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Abstract: The cam-linkage mechanism is a typical transmission mechanism in mechanical science
and is widely used in various automated production equipment. However, conventional modeling
methods mainly focus on the design and dimensional synthesis of the cam-linkage mechanism in the
slow-speed scenario. The influence of component dimensions is not taken into consideration. As a
result, the model accuracy dramatically falls when analyzing large-size cam-linkage mechanisms,
especially in high-speed environments. The kinematic aspects of cam design have been investigated,
but there are few studies discussing the motion characteristic and accuracy analysis models of the
large-size cam-linkage mechanism under high-speed scenarios. To handle such issues, this paper
proposes a parameter optimization methodology for the design analysis of the large-size high-speed
cam-linkage mechanism considering kinematic performance. Firstly, the mathematical model of the
cam five-bar mechanism is presented. The cam curve and motion parameters are solved forward
with linkage length and output speed. Then, a particle swarm-based multi-objective optimization
method is developed to find the optimal structure parameters and output speed curve to minimize
cam pressure angle and roller acceleration and maximize linkage mechanism drive angle. A Monte
Carlo-based framework is put forward for the reliability and sensitivity analysis of kinematic accuracy.
Finally, a transverse device of a sanitary product production line is provided to demonstrate the
applicability of the proposed method. With the parameter optimization, the productivity of the
transverse device is doubled, from 600 pieces per minute (PPM) to 1200 PPM.

Keywords: cam-linkage mechanism; parameter optimization; reliability analysis; kinematics; trans-
verse device

1. Introduction

As a combination of the cam and linkage mechanisms, the cam-linkage mechanism is
one of the most popular transmission mechanisms in mechanical science. By integrating
the merits of both kinds of mechanisms, the cam-linkage mechanism can achieve superior
kinematic performance while maintaining high reliability and compact structures. Due to
such prominent abilities in realizing complex motion laws, the cam-linkage mechanism
has been widely used in various machinery and automatic production equipment, such
as textile machinery [1], packaging machines [2], rehabilitation devices [3], bionic horse
robots [4], and parallel manipulators [5].

In view of the significant role of the cam-linkage mechanism in mechanical transmis-
sion, lots of studies have been proposed to investigate the design optimization of the cam
and connecting rod. For example, Rybansky et al. [6] studied the topological optimization
of the internal shape of the biaxial spring cam mechanism. The weight/stiffness trade-off
in the cam design was investigated during the topology optimization. Abderazek et al. [7]
discussed the motion law of the disk cam mechanism with a roller follower. Li et al. [8]
generated the design of a mold substructure with cams in the form of an assembly. In

Actuators 2023, 12, 2. https://doi.org/10.3390/act12010002 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2421-740X
https://doi.org/10.3390/act12010002
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12010002?type=check_update&version=3


Actuators 2023, 12, 2 2 of 18

addition to the cam optimization, Zhang et al. [9] designed a 1-DOF (degree of freedom)
cam-linked bi-parallelogram mechanism. This mechanism was applied to a double-deck
parking system. Wu et al. [10] presented a new robot with a five-bar spatial linkage design
form. The robot has the advantage of a larger working space. For the cam profile that people
are generally concerned about, Arabaci et al. [11] proposed a dimensionless design method
for a double-arc cam mechanism. The motion equation of the cam profile was obtained
during the design process. Moreover, Xia et al. [12] and Ouyang et al. [13] constructed the
optimization design model of the new cam profile. Chen et al. [14] investigated the X- and
Y-shaped cam profiles. It was found that the cam linkage polishing device has a bicircular
polishing trajectory with zero velocity deviation.

Chang et al. [15] developed a design method and an optimization model for the
rotational balance of disc cams. Li et al. [16] constructed a rehabilitation device based on
the six-bar linkage mechanism. A novel optimization algorithm was proposed to obtain the
optimal structural design parameters. Furthermore, the compactness and stability of the
mechanism are currently key concerns in academic circles. Yang et al. [17,18] proposed a
new coaxial cam mechanism, which consists of conjugate cams and parallelogram linkage.
Its structure is more compact and can be used in high-speed working conditions. Radaelli
et al. [19] applied the compliant revolute joint to the linkage mechanism. The mechanical
stability and performance were significantly improved. Wang et al. [20] developed a cam
angular velocity model for a high-pressure oil pump system. The high stability of the
mechanism was determined.

Although these studies have provided a number of impressive techniques for contour
design, motion analysis, pressure angle calculation, and overall dimensional optimization of
the traditional cam-linkage mechanism, most of them focus mainly on design analysis in the
slow-speed environment. The influence of component dimensions is not taken into account.
However, when oriented to high-speed operation, the kinematics performance of the cam-
linkage mechanism differs significantly from low- or normal-speed scenarios. Moreover,
the high-speed conditions bring significant challenges to the stable operation and fatigue
life of the mechanism. The parameter optimization of the large-size high-speed cam-linkage
mechanism remains to be resolved. There is scant research discussing the multi-objective
optimization of the cam-linkage mechanism under such challenging environments.

To bridge this gap, this paper proposes a parameter optimization method for a large-
size high-speed cam-linkage mechanism considering kinematic performance. Specifically,
the cam five-bar mechanism is introduced as an example. First of all, the modeling analysis
of the cam five-bar mechanism is presented. Then, the multi-objective optimization of the
cam five-bar mechanism is investigated under high-speed scenarios. Finally, the reliability
and sensitivity analysis is conducted to investigate the kinematic performance of the
optimized structure. The main contributions of this paper are as follows.

(1) A mathematical model is constructed to determine the performance parameters of
the cam five-bar mechanism. The motion characteristics of the mechanism are obtained by
resolving the mathematical model.

(2) A multi-objective optimization method for a large-size cam-linkage mechanism
is proposed. The optimal kinematic parameters are identified by solving the optimiza-
tion problems.

(3) A computer-aided platform is developed for the design analysis of the cam five-bar
mechanism. The parameter calculation, optimization, and reliability analysis are well-
handled with the aid of the software package.

(4) A real-world case study of the transverse device is put forward to demonstrate
the effectiveness of the proposed method. The productivity of the transverse device is
substantially improved.

The rest of this paper is structured as follows. Section 2 outlines the modeling analysis
of the cam five-bar mechanism. Section 3 proposes the multi-objective optimization method.
Section 4 presents the reliability analysis of kinematic accuracy. Section 5 provides the
model validation and discussion. Finally, the paper is concluded in Section 6.
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2. Cam Five-Bar Mechanism
2.1. Mechanism Principle

Compared with traditional cam-linkage mechanisms, the compactness of the large-size
cam-linkage mechanism is poor. The fatigue damage and wear also differ significantly. In
this study, we take the cam five-bar mechanism as an example to investigate the design
optimization of the large-size cam-linkage mechanism, which is shown in Figure 1.
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Figure 1. Schematic diagram of the cam five-bar mechanism. 
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Figure 1. Schematic diagram of the cam five-bar mechanism.

In general, the objective of the cam five-bar mechanism is to achieve a controlled
change of the rotational angular speed with the rotation angle. As illustrated in Figure 1,
the cam five-bar mechanism is composed of one cam and five bars. Rod 1 is the prime mover,
whose angular velocity is constant. Rod 4 is the output member, whose angular velocity is
supposed to meet working requirements. In addition, rods 2 and 5 are fixedly connected.
Rods 2 and 3 generate the triangle BCD. During the system operation, the angle BCD would
be changed if the motion state of rod 2 is adjusted through the cam. Correspondingly, the
distance between B and D is also changed. As a result, the movement of the output member
(i.e., rod 4) can be determined by adjusting the distance between B and D.

Theoretically, the output angular velocity and cam shape can be uniquely determined if
the angular velocity of rod 1 and the length of each rod are known. This process of deriving
the output velocity and cam shape from the given input angular velocity and rod structure
is known as a positive solution. By contrast, the input and output angular velocities are
often given in real applications, whereas the linkage mechanism characteristics and cam
shape need to be resolved. This process is known as inverse solving. Compared with the
positive solution, reverse solving may produce multiple solutions in which the motion
characteristics of different structures can vary significantly. For example, some cam shapes
may generate certain points where the pressure angle is too large, resulting in uneven
motion and poor forces. Similarly, some linkage structures may produce points where the
transmission angle is too small or even dead in motion. Thus, it is quite challenging to
identify excellent motion characteristics while performing inverse solving.

2.2. Mathematical Model

As shown in Figure 1, a right-angle coordinate system Oxy is established to facilitate
the theoretical analysis. The center of rotation of the prime mover (point A) is set as the
origin (i.e., O). Suppose l1, l2, l3, l4, and l5 are the lengths of the corresponding rods. ω1
is the angular velocity of the prime mover. θ1 is the angle of rotation. ω4 and θ4 are the
angular velocity and angle of rotation to be satisfied by the follower, respectively. The
vector equation is obtained as:

l1 + l2 = l3 + l4 (1)

where l1, l2, l3, and l4 are vectors of magnitude l1, l2, l3, and l4, respectively.
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By expressing Equation (1) in complex form and expanding it according to Euler’s
formula, it can be written as:[

cosθ1 cosθ2
sinθ1 sinθ2

][
l1
l2

]
=

[
cosθ3 cosθ4
sinθ3 sinθ4

][
l3
l4

]
(2)

Then, the rotation angle of each rod is obtained as:

θ3 = 2arctan
B1 ±

√
D1

A1 − C1
+ θ4 (3)

θ2 = arctan
B1 + l3 sin(θ3 − θ4)

A1 + l3 cos(θ3 − θ4)
+ θ4 (4)

θ5 = 360 + θ2 − ψ (5)

where A1 = l4 − l1cos(θ1 − θ4), B1 = −l1sin(θ1 − θ4), C1 =
(

A2
1 + B2

1 + l2
3 − l2

2
)
/(2l3), and

D1 = A2
1 + B2

1 − C2
1 .

To find the final solution, i.e., the trajectories of points A, B, C, D, and E, the values
of l1, l2, l3, l4, l5, Ψ, ω4, and ω1 and the initial value of θ14 (the angle between rod 1 and
rod 4) need to be determined. In real practice,ω4 is usually given asω41 andω42, which
is shown in Figure 2. The connection curve betweenω41 andω42 can have many choices.
The angular velocityω4 is completely determined only after selecting the connection curve
concerning the actual working condition requirement.
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Thus, the coordinates of each point in the motion of the cam five-bar mechanism are
determined as: 

xb
yb
xc
yc
xd
yd
xe
ye


=



cosθ1 0 0 0
sinθ1 0 0 0
cosθ1 cosθ2 0 0
sinθ1 sinθ2 0 0

0 0 cosθ4 0
0 0 sinθ4 0

cosθ1 0 0 cosθ5
sinθ1 0 0 sinθ5




l1
l2
l3
l4

 (6)

where xi and yi (i = b,c,d,e) are the horizontal and vertical coordinates of points B, C, D, and
E, respectively.

By solving Equation (6), the following mechanism motion characteristics can be obtained.
(1) Cam theoretical profile curve:
From the above analysis, it can be concluded that the trajectory of point E is the

theoretical contour curve of the cam.
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(2) Acceleration at point E during the motion of the mechanism:

ae =

√(
x′′e
)2

+
(
y′′e
)2 (7)

where xe” and ye” are the horizontal and vertical accelerations of point E, respectively. ae is
the acceleration at point E.

(3) Transmission angle:

γ =

{
ϕ1, ϕ1 ≤ 90

◦

180− ϕ1, ϕ1 > 90
◦ (8)

where ϕ1 is the angle between rods 2 and 3.
(4) Cam pressure angle:

α =

{
|β1 − β2|, |β1 − β2| ≤ 90

◦

180− |β1 − β2|, |β1 − β2| > 90
◦ (9)

where β1 = arctan ye−yd
xe−xd

and β2 = arctan dye
dxe

.

3. Multi-Objective Optimization Method

After determining the motion characteristics and the cam profile curve, a particle
swarm-based multi-objective optimization method is proposed to determine the optimal
solution for the inverse solving, which is conducted as follows.

3.1. Selection of Optimization Variables

In light of the mathematical analysis of the cam five-bar mechanism, the initial values
of θ14, ω4, and rod lengths l1, l2, l3, and l5 are selected as optimization variables to enhance
the motion characteristics of the mechanism.

First of all, a combination of five straight lines and four curves is introduced for the
representation of ω4, which is depicted in Figure 3. Specifically, the angular velocity of the
0~T1, T4~T6, and T9~T10 periods are given in advance. Therefore, the remaining curve is
divided into two parts. The first part is the T2~T3 and T7~T8 periods, while the second is
the period of T1~T2, T3~T4, T6~T7, and T8~T9. In particular, the angular velocity keeps
constant in the first part, whereas the second part (i.e., the buffer section) introduces a
motion law curve as the corresponding angular velocity curve. The integration of ω4 in the
0 to T10 period is 360◦.
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In addition, the curve of the buffer section is chosen as a centrosymmetric curve to 
simplify the calculation. The rotation angle of the output member 4 can be determined by 
Equation (11). 
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As illustrated in Figure 3, the first part of the curve can be considered symmetric about
t = T5. Then, the time parameters are determined as:



T1
T4
T6
T7
T8
T9

 =



1
ω41

0 0 0
0 − 1

ω42
0 0

0 1
ω42

0 0

0 1
ω42

0 −1

0 0 −1 0
− 1

ω41
0 0 0




µ1
µ2
T2
T3

+



0
180
ω41
180
ω1
180
ω1
360
ω1
360
ω1


(10)

In addition, the curve of the buffer section is chosen as a centrosymmetric curve to
simplify the calculation. The rotation angle of the output member 4 can be determined by
Equation (11).

ω41T2 +
1
2
(ω4m −ω41)(T2 − T1) + ω4m(T3 − T2) +

1
2
(ω4m −ω42)(T4 − T3) + ω42(T5 − T3) = 180

◦
(11)

By solving Equation (11), ω4m is obtained as:

ω4m =
360−ω41(T1 + T2) + ω42(T3 + T4 − 2T5)

T3 + T4 − T2 − T1
(12)

For the second part of the curve, the commonly-used follower motion law curves are
modified sine, modified iso-velocity, and quintuple polynomials [21]. As the first-order
derivative of the dwell-free modified iso-velocity curve is too small, the dwell-free revised
iso-velocity curves are used for the buffer section.

In sum, the curve of ω4 can be linearly represented by T2 and T3. Therefore, the final
optimization variable x can be determined as x = (l1, l2, l3, l5, θ14, T2, T3)T.

3.2. Constraint Establishment

When rods 2 and 3 are in a straight line, the mechanism is in the limit state. At this
time, the angle between rods 1 and 4 is expressed as θmax. The following constraint should
be satisfied: √

l2
1 + l2

4 − 2l1l4cosθmax ≤ l2 + l3 (13)

T2 − T3 < 0 (14)

Moreover, the following constraint should be satisfied for the large-size cam-linkage
mechanism: 

100 ≤ l1 ≤ 400
150 ≤ l2 + l3 ≤ 400

0◦ ≤ θ14i ≤ 10◦
(15)

where θ14i is the initial value of the angle between rods 1 and 4.

3.3. Model for the Optimal Design

Based on the above analysis, the objective of the optimization is to maximize the
transmission angle of the five-bar mechanism, minimize the cam pressure angle, and
minimize the acceleration at point E, which is represented as:

min[aEmax, αmax,−γmin] (16)
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Then, the optimization model is obtained as:

min[aEmax, αmax,−γmin]

s.t.
√

l2
a + l2

d − 2laldcosθmax ≤ lb + lc
T3 − T2 ≥ 0

100 ≤ l1 ≤ 400
150 ≤ l2 + l3 ≤ 400

0◦ ≤ θ14i ≤ 10◦

(17)

Finally, the particle swarm optimization (PSO) algorithm is introduced to resolve the
optimization problem, which is described as:

vk+1
i = wvk

i + c1rand1

(
pk

i − xk
i

)
+ c2rand2

(
pk

g − xk
i

)
(18)

xk+1
i = xk

i + vk+1
i (19)

where w is the inertia weight, c1 and c2 are positive constants, and rand1 and rand2 are two
random numbers in the [0, 1] interval. xk

i and vk
i are the current position and velocity of

particle i, respectively. pk
i is the optimal position of particle i. pk

g is the best position among
all the particles in the population. xk+1

i and vk+1
i are the updated position and velocity of

particle i, respectively.
As a population-based optimization method, the optimal solution can be determined

by updating the position and velocity of the particles. Once the optimization model is
constructed, the solving process can be handled by the POS module in MATLAB.

4. Reliability Analysis of Kinematic Accuracy

In the process of reliability analysis, the mathematical model is generally established
according to the reliability design principle and practical problems. Finally, a suitable
algorithm is used to solve the problem. The general solution process is shown in Figure 4.
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4.1. Mathematical Model of Reliability Analysis

Compared with the traditional cam-linkage mechanism, the geometric shape error
of the cam five-bar mechanism with a large size has a more significant impact on motion
accuracy, especially in the high-speed scenario. To investigate the kinematic accuracy of
the optimized structure, a reliability analysis of motion accuracy is presented based on the
Monte Carlo methodology.

Firstly, motion analysis is conducted before the reliability analysis. Specifically, the
errors in the machining process of the rod are investigated in the motion analysis. Assuming
l1′, l2′, l3′, l4′, and l5′ are the actual lengths of the corresponding rod shown in Figure 1,
the intersection point with the theoretical contour line of the cam is E′(xE

′, yE
′). Then, the

vector equation of the linkage mechanism considering the errors is built as:{
l′1 + l′2 = l′3 + l′4
l′1 + l′5 = lAE′

(20)
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By the transformation operation similar to Equation (1), Equation (20) is also written as:

[
cosθ1 cosθ2 cosθ3 cosθ4
sinθ1 sinθ2 sinθ3 sinθ4

]
l′1
l′2
l′3
l′4

 =

[
0
0

]
(21)

[
cosθ1 cosθ5
sinθ1 sinθ5

][
l′1
l′5

]
=

[
xE′

xE′

]
(22)

Accordingly, θ3 and θ4 are obtained as:

θ3 = 2arctan

B0 ±
√

B2
0 + A2

0 − C2
0

A0 − C0

 (23)

θ4 = arctan
l′3sinθ3 + P0 − R0

l′3cosθ3 + O0 −Q0
(24)

where A0 = 2l′3(O0 −Q0), B0 = 2l′3(P0 − R0), C0 = l′3
2 + (O0 −Q0)

2 + (P0 − R0)
2 − l′4

2,
and 

O0
P0
Q0
R0

 =


−cosθ1 0
−sinθ1 0

0 cosθ2
0 sinθ2

[l′1
l′2

]
.

In addition to the linkage mechanism, the cam and the roller errors are also investi-
gated. As shown in Figure 5, ∆l is the cam’s shape error. rg is the roller radius error.
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Figure 5. Error diagram of the swing cam mechanism. Figure 5. Error diagram of the swing cam mechanism.

Ideally, the cam and the roller are in tangential contact at point C. However, the point
would change from C to C′, when ∆l and rg are taken into account. Then, the angular error
∆θ5 of rod 5 is calculated as:

∆θ5 =
δ

l′5 cos(∅1 − θ5)
(25)

where δ indicates the combined error of roller radius and cam geometry, δ = ∆l + rg.
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The rotational angle θ5 of rod 5 is obtained as:

θ5 = arctan
l′1sinθ1 − yE′

l′1cosθ1 − yE′
+

δ

l′5cos(α− θ5)
(26)

Therefore, the actual output angle of the mechanism at any given moment can be
obtained from the above motion analysis. In addition, the dimensional errors of the
components can be considered mutually independent and normally distributed random
variables [13]. The probability distribution function N(µ,σ) of each rod size can be obtained
according to the “3σ principle”.

4.2. Reliability Analysis

After the mathematical model is established, the Monte Carlo strategy is introduced
to conduct the reliability analysis, which is illustrated in Figure 6.
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In Figure 6, I(X) indicates the number of samples that meet the requirements. g(X) is
the limit state function, by which the product is judged to be failing or not.

In the process of reliability analysis by Monte Carlo strategy, first set the sampling
number, input the probability distribution function of the variables to generate N samples,
and then substitute each sample into the limit state function for calculation. The Monte
Carlo method is a numerical calculation technique guided by probabilistic statistical theory.
It estimates the overall probability of failure by the failure frequency of the sample, which
is described as:

P̂f =
NF
N

(27)
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where P̂f is the probability of failure estimate. NF indicates the number of g
(
Xj
)
∈ F, where

F is the failure domain.
In Equation (27), the number of samples N should be chosen with a balance of compu-

tational speed and accuracy. The appropriate number of samples is determined based on
the failure probability of the mechanism. Thus, the calculated failure probability will not
be seriously distorted and large errors can be avoided.

Based on the probability of failure, the evaluation parameters (e.g., the mean value of
errors) can be calculated.

4.3. Software Development

In addition to the theoretical analysis, this paper proposes a computer-aided design
platform to assist the design analysis of the cam five-bar mechanism, which is developed
based on MATLAB. As depicted in Figure 7, the software package is composed of three
modules: optimization, parameter calculation, and reliability analysis.
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5. Model Validation and Discussion

To demonstrate the effectiveness of the proposed method, a real-world case study of
the design analysis for a transverse device is presented in this section. As illustrated in
Figure 8, the transverse device is core equipment in a sanitary product production line. It is
mainly used to shift the product from a horizontal to a vertical placement.
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Corresponding to the physical structure, the working diagram of the production line
is shown in Figure 9. Initially, the products are placed horizontally on the first conveyor,
moving with speed v1. x1 is the spacing between products on the first conveyor. During the
system operation, the intermediate mechanism (i.e., the transverse device, width: d) would
pass the products from the first conveyor to the second conveyor, with the placement
changing from horizontal to vertical. Accordingly, the spacing and moving speed are
changed to x2 and v2, respectively.
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According to the working requirement of the production line, a cam five-bar mech-
anism is developed for the transverse device. As shown in Figure 10, the cam five-bar
mechanism consists of a linkage mechanism 1-2-3-4 and a cam mechanism 5-6, where
member 1 is a rotating disc, member 2 is a rocker arm, and member 3 is a linkage. Output
member 4 is composed of a wind box assembly and a circular guideway.
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During the system operation, the cam is fixed. Rotating disc 1 acts as the prime mover
to rotate the whole mechanism. Rocker arm 2 is connected to the cam. As the cam constrains
one free degree of the structure, the system can be considered a cam five-bar mechanism.

5.1. Original Mechanism Motion Characteristics

Figure 11 shows the principle illustration of the cam five-bar mechanism used in the
transverse device. The values of l1, l2, l3, l4, and l5 are 210 mm, 176 mm, 58.5 mm, 373.5 mm,
and 35 mm, respectively. ω1 = 360◦/s, Ψ = 90◦, and the initial value of θ14 is 2◦.
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Figure 11. Principle illustration of the cam five-bar mechanism.

According to the working requirements, the ω41 and ω42 are determined as 405.75◦/s
and 184.43◦/s, respectively. A dwell-free modified iso-velocity curve [21] is adopted in the
buffer section. Then, the motion law of the output member is obtained, as shown in Figure 12.
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Finally, the motion characteristics of the mechanism and the cam theory curve are deter-
mined by resolving the model for the forward solution, which are shown in Figures 13 and 14
respectively. In Figure 13, γmin is 37.90◦, αmax is 66.97◦ and aEmax is 12.29 m/s2.
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5.2. Optimization Results Analysis

In line with the multi-objective optimization method proposed in Section 3, the optimal
solution is obtained as l1 = 210 mm, l2 = 192.2 mm, l3 = 80 mm, l5 = 35 mm, θ14 = 15.38◦,
T2 = 0.0943 s, and T3 = 0.2534 s. Correspondingly, the optimized motion characteristics and
cam theory curve are depicted in Figures 15 and 16, respectively.
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In Figure 15, γmin is 74.61◦, αmax is 46.29◦ and aEmax is 11.48 m/s2. Compared with
Figure 13, the relevant performance parameters are optimized. The new motion characteristics
meet the design requirements (i.e., γmin ≥ 40◦ and αmax ≤ 50◦).
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As well as the motion characteristics, the angular velocity ω4 and angular acceleration
a4 curves are obtained, which are shown in Figure 17. Compared with the ω4 curve before
optimization (Figure 12), the angular acceleration of the output member becomes smaller.
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5.3. Reliability Analysis of Kinematic Accuracy

Corresponding to the framework proposed in Section 4, the reliability analysis of
kinematic accuracy is conducted for the optimized mechanism. The parameters of each rod
are listed in Table 1.

Table 1. Parameters related to each rod.

Parameter Name Mean Value Tolerance Standard Deviation

l1/mm 210 0.03 0.0052
l2/mm 192.2 0.12 0.0192
l3/mm 80 0.07 0.0123
l4/mm 35 0.06 0.0104

Ψ/◦ 90 0.67 0.111
δ/mm 0.043 — 0.0143

Based on the above reliability analysis model, the average value of component size
error is shown in Figure 18.
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Figure 18. Mean value of rod 4 angle error.

From Figure 18, it can be concluded that the absolute value of the average angle error
of rod 4 is less than 0.003◦ in a movement cycle. It meets the production requirements.
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5.4. Comparison of Structure and Motion Characteristics

Tables 2 and 3 present the specific parameters before and after optimization. The
comparison shows that the maximum acceleration at point E is slightly reduced after
optimization. The transmission angle and pressure angle are optimized significantly, with
the minimum value of the transmission angle increased by 96.8% and the maximum value
of the pressure angle reduced by 30.9%. The new motion characteristics meet the design
requirements (i.e., γmin ≥ 40◦ and αmax ≤ 50◦).

Table 2. Comparison of motion characteristics parameters.

Parameter Name αmax/(◦) γmin/(◦) aEmax (m/s2)

Before optimization 66.97 37.90 12.90
After optimization 46.29 74.61 11.48

Table 3. Comparison of connecting rod parameters.

Status l1/mm l2/mm l3/mm l5/mm Initially θ14/(◦)

Before optimization 210 176 58.5 35 2
After optimization 210 192.2 80 35 15.38

Figure 19 illustrates the comparison of the cam curves before and after optimiza-
tion. As shown in Figure 19, the optimized cam profile size is smaller. It improves the
compactness of the overall mechanism and ensures excellent motion characteristics.
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5.5. Engineering Applications

In light of the optimized rod parameters and cam curve, the transverse device is
redesigned, which is shown in Figure 20. Figure 21 illustrates the working state of the new
transverse device.

As depicted in Figure 21, the optimized transverse device can reach a maximum speed
of 1200 pieces per minute (PPM). Compared with the original productivity of 600 PPM, the
productivity is significantly improved.
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6. Conclusions

To investigate the motion characteristics and kinematic accuracy of the cam-linkage
mechanism under high-speed scenarios, this paper proposes a series of methods for the
kinematic modeling, optimization, and reliability analysis of the large-size cam-linkage
mechanism considering kinematic performance. The conclusions are as follows.

(1) A mathematical model is constructed to determine the performance parameters
of the cam-linkage mechanism, such as E-point acceleration, transmission angle, and cam
pressure angle.

(2) A multi-objective optimization methodology is proposed for the parameter opti-
mization of the large-size cam-linkage mechanism. The co-linear of rods 2 and 3 is set as
constraint, while the maximum drive angle, minimum cam pressure angle, and minimum
E-point acceleration are taken as the objective function.

(3) The kinematic model of the cam-linkage mechanism is presented. Reliability
analysis is conducted to evaluate the kinematic accuracy of the optimized mechanisms.

(4) A computer-aided platform is developed to assist the parameter calculation, opti-
mization, and reliability analysis of the cam-linkage mechanism.

(5) The effectiveness of the proposed method is validated by a real-world case study.
The productivity of the transverse device is increased from 600 PPM to 1200 PPM.
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