
, k2 = − B

m
, D(t) = − FΩ

m
(11)

where x is the linear displacement, v is the linear velocity, and u and y are the input control
signal and output control signal, respectively.
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3. SMC Theory
3.1. Fundamental Theroy of SMC

Sliding-mode control (SMC) is a robust and effective control method for nonlinear sys-
tems suffering from parametric uncertainties and external unknown disturbances [13,21–23].
SMC essentially utilizes the discontinuous control signal to force the system states to oper-
ate on a predesigned surface, i.e., the occurrence of the so-called sliding mode dynamic
or sliding motion is enforced. Due to the fact that sliding motion can be designed, it is
insensitive to matched disturbances and uncertainties. The general structure of SMC is
described below.

Assuming that the nonlinear system is of the form

.
x(t) = f (x, t) + B(x, t)u(t) + d(x, t) (12)

where x ∈ Rn is the system state vector, u(t) ∈ Rm is the control input variable, and
d(x, t) ∈ Rn denotes the disturbances and uncertainties, |d(x, t)| ≤ D.

First, the switching function s(x) ∈ Rm is defined as

s(x) = [s1(x) s2(x) · · · sm(x)]T (13)

and s(x) = 0 denotes the switching surface, also known as sliding-mode surface.
Then, the structure of sliding-mode control law is always

ui(t) =
{

u+
i (t) si(x) > 0

u−i (t) si(x) < 0
i = 1, 2, . . . , m, (14)

where u+
i (t) 6= u−i (t), and is discontinuous around the sliding-mode surface.

With respect to system motion, a system controlled by SMC consists of two motion
phases: (1) the reaching phase, in which the system states are driven to the sliding-mode
surface from their initial states in a finite time; and (2) the sliding mode phase, in which the
system exhibits sliding mode motion on the sliding-mode surface. Therefore, the SMC law
(14) should ensure that the sliding-mode surface is reached in a finite time, along with the
subsequent occurrence of the sliding mode. Meanwhile, the desired dynamic characteristics
in the sliding mode phase are ensured by the sliding-mode surface.

3.2. SMC Design

Several SMC design methods have been proposed, and the key is to ensure the exis-
tence of a sliding mode on the sliding-mode surface [21]. Generally, the design procedure
of SMC is divided into two main steps. The first step is to design the sliding-mode surface
to ensure the desired dynamic behaviors, such as stability or tracking. The second step is to
design the sliding-mode control law to drive the system states to the sliding-mode surface
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and maintain it there, thus satisfying the reachability and existence of the sliding mode.
Note that the whole design procedure usually relies on Lyapunov stability theory [24].

At present, the known types of sliding-mode surface include linear and nonlinear
types. Commonly, linear sliding-mode surfaces are expressed as

s(x) = CTx(t) =
n

∑
i=1

cixi =
n−1

∑
i=1

cixi + xn (15)

where x(t) is the system state, C = [c1 c2 · · · cn−1 1]T should be designed such that polyno-
mial pn−1 + cn−1 pn−2 + · · ·+ c2 p + p is Hurwitz, where p is the Laplace operator, and thus
the sliding-mode surface is stable. For example, when n = 2, s(x) = c1x1 + x2, c1 should
satisfy c1 > 0. Although the linear sliding-mode surface is simple and easy to implement, it
has been proved to be less satisfactory in terms of convergence rate and accuracy. Therefore,
many nonlinear sliding-mode surfaces, such as terminal sliding-mode surfaces, integral
sliding-mode surfaces and fractional-order sliding-mode surfaces have been developed
with the aim of improving dynamic performance. These surfaces will be described in detail
in the following section.

In addition, a common application of SMC is tracking control, i.e., the main objective
of SMC is to cause the output variables to track the desired state; therefore, tracking
errors should converge to zero in a finite time. For this purpose, the sliding-mode surface
can be constructed of error and a series of its derivative. The specific form is shown in
Equation (16)

s = s
(

e,
.
e,

..
e, · · · , e(m)

)
(16)

Note that the sliding mode variable s should converge to 0 and has a stable differential equation.
The second step is to design the SMC law. Two typical design strategies are introduced

in the following.
(1) Equivalent control method: The structure of SMC law based on the equivalent

control method is
u = ueq + usw (17)

where ueq is a continuous component and usw is a discontinuous one, ueq ensures that
the system states remain on the sliding-mode surface, and usw forces the system states
with arbitrary initial values to point toward the sliding-mode surface. Taking the system
described in (12) as an example, the equivalent control ueq is derived from the equivalent
control method, which should satisfy the condition

.
s = 0 in the absence of lumped

disturbances, i.e., d(x, t) = 0 is supposed. The tracking error is defined as e = xd − x and
the sliding-mode surface is defined as

s(x) = c1e + c2
.
e + · · ·+ e(n−1), (18)

such that
ueq = −(B(x, t))−1

[
∑n−1

i=1 cie(i) + x(n)d + f (x, t)
]
. (19)

where B(x, t) is assumed to be nonsingular.
The robust switching control term usw is obtained by ensuring that the so-called

reachability condition holds, i.e., s
.
s < 0, which can be designed as follows:

usw = −k(B(x, t))−1sign(s) (20)

where k = D + η, η > 0.
Note that the sufficiency conditions for the existence and reachability of a sliding mode

come from Lyapunov stability theory. If there is a positively defined Lyapunov function
V(x) about s(x), and the derivative of V(x) with respect to time is negatively definite, the
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system will be stable under the condition s = 0, meaning that a sliding mode exists. The
Lyapunov function is commonly defined as follows:

v(x) =
1
2

s(x)2 (21)

(2) Reaching law approach: The reaching law is a differential equation that directly
dictates the dynamics of the switching function s(x), as proposed by Gao in [15]. The
general form of the reaching law is

.
s(x) = −Lsgn(s)− K f (s), (22)

where sgn(s) = [sgn(s1), · · · , sgn(sm)]
T and f (s) = [ f (s1), · · · , f (sm)]

T, L = diag [l1, · · · , lm],
li > 0, K = diag [k1, · · · , km], ki > 0, si fi(si) > 0, fi(0) = 0, i = 1, · · · , m.

Several special cases in practical application are described below.

(1) Constant rate reaching law:

.
s = −Lsgn(s) (23)

(2) Constant plus proportional rate reaching law:

.
s = −Lsgn(s)− Ks, L > 0, K > 0 (24)

(3) Power rate reaching law:

.
si = −li|si|αsgn(si), 0 < α < 1 (25)

The commonly used structure of control law (14) is not involved in the design process
of SMC when utilizing the reaching law approach, and the reaching condition is also not
explicitly used. The reaching law approach not only guarantees achieving the reachability
condition, but also improves the dynamic quality of motion during the reaching phase.

It is worth mentioning that the well-known chattering problem is a prominent obstacle
to the application of SMC in practical systems. The essential reason behind chattering is
the discontinuity of control caused by the switching action, which is normally composed of
the sgn(·) function. Therefore, many studies have used the boundary layer method and
replaced the sign function with the saturation function to reduce or soften the chattering
action. In addition, other modified methods, such as disturbance observer-based SMC,
second-order SMC, adaptive SMC and intelligent SMC, are also common and typical.

4. SMC for Position Control of PMLSM

Over the last two decades, sliding-mode control (SMC) technology has been widely
applied in PMLSMs for position/velocity control. Numerous SMC methods have been
developed, and a comprehensive review of these is presented in this section. As shown
in Figure 3, the adopted SMC methods can be roughly divided into two categories: con-
ventional and advanced approaches. The former include the boundary layer approach, the
reaching law approach, and disturbance observer-based SMC.

To make SMC more effective and accurate for application in PMLSMs, some modifica-
tions have been implemented, and advanced SMC methods have been proposed, which can
be subdivided into terminal SMC, super-twisting SMC, adaptive SMC, and intelligent SMC.

In addition, a block diagram of the SMC-based PMLSM position control scheme is
shown in Figure 4.
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4.1. Boundary Layer Approach

The boundary layer approach consists of inserting a boundary layer near the sliding
surface so that a continuous control action replaces the discontinuous one when the system
is inside the boundary layer [25]. More specifically, the sign function sign(s) of the discon-
tinuous control component is often replaced with the saturation function sat(s), which can
be expressed as

sat(s) =


1 s > ∆
ks |s| ≤ ∆
−1 s < −∆

(26)

where ∆ denotes the boundary layer, k = 1/∆. The essence of the saturation function is
the adoption of the switching control outside the boundary layer and the linear feedback
control inside the boundary layer.

In [26], an SMC method was proposed for position control of a PMLSM. In order to
eliminate the chattering phenomenon, the authors adopted the sat function to replace the
sign function of the control law, where the sat function was defined as

sat(σ, d) =
{

sign(σ) |σ| ≥ d
σ
d |σ| < d

(27)

where d is a small positive constant that defines the boundary layer. The simulation and
experimental results proved that the proposed method was able to provide fast response
and good control performance with reduced chattering. Similarly, in order to mitigate
the chattering effects, authors in [2] substituted the sign (sv) in the control law for speed
tracking with sat (sv/ϕ).



Actuators 2023, 12, 31 9 of 23

In [27], a sliding-mode control with a double boundary layer was presented to cope
with chattering and static friction simultaneously. A modified saturation function was used
to replace the switching function, which was defined as

sat(sx, Φh, Φl , β) =


sign(sx) |sx| ≥ Φh
sx
Φh

+ β · sign(sx) Φh > |s| > Φl
sx
Φh

+ β · sx
Φl

|s| < Φl

(28)

where Φh and Φl correspond to the widths of the outer and the inner boundary layer.
Figure 5 shows the boundary layers and the sliding surface in the state plane. According
to the reported experimental results, the presented control scheme demonstrates superior
performance compared to the standard cascaded linear controllers.

However, the saturation function causes the boundary layer to be constant, resulting
in the asymptotic stability of the system not being able to be guaranteed. Therefore, in
work [28], a complementary sliding-mode control (CSMC) method utilizing an approach
angle-based saturation function was developed for PMLSMs. This method was able to
decrease the boundary layer with changes in state trajectory until it converged to the sliding
surface. As reported, the system chattering phenomenon was effectively eliminated and
the position tracking accuracy and robustness were improved. The comparison of the
proposed control method with CSMC using the traditional saturation function and the
hybrid controller (CSMC based on RWENN) demonstrated that it was able to achieve lower
tracking errors and stronger robustness under the occurrence of uncertainties.

Actuators 2023, 12, 31 9 of 23 
 

 

𝑠𝑎𝑡(𝜎,𝑑) = ൝𝑠𝑖𝑔𝑛(𝜎)|𝜎| ≥ 𝑑𝜎𝑑 |𝜎| < 𝑑 (27) 

where d is a small positive constant that defines the boundary layer. The simulation and 
experimental results proved that the proposed method was able to provide fast response 
and good control performance with reduced chattering. Similarly, in order to mitigate the 
chattering effects, authors in [2] substituted the sign (𝑠௩) in the control law for speed track-
ing with sat (𝑠௩/𝜑). 

In [27], a sliding-mode control with a double boundary layer was presented to cope 
with chattering and static friction simultaneously. A modified saturation function was 
used to replace the switching function, which was defined as  

𝑠𝑎𝑡(𝑠௫,Φ௛,Φ௟ ,𝛽) = ⎩⎪⎨
⎪⎧ 𝑠𝑖𝑔𝑛(𝑠௫) |𝑠௫| ≥ Φ௛ 𝑠௫Φ௛ + 𝛽 ∙  𝑠𝑖𝑔𝑛(𝑠௫)Φ௛ > |𝑠| > Φ௟       𝑠௫Φ௛ + 𝛽 ∙   𝑠௫Φ௟ |𝑠| < Φ௟  (28) 

where Φ௛ and Φ௟ correspond to the widths of the outer and the inner boundary layer. 
Figure 5 shows the boundary layers and the sliding surface in the state plane. According 
to the reported experimental results, the presented control scheme demonstrates superior 
performance compared to the standard cascaded linear controllers.  

However, the saturation function causes the boundary layer to be constant, resulting 
in the asymptotic stability of the system not being able to be guaranteed. Therefore, in 
work [28], a complementary sliding-mode control (CSMC) method utilizing an approach 
angle-based saturation function was developed for PMLSMs. This method was able to 
decrease the boundary layer with changes in state trajectory until it converged to the slid-
ing surface. As reported, the system chattering phenomenon was effectively eliminated 
and the position tracking accuracy and robustness were improved. The comparison of the 
proposed control method with CSMC using the traditional saturation function and the 
hybrid controller (CSMC based on RWENN) demonstrated that it was able to achieve 
lower tracking errors and stronger robustness under the occurrence of uncertainties. 

 
Figure 5. Sliding surface and the boundary layers in the state plane. Reprinted with permission from 
Ref. [26]. Copyright 2009 IEEE. 

4.2. Reaching Law Approach 
The reaching law approach aims to eliminate the chattering caused by nonideal reac-

hing at the end of the reaching phase, and is able not only to establish the reaching 

Figure 5. Sliding surface and the boundary layers in the state plane. Reprinted with permission from
Ref. [26]. Copyright 2009 IEEE.

4.2. Reaching Law Approach

The reaching law approach aims to eliminate the chattering caused by nonideal reac-
hing at the end of the reaching phase, and is able not only to establish the reaching condition,
but also to specify the dynamic characteristics of the system during the reaching phase.
In [29], an SMC controller was developed based on the reaching law

.
s = −Lsgn(s)− Ks

to control the position of the PMLSM. In addition, an adaptive disturbance observer
was developed to suppress external disturbances and parameter unertainties. As the
authors reported, the simulation results demonstrated the excellent dynamic characteristics
and robustness of the proposed control method. A variable-rate reaching law approach-
based sliding-mode controller aimed at achieving higher system stability and improved
robustness in PMLSM servo systems was proposed in [30]. The occurrence of the sliding
motion and a reduction in chattering were obtained when using the proposed controller.

In [31], a sliding-mode observer (SMO) with a variable exponential reaching law was
established to simultaneously suppress thrust ripple and parameter variation. A func-
tion term (1− e−α|e1|) associating the reaching state with the estimated error e1, which can
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change with the estimated value |e1|, thus efficiently suppressing the chattering problem. In
addition, an improved sliding-mode observer with reduced chattering was also proposed
in [32] for observing the real-time speed of a controllable-excitation linear synchronous
motor. In order to balance the dilemma between the rapidity required for dynamic perfor-
mance and the reduction of chattering, a new reaching law based on the sigmoid function
and the power function was proposed. As reported, the proposed approaches were able
to effectively suppress the chattering phenomenon and track the transient process rapidly
and accurately. In [33], a discrete-time load thrust observer based on an improved sliding
mode reaching law was designed to reduce the influence of load thrust mutation on the
linear motor. The reaching law tended to zero with decreasing x(k), which effectively
suppressed chattering.

4.3. Disturbance Observer-Based SMC

Due to the presence of various disturbances and uncertainties such as nonlinear
friction, payload variations, and external disturbances in PMLSMs that deteriorate the
control performance [7], a high control gain is typically employed for SMC controllers
to eliminate the adverse effects of disturbances and uncertainties. However, switching
gains that are too large will result in an undesired chattering phenomenon. To deal with
such situations, the disturbance observer method has been proposed, which is able to
effectively deal with the above problems by estimating the disturbances and performing
compensation. A general block diagram of disturbance observer-based SMC for position
control of PMLSMs is shown in Figure 6. The disturbance observer is an external loop for
estimating the lumped disturbances from measurable variables and feeding the results back
to the sliding-mode controller located in the inner loop in order to cause control actions to
be taken to compensate for the influence of the disturbance.

Ref. [34] proposed an SMC method with observer-based disturbance compensation
for a permanent magnet linear motor (PMLM). A reduced-order disturbance observer was
employed to estimate the lumped disturbance force, including friction, external force, etc.
The observer design was based on the dynamic state equations of the system. The key idea
for the observer design was to extend the state equation, in which the dynamics of the
state vector depend on a function

.
y = f (y, F0, Fl),

.
F0 = 0, with an integrator as disturbance

model. The estimated lumped disturbance force was fed to the integral sliding-mode
controller, which performed position control. An integral action ensured steady-state
accuracy and a certain robustness of the position control, while also eliminating system
chattering. The effectiveness of the proposed method was verified by means of a successful
simulation. However, experimental validation of the algorithm is lacking.

In [35], a control strategy for the PMLM was designed for position control. A finite-
time disturbance observer (FTDO) was employed to estimate the time-varying disturbance,
and the estimation was fed to the position controller. The stability of the FTDO was
confirmed by means of the Lyapunov method. A fast nonsingular-terminal sliding-mode
controller (FNTSMC) was designed as a position controller to guarantee that the error
between the real position and the reference would reach zero in a finite time. A comparison
of the proposed controller with PID and the linear sliding-mode controller was performed
in MATLAB/Simulink, and the results demonstrated that the proposed method exhibited
better tracking accuracy, faster dynamic performance, and stronger robustness against
lumped disturbances.

The combination of a modified complementary sliding-mode control (MCSMC) with
a disturbance force observer was performed in [36] to track the reference position signal of
a PMLSM. The disturbance force observer with mass identification (DFOB-MI) was used
to estimate the total disturbance force with the exclusion of electromagnetic thrust. In
contrast to other techniques, the output of the observer was fed to the current regulator
as compensation input for system disturbances, rather than the sliding-mode controller
located in the position loop. In addition, the mass identification based on the discrete MRAI
method was designed to perform the online identification of the mass of the mover in order
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to reduce the negative influence of changes in mass. A simulation and experiments were
conducted based on DSP TMS320f28335. The proposed method was able to achieve both
superior tracking performance and strong robustness compared to the CSMC and hybrid
CSMC methods, as demonstrated by the results of the simulation and experimental results.

Based on the nonlinear disturbance observer (NDOB), a backstepping sliding-mode
controller was proposed in [37] for the purpose of performing tracking control in PMLSMs.
The NDOB was an improved sliding-mode observer, and was developed to dynamically
estimate the uncertainty and feed it to the controller. The combination of the backstepping
sliding-mode control with the command filter ensured the good tracking performance of
the PMLSM. The effectiveness and superiority of this method could be observed from the
successful simulation results.

A robust recursive sliding-mode controller combined with an adaptive disturbance
observer (RSM-ADO) was demonstrated in [38] to realize high-speed and high-precision
control of a PMLSM. The proposed ADO was dependent on a sliding-mode structure with
a nested adaptation algorithm, and therefore possessed the advantage of not requiring the
upper bound information of the disturbance and its derivative in the design. Moreover, the
observer was able to effectively adapt to disturbance variations, including the unmodeled
dynamics and external disturbances, without the use of overestimation. The recursive
integral terminal sliding-mode controller enabled finite-time convergence of the position
tracking error on zero. The control input chattering was also reduced by the recursive
structure. The proposed method was implemented using DSPACE DS1103 with a sampling
time of 0.2 ms. The peak error of RSM-ADO was around 5 µm, which is much smaller
than that for ARTSM when tracking a slope-varying triangular reference with an ampli-
tude of 1000 µm. The experimental results demonstrated that the proposed method was
able to achieve a reduced chattering effect and a stronger robustness in the presence of
unknown external disturbances compared to two existing disturbance observers and the
ARTSM controller.
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To estimate and utilize matched and mismatched disturbances in PMLSM servo drive
systems, reducing the conservativeness of the system under multiple disturbances, a double
disturbance observer composed of a matched disturbance observer and a mismatched
disturbance observer was introduced in [39]. The position controller was designed as
a high-order fast nonsingular-terminal sliding-mode controller, ensuring the robustness
of the PMLSM system and improving the tracking performance. The overall control of
the motor position, speed and current was realized by adding feedback current on the
sliding-mode surface. The control law was designed as uq = uq0 + uq1 + uq2, where
uq2 consisted of the estimated disturbances, and aimed to resist the adverse effects of
disturbances. The convergence and stability of the proposed method were demonstrated
on the basis of Lyapunov theory. The control strategy was implemented on a linear motor
utilizing CSPACE and hardware using a loop development experimental platform with
TMS320F2812 DSP. The experimental results showed that the proposed control method had
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better tracking performance as well as stronger robustness to different types of disturbance
when compared to the FNTSMC-HOSTO controller and the FNTSMC controller.

4.4. Terminal SMC

The terminal sliding-mode control (TSMC) strategy is a modification of the linear
sliding-mode strategy. By introducing a nonlinear part, a terminal sliding surface is
constructed, ensuring the convergence of the error signal in a finite time. Thus, it is able to
overcome the characteristic asymptotic convergence of states when using a linear sliding-
mode surface [40]. The traditional terminal sliding surface can be described by a first-order
nonlinear differential equation as follows:

s(t) =
.
x + βxq/p = 0 (29)

where x ∈ Rn, β > 0 and p, q ( 1 < p/q < 2) are positive odd numbers. In sliding mode
(29), the system state from any initial state (x(0) = x0) converges to equilibrium (x = 0) in
a finite time ts determined by

ts =
p

β(p− q)
|x0|(p−q)/p (30)

The introduction of the nonlinear part (βxq/p) increases the convergence rate, but it
is not optimal in terms of convergence time. The main reason for this is that it converges
more slowly than the linear relation when the system approaches equilibrium. Therefore, a
fast terminal sliding surface was proposed in the following form [41]:

s(t) =
.
x + αx + βxq/p = 0 (31)

where α, β > 0, p and q (p > q) are positive odd numbers.
The following can be obtained from (31):

dx
dt

= −αx− βxq/p (32)

The convergence time ts becomes

ts =
p

α(p− q)
ln

αx0
(p−q)/p + β

β
(33)

when the system state is far from the origin, the convergence time is determined by the
terminal attractor (

.
x = −βxq/p); whereas, when it approaches the origin, the convergence

time is determined by
.
x = −αx. Thereby, fast and precise convergence to the equilibrium

point can be achieved.
In common TSMC, the control singularity problem may occur around the equilibrium

due to the negative fractional power. To avoid this problem, the so-called nonsingular
TSMC was developed, which can be expressed as [42]

s =
.
x + βsigγ(x) = 0

s =
.
x + αx + βsigγ(x) = 0 (34)

where sigγ(x) = sgn(x) · |x|γ, α, β > 0, 0 < γ < 1.
Accordingly, the system state was able to converge to equilibrium (x = 0) in a

finite time
ts =

1
β(1− γ)

|x0|1−γ

ts =
1

α(1− γ)
ln

αx0
(p−q)/p + β

β
(35)
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In addition, the nonsingular TSMC can be represented as follows [43]:

s = x + βsigγ
( .
x
)
= 0 β > 0, 1 < γ < 2 (36)

An integral terminal sliding-mode control for PMLMs to track the desired trajectory
in a finite time in the presence of disturbances was proposed in [44]. The sliding surface
consisted of the first derivative of the position tracking error and an integral term, whose
specific form was

s(t) = e2 +
∫ t

0

(
k1sign(e1)|e1|α1 + k2sign(e2)|e2|α2

)
dτ (37)

where k1, k2 > 0, α1 > 0 and α2 = 2α1/(1 + α1). The signum function was replaced with
a novel saturation function to reduce the chattering. The effectiveness of the proposed
method was proved on the basis of simulation results.

In order to track the reference position signal of a linear motor (LM) quickly and
accurately, a fast nonsingular-terminal sliding-mode control (FNTSMC) was studied in [45].
The sliding surface was defined as

s = e + λsigγ
( .
e
)
= 0 λ > 0, 1 < γ < 2 (38)

where e = y − yr, ensuring finite-time convergence and overcoming the singular prob-
lem. The FNTSM control law was the linear combination of the equivalent control input
u0 and the reaching control input u1 = −m0[k1s + k2sigp(s)], effectively shortening the
convergence time. In addition, a model-free robust exact differentiator was introduced
as a velocity estimator to estimate the velocity, which was fed back to the controller. The
control method was verified using a real-time DSP system (dSPACE-DS1103). Compared
with NTSMC and H∞ control, the proposed FNTSMC was able to provide better tracking
performance and stronger robustness, whether the load changed or not. Moreover, it
exhibited significant superiority in terms of response to external disturbances.

A nonsingular fast terminal sliding-mode control method was presented in [46] for
PMLMs. A new sliding surface composed of tracking error and its first derivative was
introduced to speed up the convergence rate. The chattering was reduced by adopting the
reaching law of the attractors to replace the normal switching term. The effectiveness and
advantages were demonstrated on the basis of simulations. However, relevant experimental
evidence was lacking.

An improved fast continuous-time nonsingular-terminal sliding-mode control was
proposed in [35] for position tracking control of PMLMs. The sliding-mode surface con-
sisted of tracking error (e = xr − x) and its derivative in order to guarantee the finite-time
convergence of the error system state (e,

.
e), which was designed as

s = e + β1
∣∣ .
e
∣∣γ1 sign

( .
e
)
+ β2|e|γ2 sign(e) (39)

The advantage of faster convergence rate compared with the traditional terminal
sliding-mode control was achieved. The faster convergence rate and smaller steady-state
error were observed on the basis of simulation results compared with PID controller.
However, no experimental verification was performed.

In order to directly implement the SMC on the digital signal processor (usually DSP),
a discrete-time fast terminal sliding-mode control for PMLMs was presented for practical
position tracking control [9]. Firstly, the discrete-time model was given using Euler’s
discretization method. A new discrete-time terminal sliding-mode surface was introduced
to ensure that the tracking error was always bounded, and was chosen as

s(k) = e2(k) + c1e1(k) + c2sigγ(e1(k)) (40)
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where e1(k) = xr(k)− x1(k) and e2(k)=[e1(k + 1)− e1(k)]/h, 0 < hc1 < 1, c2 > 0, 0 < γ < 1,
h is the sampling interval. To further improve the accuracy, the delayed estimation method
was adopted to estimate and compensate the disturbance. The robustness and stability were
demonstrated, whereby the tacking error was able to converge to o

(
h3). The effectiveness

of the proposed method was validated on the basis of simulation and experiments, and
comparison with PID control and discrete-time control showed a smaller steady-state error
and a better robustness to disturbances including variations in mass, friction and load.

Discrete-time SMC was also carried out in [47] to achieve the high-precision tracking
control of a linear motor. A new discrete-time sliding-mode surface was designed based on
fractional-order definition and the terminal sliding-mode technique, and can be described
as follows:

s(k) = ∆e(k) + c1∆α−1[e(k)]λ1 (41)

where e(k) = p(k)− pr(k), guaranteeing higher tracking precision. In addition, a novel
terminal sliding-mode-type reaching law was employed in the control law, which was
based on equivalent control to shorten the convergence time. The theoretical analyses and
experimental results demonstrated that the proposed control strategy was able to provide
higher precision, faster response, and stronger robustness to uncertainties with different
payloads when compared with conventional DTSMC.

In addition, a novel discrete-time fractional-order sliding-mode control was repre-
sented in [48] to achieve the desired tracking performance for a linear motor. The sliding
surface was designed with a fractional-order term, as follows:

s(k) = c1 p̌(k) + c2v̌(k) + c3∆λ−1 p̌(k) (42)

where p̌(k) = p(k)− pr(k), v̌(k) = v(k)− vr(k), 0 < λ < 1, c1, c2, c3 > 0, to ensure faster
convergence rate of the tracking error. Due to the global memory of the fractional calculus,
this sliding surface was able to provide improved transient performance, and the stability
condition of this sliding surface was given. The stability of the system was analyzed on the
basis of Lyapunov theory and validated on the basis of simulations. The proposed controller
was implemented on a real linear motor, and the experimental results demonstrated higher
tracking precision and more noticeable robustness than the chattering-free discrete-time
sliding-mode control and the discrete-time terminal sliding-mode control.

In [49], a discrete-time fast terminal sliding-mode control based on the nonlinear
extended-state observer (NLESO) was reported to realize high-precision position tracking
for PMLM systems. The fast terminal sliding surface was able to ensure the fast convergence
of tracking error in a finite time. The total controller consisted of three terms, as follows:

u(k) = ueq(k) + ur(k) + uo(k) (43)

where uo(k) is the feedforward control corresponding to the NLESO for compensating the
lumped disturbances. The finite-time convergence of the sliding variable is achieved by
ur(k), which is a terminal sliding-mode-type reaching law. Fast response speed and high
tracking performance were observed in the simulation results.

In [50], a fast nonsingular-terminal sliding mode (FNTSM) control with the extreme
learning machine (ELM) was proposed to perform the position tracking of PMLMs. The
FNTSM surface was represented as follows:

s = e1 + k1|e2|λ1 sign(e2) + k2|e1|λ2 sign(e1) (44)

where
e1 = xr − x1 (45)

e2 =
.
xr − x2
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The sliding mode position controller consists of three terms, as follows:

u = ueq + usw + ure (46)

where ueq is the equivalent control term, which is adaptively estimated using the ELM
algorithm, usw = ρsign(s) is employed to compensate for disturbances in order to alleviate
the chattering, with the sign (s) being replaced by the continuous function sat(s). Finally,
ure is the reaching control, which ensures the reachability of the sliding-mode surface in
a finite number of steps. The control performance, including response time, steady-state
error, and robustness, was validated on the basis of a comparison of the proposed control
algorithm with the traditional SMC and PID control.

An improved nonsingular-terminal sliding-mode control combining time delay es-
timation (TDE) and the adaptive algorithm was proposed for the position tracking of
PMLSMs in the presence of uncertainties [51]. Disturbances, including the unmodeled
system and uncertainties, and the bounded control input gain, were estimated using the
TDE method and fed back to the controller, thus improving the control accuracy. The gain
of the robust control term was tuned using the adaptive method. The advantages of the pro-
posed controller included higher tracking accuracy and stronger robustness. Experimental
verification was performed using a real PMLSM control system based on DSP.

4.5. Super-Twisting SMC

Super-twisting sliding-mode control is a special case of second-order sliding-mode
control. It can eliminate the chattering caused by first-order SMC while retaining its
advantages, which include simplicity and strong robustness [52]. In addition, compared
with other second-order SMC algorithms, the super-twisting algorithm only requires
measurement of the sliding variable, and the time derivative of the sliding variable is not
needed [53,54]. This means that super-twisting SMC is very simple and easy to implement.
The super-twisting sliding-mode controller can be designed as follows:

u = −α|s|1/2sgn(s) + u1

.
u1 = −βsgn(s) (47)

where α, β > 0 and satisfies

β >
C

Km

α2 > 2
βKm + C

Km
(48)

It can be seen that the control law (47) is continuous, thus avoiding chattering.
In [55], a super-twisting sliding-mode control method with a defined boundary layer

was designed for the high-precision position control of PMLSMs. The sliding-mode surface
consisted of a linear combination of tracking error and its derivative. The control law was
designed based on the super-twisting algorithm with a defined boundary layer around the
sliding-mode surface, s = 0. The simulation and experimental results demonstrated higher
steady-state position accuracy and less chattering.

In [18], a novel super-twisting nonsingular-terminal sliding-mode control was pro-
posed for the accurate position tracking of PMLSMs under various uncertainties. The
sliding-mode control law consisted of the equivalent control law and the switching control
law designed based on the super-twisting algorithm, expressed as follows:

usw = Bn
−1[−k1|s|1/2sgn(s)− k2s−

∫ t

0
k3sgn(s)dτ −

∫ t

0
k4sdτ (49)

This control law can ensure that s =
.
s = 0 in a finite time and effectively eliminate the

chattering phenomenon. Furthermore, a high-order sliding-mode observer can be used
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to estimate the system uncertainties and feed them back to the sliding-mode controller
in order to improve the tracking accuracy and anti-interference ability. The experimental
results illustrate that, compared with the NTSMC and STNTSMC methods, the proposed
OSTNTSMC method is able to ensure the robustness of the system and the accuracy of its
position tracking.

A high-order super-twisting observer with a nonsingular fast-terminal sliding-mode
(NFTSM) controller was designed for the position regulation of PMLSMs in [56]. The
incompleteness of state information resulting from lumped disturbances was estimated
by the observer and was fed into the NFTSM controller, guaranteeing the convergence
of tracking error. This control strategy was implemented on a real PMLSM experimental
platform. The experimental results demonstrated faster response, higher precision, and
stronger robustness compared to the conventional NFTSM control and the NTSM control.

In addition, super-twisting sliding-mode control was also used for the speed tracking
of PMLSMs in [57,58]. In [57], a self-adaptive super-twisting sliding-mode controller was
designed. The super-twisting sliding-mode controller was designed as follows:

u = −kp|s|rtan h(s) + u1

.
u1 = −kitan h(s) (50)

where the gain parameters kp and ki are tuned using the adaptive approach. The control
scheme was verified using the linear motor experimental platform. The reduction in chat-
tering, robustness, and accurate speed- and position-tracking performance were validated
on the basis of simulation and experimental results.

A super-twisting sliding-mode control strategy was presented in [58] for velocity
regulation of PMLSM. The sliding surface was composed of an error in input velocity and
a reference velocity. Moreover, the super-twisting sliding-mode observer was structured
to suppress force disturbances in the velocity loop. A very small tracking error—limited
below 0.04 mm/s—was reported on the basis of the experimental results. The proposed
method had higher tracking precision than the conventional PID control.

4.6. Adaptive SMC

Adaptive sliding-mode control is the combination of adaptive control and SMC. In
adaptive SMC, the control input signals (usually the switching gains) are tuned using the
adaptive algorithm, thus avoiding the chattering phenomenon caused by high switching
gains [59,60]. Regardless of the parameters used, external disturbances and other uncer-
tainties of PMLM are always time-varying, and adaptive SMC is able to maintain good
control performance by adjusting controller parameters accordingly in real time.

A discrete adaptive sliding-mode controller for high-precision motion control of a
linear permanent magnet iron core synchronous motor was presented in [61]. The real-time
gain tuning capability and robustness were achieved by combining the adaptive controller
and sliding-mode controller. Use of the proposed controller ensured the performance
of regulation and tracking tasks. Experimental results were presented demonstrating
that the designed controller possessed fast response and strong robustness in the face of
uncertainties and noise.

In [62], an adaptive fractional order terminal sliding-mode controller (AFOTSM) was
developed to track the desired position signal of a linear motor. The FO terminal sliding
mode was designed by introducing fractional order calculus, ensuring higher tracking
precision than conventional terminal sliding-mode surfaces. An adaptive term was added
into the switching control to weaken the effect of uncertainties. This proposed control
strategy was applied on real LM-based motion. The experimental results showed that the
AFOTSM was able to maintain higher tracking precision, i.e., errors lower than 0.005 mm
without load and no more than 0.01 mm with 30% load, and ran more smoothly and stably
than FOTSM, FNTSM, PID, and observer-based sliding-mode control (OSMC). Moreover, it
possessed the greatest robustness against uncertainties.
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A combination of recursive control and adaptive terminal sliding-mode control was
developed in [63] to provide high-speed and high-precision control for LMs subject to
friction, payload variations, and other disturbances. The sliding surfaces were designed
as a recursive structure consisting of a fast nonsingular-terminal sliding function and a
recursive integral terminal sliding mode in order to ensure the arrival of the sliding surfaces
and the convergence of the tracking error. In addition, the reaching time was reduced by
enforcing the system start on the sliding surface. The controller parameters were tuned
using the adaptive algorithm. There was no discontinuous function, and thus the system
was free of chattering. The tracking error under the proposed ARTSM controller was less
than 1.7% of the reference amplitude without load. The experimental results demonstrated
that the proposed control method possessed better tacking accuracy and faster disturbance
rejection than the FNTSMC.

In [64], a robust tracking controller based on a barrier function adaptive sliding
mode (BFASM) was proposed for a linear motor positioner in the presence of payload
variations and unknown disturbances. The construction of the controller did not require
any information regarding disturbances. By adopting the barrier function in the adaptive
law, the control gain could be adaptively adjusted depending on the amplitude of the
disturbance. Experiments were carried out using a real experiment platform based on
a linear motor to verify the effectiveness of the BFASM controller. The experimental
results demonstrated that the proposed controller was able to maintain tracking errors to
within 40 µm under disturbances varying with respect to payload or amplitude, and had
better robustness and tracking performance than the adaptive piecewise scheme-based
sliding-mode controller and the fast nonsingular-terminal sliding-mode controller.

4.7. Intelligent SMC

Intelligent algorithms, such as fuzzy mechanisms, neural networks control and adap-
tive neuro-fuzzy interference systems, are learning process-based approaches that have the
property of universal approximation. In order to take advantage of intelligent algorithms’
capability to accurately approximate the system’s uncertainties and disturbances along with
their boundaries, the intelligent SMC was proposed, which was able to realize the adaptive
adjustment of the switching gain, consequently reducing chattering and increasing robust-
ness [65,66]. In order to achieve position/velocity control of a PMLSM by adopting the
intelligent SMC, the intelligent algorithms were mainly used to approximate disturbances
or to optimize the gain of the controller parameters.

In [67], an intelligent complementary sliding-mode control was used to track periodic-
reference trajectories for a PMLSM. The complementary sliding-mode control was devel-
oped to ensure the stability of the system and the convergence of tracking error between
the reference position and the practical output position to the closed region in a finite time.
The radial basis function network (RBFN), trained by adaptive learning algorithms, was
adopted for the online estimation of the lumped uncertainties. The experimental results
demonstrated the effectiveness of the proposed control method for different test signals,
strokes, and load conditions.

An adaptive fuzzy fractional-order sliding-mode control for high-precision position
control of PMLSMs was developed in [68]. In order to eliminate the effects of parameter
variations and external disturbances in the system, a probabilistic fuzzy neural network
(PFNN) was utilized for the online estimation of lumped uncertainties. For observation
deviations caused by the limited network size, an adaptive fuzzy reaching regulator (AFRR)
was designed to concurrently perform compensation while smoothing the hitting control,
thus maintaining performance while reducing chattering. Adaptive tuning laws for the
PFNN and AFRR were derived from the Lyapunov stability theorem. A comparison of the
experimental results with PID control, fractional-order SMC with sign function, fractional-
order SMC with saturation function, and adaptive self-tuning PID fuzzy sliding-mode
control demonstrated that this method possessed the best control precision and robustness,
with reduced chattering.
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An adaptive neural network nonsingular fast terminal sliding-mode control for high-
precision position tracking of PMLSMs in the presence of uncertainties was proposed
in [69]. The nonsingular fast terminal sliding-mode control was responsible for the quick
convergence of the system on the equilibrium point. The adaptive radial basis function
(RBF) neural network was used to approximate the unknown function of the PMLSM, and
an adaptive law was employed to estimate the upper bound of the total system uncertainty.
The control law was a combination of the equivalent control law based on the RBF neural
network estimate and the switching control law based on an adaptive law to tune the control
gain, thus reducing the chattering and enhancing the robustness. The experimental results
demonstrated higher tracking accuracy, faster response speed, and stronger robustness
compared to the conventional nonsingular fast terminal sliding-mode control, as well as an
improvement in the chattering.

The combination of second-order sliding-mode control (SOSMC) with recurrent radial
basis function neural network (RRBFNN) was proposed for high-performance servo control
of PMLSMs in [70]. SOSMC was able to eliminate the chattering problem and improve
tracking accuracy. Due to the fact that the uncertainties are unknown in reality, negatively
impacting control performance, the RRBFNN uncertainty observer was utilized to estimate
the uncertainties. The control law consists of three parts, expressed as

u = ueq + ur + urc (51)

where ueq is the equivalent control, ur is the output control law of RRBFNN, and urc is the
control law of the robust compensator for suppressing uncertainties such as approximation
error. The experimental results demonstrated that the proposed control strategy had the
best control effect in terms of chattering reduction and tracking accuracy improvement
in a comparison with second-order sliding-mode control and second-order sliding-mode
control based on a radial basis function neural network.

In [71], an intelligent backstepping terminal sliding-mode control (IBTSMC) method
was proposed for the accurate position tracking of the PMLSM. Backstepping terminal
sliding-mode control was employed to guarantee the convergence of the system and the
tracking error (e = dm − d). The chattering effect was diminished by employing the
hyperbolic tangent function tanh (·) to replace the sign function. RBF neural network is
adopted to estimate the uncertainty in the system, and the corresponding compensate term
of the control law is designed for compensation. Accordingly, the chattering was reduced
because high switching gain was not needed to address uncertainty. The effectiveness and
superior control performance were proved by the experimental results.

A multi-kernel neural network-based sliding-mode control was presented for position
tracking and disturbance suppression of PMLSMs [72]. The lumped disturbances were ap-
proximated by multi-kernel neural network (MNN) and compensated by the corresponding
neural network control law. The sliding-mode control is designed with a dynamic boundary
layer to ensure the convergence of the sliding mode variable and reduce the chattering by
replacing the sign function with the saturation function. The control strategy was tested,
and provided better performance under load variation and external disturbances than the
adaptive sliding-mode control (ASMC) based on the RBF neural network.

5. Discussion

This paper presented a comprehensive review of state-of-art SMC for PMLSM position
control. SMC methods can be divided into two main categories: conventional SMC and
advanced SMC. The well-known advantage of conventional SMC is its simple implementa-
tion in practical applications, but it exhibits some weaknesses in terms of delivering the
desired performance for high-precision position control of PMLSM. In this regard, differ-
ent modifications of SMC have been proposed to eliminate the chattering phenomenon,
increase the response speed, improve the tracking precision, and avoid the utilization
of unnecessarily large control signals to overcome parametric uncertainties and external
disturbances. Considering the seven reviewed SMC approaches, a comparative discussion
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of the advantages and the disadvantages of them is presented in this section, as illustrated
in Table 2.

Table 2. Comparative discussion of the reviewed SMC for position/velocity control of PMLSM.

Approaches Advantages Disadvantages

Boundary layer approach
• Reduced chattering
• Simplicity

• Relatively large control gain
• Steady-state error relaying

on selected boundary layer
• Robustness and accuracy

cannot be ensured in the
boundary layer

Reaching law approach

• Reduced chattering
• Convergence rate changes

according to the distance
between the states and the
sliding surface

• Reduced robustness

Disturbance observer-based SMC

• Reduced chattering
• Disturbance rejection

without worsening the
chattering effect

• Control performance
depends on disturbance
estimation accuracy

Terminal SMC

• Reduced chattering
• Finite-time convergence of

the system states
• Stronger robustness against

disturbances and
uncertainties

• Less steady-state error

• Complex computation
• Singularity problem in

practical implements (not
occurs in NTSM, NFTSM)

Super-twisting SMC

• Reduced chattering
• Retains advantages of

first-order SMC (simplicity,
robustness)

• Finite-time convergence
ofthe system states

• Less steady-state error

• Complex computation

Adaptive SMC

• Reduced chattering
• Controller parameters tuned

by adaptive algorithm
• Better disturbance rejection

• Relatively large control gain

Intelligent SMC

• Reduced chattering
• Universal approximation to

external disturbance and
vary-time parameters

• Stronger robustness
• Adaptive control

performance

• Complex computation
• Requires additional

resources, such as training
data, fuzzy rules, etc.

6. Conclusions

Due to the continuously expanding applications for PMLSMs, there have been tremen-
dous efforts dedicated to improving the control performance. Possessing the advantages
of good dynamic response and insensitivity to parameter perturbation and external dis-
turbances, SMC is widely used in PMLSM. This paper presented different SMC methods
utilized and implemented in PMLSMs position control. A dynamic model of a PMLSM was
presented requiring position control based on SMC. In addition, a block diagram was also
given for the SMC-based PMLSM position control scheme. When reviewing, analyzing and
summarizing the relevant literature, we divided the SMC approaches applied to PMLSM
position control into two categories according to the SMC approach adopted: conventional
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SMC and advanced SMC. Under conventional SMC methods, the boundary layer approach,
the reaching law approach, and disturbance observer-based SMC were discussed in detail.
Then, the advanced SMC methods were illustrated. In addition, we compared the different
SMC methods, and identified their advantages and disadvantages in terms of chattering
reduction, robustness, tracking precision, and so on. Generally, conventional SMC was
simple to implement, but not satisfactory with respect to chattering reduction or tracking
precision. While advanced SMC was able to achieve better tracking performance and
chattering reduction, it is also more complicated, especially Intelligent SMC.
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