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Abstract: In this paper, an adaptive iterative learning control (AILC) law is developed for two-
link rigid-flexible coupled manipulator system in three-dimensional (3D) space with time-varying
disturbances and input constraints. Based on the Hamilton’s principle, a dynamic model of a
manipulator system is established. The conditional equation that is coupled by ordinary differential
equations and partial differential equations is derived. In order to achieve high-precision tracking of
the revolving angles and vibration suppression of the elastic part, the iterative learning control law
based on the disturbance observer is considered in the process of the design controller. The composite
Lyapunov energy function is proposed to prove that the angle errors and elastic deformation can
eventually converge to zero with the increase of the number of iterations. Ultimately, the simulation
results to rigid-flexible coupled manipulator system are given to prove the convergence of the control
objectives under the adaptive iterative learning control law.

Keywords: adaptive iterative learning control; rigid-flexible coupled manipulator; composite Lya-
punov energy function; input constraint

1. Introduction

In the past few years, robotic manipulator systems have been widely employed in
a range of fields reminiscent of military, industry, aerospace satellites, ocean exploration,
and so on [1–9]. The rigid manipulator has the characteristics of a high degree of freedom
and wide practicability [10]. Compared with the rigid manipulator, the flexible manipu-
lator has the characteristics of low energy consumption and high flexibility. It also has
wide application range [11–14]. Meanwhile, the necessities for performance indicators of
manipulator like flexibility and low energy consumption are needed increasingly; flexible
robotic manipulators are not fully competent in some special practical situations. Recently,
the rigid-flexible robotic manipulator has additionally gotten a lot of attention [15,16].
The rigid-flexible coupling manipulator has the advantages of lighter weight and higher
flexibility, and can be used in more practical occasions [17]. In the past few years, there have
been many studies on rigid-flexible coupled manipulators. In [18], it was the first time that
the dynamic model of the two-link rigid-flexible manipulator system was derived. Within
the years that followed, various control methods were investigated, such as boundary
control [17,19,20], adaptive control [21], tip position control [22], nonlinear control [23],
optimal control [12], and so on. The control methods mentioned above have the advantages
of strong adaptability and wide application, however, they cannot achieve the purpose of
completely tracking the control target in limited time. For this reason, the control method
of iterative learning control is chosen in this paper.

Iterative learning control (ILC) is a new kind of learning control strategy, which can
deal with some non-linear, complicated, and difficult models in a simple way [24]. It is
suitable for performing repeatable tasks, and its goal is to improve tracking performance
by using the error of the previous iteration into the input of the next iteration control [25].
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It has superb significance for resolving high-precision trajectory tracking and control issues.
Recently, a variety of iterative learning controllers attached to the rigid-flexible robotic
manipulator were developed. In [26], a kind of iterative learning boundary control law is
implemented on the two-link rigid-flexible coupled manipulator system. Authors derived
the dynamic model of system by using Hamilton’s principle. Finally, the simulation results
verify its effectiveness and realize the high-precision tracking effect. In [27], the authors
studied a disturbance observer-based adaptive boundary iterative learning control method
that was used for two-link rigid-flexible coupled manipulator system. More than that, the
condition of endpoint constraint and input backlash situation were considered. Finally, the
convergence analysis was performed by combining the barrier Lyapunov function. In [27],
the author developed a more complex external situation in which distributed disturbance
and input constraints were further considered. The control objectives were achieved by
using the iterative learning control law, which is combined with hyperbolic tangent and
saturation functions.

The above-referred studies about two-link rigid-flexible manipulator were particularly
accomplished in the two-dimensional space. Different from the three-link manipulator,
the model described in this paper adds a rotating base on the basis of the two-link rigid-
flexible coupling manipulator, so that it can move in three-dimensional space. In actual
application, 3D manipulators have more application scenarios than planar manipulators,
can solve more practical problems, and have longer-term significance of research [28].
However, there are few related studies, and it is more difficult than the traditional two-
dimensional model. In the latest years, research on the 3D two-link rigid-flexible coupled
manipulator has also gradually appeared in the field of researchers. In [29], the authors
modeled the manipulator system based on infinite-dimensional nonlinear model, and the
tracking problem of the system that has actuator faults is solved by using boundary control
method in three-dimensional space. In [30], the authors proposed the research of the control
problem under input saturation. It should be mentioned that no studies have been reported
about the control method of iterative learning to 3D rigid-flexible manipulator, which is a
research direction really well worth considering. However, the related research on iterative
learning of rigid-flexible coupled manipulators in three-dimensional space has not been
published so far.

In this paper, we designed an adaptive iterative learning control method to solve the
control problems of the rigid-flexible manipulator in 3D space. Firstly, the dynamic model
of the system is derived through using Hamilton’s principle. On the premise of composite
Lyapunov energy function and Young’s inequality theory, the angular error and elastic
deformation can ultimately converge to zero with the increase of the number of iterations.
The most important contributions are summarized below:

(1) This paper is the first work regarding the two-link rigid-flexible manipulator system
in 3D space by using adaptive iterative learning control. In the controller design
section, the adaptive iterative learning control law is designed based on observers.

(2) By designing the composite Lyapunov energy function, combined with Young’s
inequality, the convergence of angular error and elastic deformation will be proved
strictly.

The article is organized as follows: The dynamic model of the rigid-flexible coupled
manipulator in 3D space is presented in Section 2. The adaptive iterative learning control
law and convergence analysis are given in Section 3. Simulation results of the control law
are shown in Section 4. Finally, the conclusion of this paper is given in Section 5.

2. System Description and Control Objectives
2.1. System Description

A three-dimensional(3D) two-link rigid-flexible coupling manipulator system is shown
in Figure 1 [29]. It consists of a rotating shaft base, rigid and flexible links, and two joints,
and the rotating shaft base can be rotated on the horizontal plane. The three actuators
named τ1, τ2, and τ3 are located in the rigid and flexible links and the rotating shaft base,
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respectively. θ1 represents the angular position of the rigid link, θ2 indicates the angular
position of the flexible link, θ3 is the angular position of the rotating shaft base, which is
measured from the counterclockwise of X-axis. At the same time, di(t) , i = 1, 2, 3 are the
time-varying disturbances of the system. J1 is the moment of inertia of the joint, which
is relative to the rigid part of system at the shoulder position; J2 is the moment of inertia
of the joint, which is relative to the flexible part of system at the elbow position; J3 is the
moment of inertia of the rotatable base relative to the Z-axis; m is the quality of every joint;
ρ is the density of the flexible part; l1 is the length of the rigid link; l2 is the length of the
flexible link; EI is the uniform flexural rigidity of the flexible link; and ω(x, t) is the elastic
deformation variable of the flexible link that changes over time.
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For the sake of using the Hamilton’s principle, we can obtain the dynamic equations
of two-link rigid-flexible coupled manipulator system in three-dimensional space [18]. In
this paper, the dynamic equations are simplified below:

τ0i(t) + di(t) = M
..
θ(t) + C

.
θ(t) + G (1)

where, τ0i(t) = [τ01(t)τ02(t)τ03(t)]
T ∈ R3, di(t) = [d1(t)d2(t)d3(t)]

T ∈ R3,
..
θ(t) =[ ..

θ1(t)
..
θ2(t)

..
θ3(t)

]T
∈ R3,

.
θ(t) =

[ .
θ1(t)

.
θ2(t)

.
θ3(t)

]T
∈ R3, and M =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

 ∈
R3×3, C =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 ∈ R3×3, G =
[

g11 g21 g31
]T ∈ R3 are defined as:

m11= J1 + ml2
1 + J2 + ρl2

1 l2 +
1
3

ρl3
2

+ρ
∫ l2

0
ω2(x, t)dx +

1
2

ρl1l2
2 cos θ2(t) +

1
2

ρl2
1 l2 cos θ2(t)



Actuators 2022, 11, 268 4 of 17

m12 = J2 +
1
3

ρl3
2 + ρ

∫ l2

0
ω2(x, t)dx +

1
2

ρl1l2
2 cos θ2(t)− ρl1

∫ l2

0
ω(x, t) sin θ2(t)dx

m13 = 0

m21 = J2 +
1
3

ρl3
2 + ρ

∫ l2

0
ω2(x, t)dx +

1
2

ρl1l2
2 cos θ2(t)− ρl1

∫ l2

0
ω(x, t) sin θ2(t)dx

m22 = J2 +
1
3

ρl3
2 + ρ

∫ l2

0
ω2(x, t)dx

m23 = m31 = m32 = 0

m33= J3 − ρl2
1 l2 cos2 θ1(t)−

1
3

ρl2 cos2(θ1(t) + θ2(t))− ρl1l2
2 cos(θ1(t) + θ2(t))

+2ρl1l2 cos θ1(t) sin(θ1(t) + θ2(t)) + ρl2
2 x cos(θ1(t) + θ2(t)) sin(θ1(t) + θ2(t))

c11 = 2ρ
∫ l2

0
ω(x, t)

.
ω(x, t)dx− 2ρl1

∫ l2

0

.
ω(x, t) sin θ2(t)dx

c12 = 2ρ
∫ l2

0
ω(x, t)

.
ω(x, t)dx− 2ρl1

∫ l2

0

.
ω(x, t) sin θ2(t)dx

c13 = 0

c21 = 2ρ
∫ l2

0
ω(x, t)

.
ω(x, t)dx

c22 = 2ρ
∫ l2

0
ω(x, t)

.
ω(x, t)dx

c23 = c31 = c32 = c33 = 0

g11= −
[

ρl1l2
2 sin θ2(t) + 2ρl1

∫ l2

0
ω(x, t) cos θ2(t)dx

]
.
θ1(t)

.
θ2(t)

−
[

1
2

ρl1l2
2 sin θ2(t) + ρl1

∫ l2

0
ω(x, t) cos θ2(t)dx

]
.
θ

2
2(t)

−



1
3 ρl3

2 sin(θ1(t) + θ2(t)) cos(θ1(t) + θ2(t))
+ρl1l2

2 cos θ1(t) sin θ1(t)
+ρ
∫ l2

0 ω2(x, t) sin(θ1(t) + θ2(t)) cos(θ1(t) + θ2(t))dx
− 1

2 ρl1l2
2 sin(θ1(t) + θ2(t)) cos θ1(t)

+ 1
2 ρl1l2

2 cos(θ1(t) + θ2(t)) sin θ1(t)
+ρl1

∫ l2
0 ω(x, t) sin(θ1(t) + θ2(t)) sin θ1(t)dx

+
∫ l2

0 ω(x, t) cos(θ1(t) + θ2(t)) cos θ1(t)dx
+ρ
∫ l2

0 xω(x, t) sin2(θ1(t) + θ2(t))dx
+ρ
∫ l2

0 xω(x, t) cos2(θ1(t) + θ2(t))dx



.
θ

2
3(t)

+ρl1
∫ l2

0

..
ω(x, t) cos θ2(t)dx + ρ

∫ l2

0
x

..
ω(x, t)dx

g21=

[
1
2

ρl1l2
2 sin θ2(t) + ρl1

∫ l2

0
ω(x, t) cos θ2(t)dx

]
.
θ

2
1(t)

+



1
3 ρl3

2 sin(θ1(t) + θ2(t)) cos(θ1(t) + θ2(t))
−ρ
∫ l2

0 ω2(x, t) sin(θ1(t) + θ2(t)) cos(θ1(t) + θ2(t))dx
+ 1

2 ρl1l2
2 sin(θ1(t) + θ2(t)) cos θ1(t)

+ρl1
∫ l2

0 ω(x, t) cos(θ1(t) + θ2(t)) cos θ1(t)dx
−ρ
∫ l2

0 xω(x, t) sin2(θ1(t) + θ2(t))dx
+ρ
∫ l2

0 xω(x, t) cos2(θ1(t) + θ2(t))dx


.
θ

2
3(t)

+ρ
∫ l2

0
x

..
ω(x, t)dx
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g31=


2ρl2

1 l2 sin θ1(t) cos θ1(t) + 2
3 ρl3

2 sin(θ1(t) + θ2(t)) cos(θ1(t) + θ2(t))
+ρl1l2

2 sin(θ1(t) + θ2(t))− 2ρl1l2 sin(θ1(t) + θ2(t)) sin θ1(t)
+2ρl1l2 cos θ1(t) cos(θ1(t) + θ2(t))− ρl2

2 x sin2(θ1(t) + θ2(t))
+ρl2

2 x cos2(θ1(t) + θ2(t))

 .
θ1

+

 2
3 ρ sin(θ1(t) + θ2(t)) cos(θ1(t) + θ2(t)) + ρl1l2

2 sin(θ1(t) + θ2(t))
+2ρl1l2 cos θ1(t) cos(θ1(t) + θ2(t))

−ρl2
1 x sin2(θ1(t) + θ2(t)) + ρl2

2 x cos2(θ1(t) + θ2(t))

 .
θ2(t)

with (x, t) ∈ [0, l2]× [0, +∞) .

Remark 1. In this article, for clarity, the notations are described as follows:
( .∗
)
= ∂(∗)/∂t,

( ..∗
)
=

∂(∗)/∂t2, (∗)′ = ∂(∗)/∂x, (∗)′′ = ∂(∗)/∂x2, (∗)′′′ = ∂(∗)/∂x3 and (∗)′′′′ = ∂(∗)/∂x4,
respectively.

In Formula (1), di(t) represents the time-varying disturbances to the system, and the
condition of input constraint is defined as: τ0i(t) = τ0sat

(
τ0i(t)

τ0
, 1
)
(i = 1, 2, 3), and there is:

sat
(

τ0i(t)
τ0

, 1
)
=


1, ifτ0i(t) > τ0

−1, ifτ0i(t) 6 τ0
τ0i(t)

τ0
, if|τ0i(t)| < τ0

(2)

where τ0 is defined as the upper bound of τ0i(t).
At the same time, the coupled PDE-ODE equation of system is given as:

0= −ρ
[

x
( ..

θ1 +
..
θ2

)
+

..
ω(x, t)

]
− ρl1

( ..
θ1 cos θ2 −

.
θ1

.
θ2 sin θ2

)
−ρl1

.
θ1

( .
θ1 +

.
θ2

)
sin θ2 − ρl1l2

.
θ

2
3 cos θ1 sin(θ1 + θ2)

−1
2

ρl2
2

.
θ

2
3 cos(θ1 + θ2) sin(θ1 + θ2)− EIωxxxx(x, t)

(3)

And natural boundary conditions of the system are expressed as:

ω(0, t) = 0 (4)

ωx(0, t) = 0 (5)

ωxx(l2, t) = 0 (6)

ωxxx(l2, t) = 0 (7)

Remark 2. Different from [29], in this paper, in order to deal with the problems that the manipulator
may encounter in the actual working environment, the input constraint problem and the time-
varying disturbance problem are considered in the dynamic model of the system.

2.2. Control Objectives

In order to achieve the high-precision tracking of the joints’ angle and vibration
suppression of the elastic manipulator part [31], control objectives for the 3D rigid-flexible
coupled manipulator system can be shown as:

lim
k→∞

(θik − θid) = 0, i = 1, 2, 3 (8)

lim
k→∞

ωk(x, t) = 0 (9)

where k is the number of iterations.
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3. The Design of Adaptive Iterative Learning Controller and Convergence Analysis

For ensuring the following content is rigorous, the assumptions are created concerning
the 3D rigid-flexible coupled manipulator system before designing the adaptive iterative
learning control law. The following assumptions are proposed:

A1: Joint position angle and elastic deformation can be measured and used for feed-
back.

A2: The target angle θid(t)(i = 1, 2, 3) is bounded in finite time [0, T], and θid(t) are
slow-varying or constants.

A3: The unknown time-varying disturbances are bounded, and |di(t)| 6 Di, where Di
is constant and Di > 10.

A4: Each iteration process has the same initial condition, that is, θik(0) = θid(0), ∀k ∈
N, used to secure the tracking performance of the system.

A5: The kinetic energy of system is bounded for (x, t) ∈ [0, l2]× [0, +∞) .

3.1. The Design of Adaptive Iterative Learning Control Law

The adaptive iterative learning controller is designed as:

τ01,k(t) = τ1,k(t)− k1pe1k(t)− δ̂1k(t) tan h
( .
e1k(t)

)
(10)

τ02,k(t) = τ2,k(t)− k2pe2k(t)− δ̂2k(t) tan h
( .
e2k(t)

)
(11)

τ03,k(t) = τ3,k(t)− k3pe3k(t)− δ̂3k(t) tan h
( .
e3k(t)

)
(12)

where k1p, k2p, and k3p are constants, k1p, k2p, k3p > 0, and eik(t) = θik(t)− θid(t), i = 1, 2, 3.
The disturbance observers are defined correspondingly as [32]:

δ̂1k(t) = δ̂1k−1(t) + γ1
.
e1k(t) tan h

( .
e1k(t)

)
(13)

δ̂2k(t) = δ̂2k−1(t) + γ2
.
e2k(t) tan h

( .
e2k(t)

)
(14)

δ̂3k(t) = δ̂3k−1(t) + γ3
.
e3k(t) tan h

( .
e3k(t)

)
(15)

where γ1, γ2, and γ3 are constants, and γ1, γ2, γ3 > 0.
So in order to cope with the conditions of the input constraints, the iterative learning

control law, which is based on hyperbolic tangent function, is designed:

τ1,k(t) = τ1 tan h
(

τ1,k−1(t)
τ1

)
− k1d

.
e1k(t) (16)

τ2,k(t) = τ2 tan h
(

τ2,k−1(t)
τ2

)
− k2d

.
e2k(t) (17)

τ3,k(t) = τ3 tan h
(

τ3,k−1(t)
τ3

)
− k3d

.
e3k(t) (18)

where k1d, k2d, k3d, τi, and τ0 are constants, and k1d, k2d, k3d, τi, τ0, kid > 0; τi > 2τ0 > 0
(i = 1, 2, 3).

Remark 3. In the control law (10)–(15), we use the hyperbolic tangent function to design the
controller. In previous studies, the sign function is commonly used in the design of controllers. The
use of sign function makes the design of the controller simpler and more efficient, but it leads to
undesired chattering in the tracking trajectory [26]. By using the hyperbolic tangent function, one
can effectively avoid this phenomenon.

3.2. Convergence Analysis

In the convergence analysis part, the convergence of the rigid-flexible coupled manip-
ulator system is proved by composite Lyapunov function stability theory [33].

Firstly, let δik(t) = δ̂ik(t)− δ̂ik−1(t) and δ̃ik(t) = Di − δ̂ik(t).
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The composite Lyapunov energy function is constructed as follows [26]:

Wk(t) = Vk(t)+
1

2γ1

∫ t

0
δ̃1k(s)ds +

1
2γ2

∫ t

0
δ̃2k(s)ds +

1
2γ3

∫ t

0
δ̃3k(s)ds

+
1

2k1d

∫ t

0
τ2

1,k(s)ds +
1

2k2d

∫ t

0
τ2

2,k(s)ds +
1

2k3d

∫ t

0
τ2

3,k(s)ds
(19)

Remark 4. In [26], a composite Lyapunov function is designed for the rigid-flexible coupled
manipulator system in two-dimensional space to verify the convergence. In this paper, it is improved
and the composite Lyapunov function in three-dimensional space for the system is designed.

Among them, Vk(t) stands for:

Vk(t)=
1
2

J1
.
θ1 +

1
2

J2

( .
θ1 +

.
θ2

)2
+

1
2

J3
.
θ3 +

1
2

ml2
1

.
θ

2
1 +

1
2

ρ
∫ l2

0

.
R

T .
Rdx

+
1
2

EI
∫ l2

0
[ωxx(x, t)]2dx +

1
2

k1pe2
1k +

1
2

k2pe2
2k +

1
2

k3pe2
3k

(20)

where R is the position vector of the general points in the global inertial coordinate system
and R is expressed as:

R =

 Rx
Ry
Rz

 =

l1 cos θ1 cos θ3 + x cos(θ1 + θ2) cos θ3 −ω(x, t) sin(θ1 + θ2) cos θ3
l1 cos θ1 sin θ3 + x cos(θ1 + θ3) sin θ3 −ω(x, t) sin(θ1 + θ2) sin θ3

l1 sin θ1 + x sin(θ1 + θ2) + ω(x, t) cos(θ1 + θ2)


The proof process is split into the subsequent three steps to prove the convergence of

angle error and elastic deformation.
Step 1: To prove the non-increasing property of the composite Lyapunov energy

function along the iterative axis.
From (19), we have:

1
2γ1

∫ t

0

(
δ̃1k(s)− δ̃1k−1(s)

)
ds= − 1

2γ1

∫ t

0

(
δ

2
1k(s) + 2δ̃1k(s)δ1k(s)

)
ds

= − 1
2γ1

∫ t

0

(
δ

2
1k(s) + 2γ1

.
e1k(s)tanh

( .
e1k(s)

)
δ̃1k

(21)

In the same manner, we can further get:

1
2γ2

∫ t

0

(
δ̃2k(s)− δ̃2k−1(s)

)
ds= − 1

2γ2

∫ t

0

(
δ

2
2k(s) + 2δ̃2k(s)δ2k(s)

)
ds

= − 1
2γ2

∫ t

0

(
δ

2
2k(s) + 2γ2

.
e2k(s)tanh

( .
e2k(s)

)
δ̃2k

(22)

and

1
2γ3

∫ t

0

(
δ̃3k(s)− δ̃3k−1(s)

)
dτ= − 1

2γ3

∫ t

0

(
δ

2
3k(s) + 2δ̃3k(s)δ3k(s)

)
ds

= − 1
2γ3

∫ t

0

(
δ

2
3k(s) + 2γ3

.
e3k(s)tanh

( .
e3k(s)

)
δ̃3k(s)

)
ds

(23)
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From (19), we can also get:

1
2k1d

∫ t

0
τ2

1,k(s)− τ2
1,k−1(s)ds6

1
2k1d

∫ t

0

[
τ2

1,k(s)−
(

τ1tanh
(

τ1,k−1(s)
τ1

))2
]

ds

=
1

2k1d

∫ t

0

[
τ1,k(s)−

(
τ1tanh

(
τ1,k−1(s)

τ1

))][
τ1,k(s) +

(
τ1tanh

(
τ1,k−1(s)

τ1

))]
ds

=
1

2k1d

∫ t

0
−k1d

.
e1k(s)

[
2τ1tanh

(
τ1,k−1(s)

τ1

)
− k1d

.
e1k(s)

]
ds

=
1

2k1d

∫ t

0

[
−k2

1d
.
e2

1k(s)− 2k1d
.
e1k(s)

(
τ1tanh

(
τ1,k−1(s)

τ1

)
− k1d

.
e1k(s)

)]
ds

= − 1
2k1d

∫ t

0

.
e2

1k(s)ds−
∫ t

0

.
e1k(s)τ1,k(s)ds

(24)

which is

1
2k1d

∫ t

0
τ2

1,k(s)ds− 1
2k1d

∫ t

0
τ2

1,k−1(s)ds 6 −1
2

k1d

∫ t

0

.
e2

1k(s)ds−
∫ t

0

.
e1k(s)τ1,k(s)ds (25)

Similarly, the following inequality can be obtained:

1
2k2d

∫ t

0

(
τ2

2,k(s)− τ2
2,k−1(s)

)
ds ≤ −1

2
k2d

∫ t

0

.
e2

2k(s)ds−
∫ t

0

.
e2k(s)τ2,k(s)ds (26)

1
2k3d

∫ t

0

(
τ2

3,k(s)− τ2
3,k−1(s)

)
ds ≤ −1

2
k3d

∫ t

0

.
e2

3k(s)ds−
∫ t

0

.
e3k(s)τ3,k(s)ds (27)

After that, the time derivative of Equation (20) can be expressed as:

.
Vk(t)= k1pe1k

.
e1k + k2pe2k

.
e2k + k3pe3k

.
e3k

+J1
.
θ1

..
θ1 + J2

( ..
θ1 +

..
θ2

)( .
θ1 +

.
θ2

)
+ J3

.
θ3

..
θ3 + ml2

1

.
θ1

..
θ1

+EI
∫ l2

0
ωxx(x, t)

.
ωxx(x, t)dx + ρ

∫ l2

0

( ..
Rx +

..
Ry +

..
Rz

)
dx

(28)

Substituting the dynamic model of the system into (28), one has:

.
Vk(t)=

.
e1k(t)

[
k1pe1k(t) + τ01,k(t) + d1k(t)

]
+

.
e2k(t)

[
k2pe2k(t) + τ02,k(t) + d2k(t)

]
+

.
e3k(t)

[
k3pe3k(t) + τ03,k(t) + d3k(t)

] (29)

Meanwhile, in accordance with the Newton-Leibniz formula, the form of can be
rewritten as:

Vk(t) = Vk(0) +
∫ t

0

.
Vk(s)ds (30)
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Then, the following equation holds:

Vk(t)=
∫ t

0

.
Vk(s)ds

=
∫ t

0

.
e1k(s)

[
k1pe1k(s) + τ01,k(s) + d1k(s)

]
ds

+
∫ t

0

.
e2k(s)

[
k2pe2k(s) + τ02,k(s) + d2k(s)

]
ds

+
∫ t

0

.
e3k(s)

[
k3pe3k(s) + τ03,k(s) + d3k(s)

]
ds

=
∫ t

0

.
e1k(s)

[
τ0sat

(
τ01,k(s)

τ0
, 1
)
+ k1pe1k(s) + d1k(s)

]
ds

+
∫ t

0

.
e2k(s)

[
τ0sat

(
τ02,k(s)

τ0
, 1
)
+ k2pe2k(s) + d2k(s)

]
ds

+
∫ t

0

.
e3k(s)

[
τ0sat

(
τ03,k(s)

τ0
, 1
)
+ k3pe3k(s) + d3k(s)

]
ds

(31)

By utilizing (10)–(12) to Equation (31), one can obtain:

Vk(t)=
∫ t

0

.
e1k(s)

[
τ0sat

(
τ01,k(s)

τ0
, 1
)
+
(
τ1,k(s)− τ01,k(s)− δ̂1k(s)tanh

( .
e1k(s)

))
+ d1k(s)

]
ds

+
∫ t

0

.
e2k(s)

[
τ0sat

(
τ02,k(s)

τ0
, 1
)
+
(
τ2,k(s)− τ02,k(s)− δ̂2k(s)tanh

( .
e2k(s)

))
+ d2k(s)

]
ds

+
∫ t

0

.
e3k(s)

[
τ0sat

(
τ03,k(s)

τ0
, 1
)
+
(
τ3,k(s)− τ03,k(s)− δ̂3k(s)tanh

( .
e3k(s)

))
+ d3k(s)

]
ds

(32)

Further, we can get:

Vk(t)=
∫ t

0
k1pe1k(s)

.
e1k(s) + k2pe2k(s)

.
e2k(s) + k3pe3k(s)

.
e3k(s)ds

+
∫ t

0

[
τ0sat

(
τ01,k(s)

τ0
, 1
)
− τ01,k(s) + d1k(s)

]
.
e1k(s)ds

+
∫ t

0

[
τ0sat

(
τ02,k(s)

τ0
, 1
)
− τ02,k(s) + d2k(s)

]
.
e2k(s)ds

+
∫ t

0

[
τ0sat

(
τ03,k(s)

τ0
, 1
)
− τ03,k(s) + d3k(s)

]
.
e3k(s)ds

+
∫ t

0

[
τ1,k(s)− k1pe1k(s)− δ̂1k(s)tanh

( .
e1k(s)

)] .
e1k(s)ds

+
∫ t

0

[
τ2,k(s)− k2pe2k(s)− δ̂2k(s)tanh

( .
e2k(s)

)] .
e2k(s)ds

+
∫ t

0

[
τ3,k(s)− k3pe3k(s)− δ̂3k(s)tanh

( .
e3k(s)

)] .
e3k(s)ds

(33)
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Next, we calculate the difference of the composite Lyapunov function by using the
above equations; the following inequality can be obtained:

∆Wk(t)= Wk(t)−Wk−1(t)

6 − 1
2γ1

∫ t

0

(
δ

2
1k(s) + 2γ1

.
e1k(s)tanh

( .
e1k(s)

)
δ̃1k(s)

)
ds

− 1
2γ2

∫ t

0

(
δ

2
2k(s) + 2γ2

.
e2k(s)tanh

( .
e2k(s)

)
δ2k(s)

)
ds

− 1
2γ3

∫ t

0

(
δ

2
3k(s) + 2γ3

.
e3k(s)tanh

( .
e3k(s)

)
δ̃3k(s)

)
ds

−1
2

k1d

∫ t

0

.
e2

1k(s)ds−
∫ t

0

.
e1k(s)τ1,k(s)ds− 1

2
k2d

∫ t

0

.
e2

2k(s)ds

−
∫ t

0

.
e2k(s)τ2,k(s)ds− 1

2
k3d

∫ t

0

.
e2

3k(s)ds−
∫ t

0

.
e3k(s)τ3,kds

+
∫ t

0

[
τ0sat

(
τ01,k(s)

τ0
, 1
)
− τ01,k(s) + d1k(s)

]
.
e1k(s)ds

+
∫ t

0

[
τ0sat

(
τ02,k(s)

τ0
, 1
)
− τ02,k(s) + d2k(s)

]
.
e2k(s)ds

+
∫ t

0

[
τ0sat

(
τ03,k(s)

τ0
, 1
)
− τ03,k(s) + d3k(s)

]
.
e3k(s)ds

+
∫ t

0

[
τ1,k(s)− δ̂1k(s)tanh

( .
e1k(s)

)] .
e1k(s)ds

+
∫ t

0

[
τ2,k(s)− δ̂2k(s)tanh

( .
e2k(s)

)] .
e2k(s)ds

+
∫ t

0

[
τ3,k(s)− δ̂3k(s)tanh

( .
e3k(s)

)] .
e3k(s)ds−Vk−1(t)

(34)

Since the saturation function has the property that: if G(t) = tan h(µ(t)/m)+ n , m > 0,
and G(t), µ(t) are continuous [7], then there is:

|m× sat(G(t), m)− G(t)|6|n| (35)

By substituting Equation (35) into Equation (34), we can further derive:

∆Wk(t)6 −Vk−1(t)

+

(
τ0

τ1
− 1

2

) ∫ t

0
k1d

.
e1k(s)ds +

(
τ0

τ2
− 1

2

) ∫ t

0
k2d

.
e2k(s)ds +

(
τ0

τ3
− 1

2

) ∫ t

0
k3d

−
∫ t

0

(
1

2γ1
δ

2
1k(s) +

1
2

k1d
.
e2

1k(s)
)

ds−
∫ t

0

(
1

2γ2
δ

2
2k(s) +

1
2

k2d
.
e2

2k(s)
)

ds

−
∫ t

0

(
1

2γ3
δ

2
3k(s) +

1
2

k3d
.
e2

3k(s)
)

ds

6 −Vk−1(t)−
1

2γ1

∫ t

0
δ

2
1k(s)ds− 1

2γ2

∫ t

0
δ

2
2k(s)ds− 1

2γ3

∫ t

0
δ

2
3k(s)ds

6 0

(36)

By Formula (36), it can be proved that Wk(t) is non-increasing.
Step 2: To prove that the first term of the composite Lyapunov energy function W1(t)

is bounded.
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It can be calculated from Equation (19):

.
W1(t)=

.
V1(t) +

1
2γ1

δ̃2
11(t) +

1
2γ2

δ̃2
21(t) +

1
2γ3

δ̃2
31(t) +

1
2k1d

τ2
1,1(t)

+
1

2k2d
τ2

2,1(t) +
1

2k3d
τ2

3,1(t)
(37)

Then, one can obtain:

.
W1(t)6

1
2γ1

δ̃2
11(t) +

1
2γ2

δ̃2
21(t) +

1
2γ3

δ̃2
31(t)

+δ̃11(t)
.
e11(t)tanh

( .
e11(t)

)
+ δ̃21(t)

.
e21(t)tanh

( .
e21(t)

)
+ δ̃31(t)

.
e31(t)tanh

( .
e31(t)

)
+

k1d
τ1

τ0
.
e2

11(t) +
k2d
τ2

τ0
.
e2

21(t) +
k3d
τ3

τ0
.
e2

31(t)

−k1d
.
e2

11(t)− k2d
.
e2

21(t)− k3d
.
e2

31(t)

+
.
e11(t)τ1,1(t) +

.
e21(t)τ2,1(t) +

.
e31(t)τ3,1(t)

(38)

Invoking (16)–(18) and calculating leads to:

τ1,0(t) = τ2,0(t) = τ3,0(t) = 0 (39)

and
τ1,1(t) = −k1d

.
e11(t)£; τ2,1(t) = −k2d

.
e21(t)£; τ3,1(t) = −k3d

.
e31(t) (40)

From the disturbance observers (13)–(15) and δ̂i0(t) = 0, it can be obtained that:

.
e11(t) tan h

( .
e11(t)

)
=

1
γ1

δ̂11(t) (41)

.
e21(t) tan h

( .
e21(t)

)
=

1
γ2

δ̂21(t) (42)

.
e31(t) tan h

( .
e31(t)

)
=

1
γ3

δ̂31(t) (43)

By utilizing (39)–(43) to (38), it yields:

.
W1(t)6 −k1d

.
e2

11(t)− k2d
.
e2

21(t)− k3d
.
e2

31(t)

+
1

2γ1
δ̃2

11(t) +
1

2γ2
δ̃2

21(t) +
1

2γ3
δ̃2

31(t)

+
1

γ1
δ̂11(t)δ̃11(t) +

1
γ2

δ̂21(t)δ̃21(t) +
1

γ3
δ̂31(t)δ̃31(t)

+

(
τ0

τ1
− 1

2

)
k1d

.
e11(t) +

(
τ0

τ2
− 1

2

)
k2d

.
e21(t) +

(
τ0

τ3
− 1

2

)
k3d

.
e31(t)

(44)

Then, it is not hard to get:

.
W1(t)6 −k1d

.
e2

11(t)− k2d
.
e2

21(t)− k3d
.
e2

31(t)

+
1

γ1

(
D1 −

1
2

δ̃11(t)
)

δ̃11(t) +
1

γ2

(
D2 −

1
2

δ̃21(t)
)

δ̃21(t) +
1

γ3

(
D3 −

1
2

δ̃31(t)
)

δ̃31(t)
(45)

By using the Young’s inequality, which yields:

1
γ1

D1δ̃11(t) ≤
ε1

2
D2

1 +
1

2ε1γ2
1

δ̃2
11(t) (46)

1
γ2

D2δ̃21(t) ≤
ε2

2
D2

2 +
1

2ε2γ2
2

δ̃2
21(t) (47)
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1
γ3

D3δ̃31(t) ≤
ε3

2
D2

3 +
1

2ε3γ2
3

δ̃2
31(t) (48)

where εi are constants and εi > 0 , i = 1, 2, 3.
Subsequently, substituting (46)–(48) into (45), it can be easily calculated as:

.
W1(t)6 −k1d

.
e2

11(t)− k2d
.
e2

21(t)− k3d
.
e2

31(t)

+
ε1

2
D2

1 − δ̃2
11(t)

(
1

2γ1
− 1

2ε1γ2
1

)

+
ε2

2
D2

2 − δ̃2
21(t)

(
1

2γ2
− 1

2ε2γ2
2

)

+
ε3

2
D2

3 − δ̃2
31(t)

(
1

2γ3
− 1

2ε3γ2
3

)
6

ε1

2
D2

1 +
ε2

2
D2

2 +
ε3

2
D2

3

(49)

Until now, the boundedness of W1(t) has been proven.
Step 3: To analyze the convergence property of the angular errors e1(t), e2(t), e3(t)

and the deformation of flexible part of manipulator ω(x, t) along the iterative axis.
Firstly, rewriting the Wk(t) as:

Wk(t) = W1(t) +
k

∑
j=1

∆Wj(t) ≤W1(t)−
k

∑
j=1

Vj=1(t) (50)

So, the following inequality can be given:

Wk(t) ≤ −
k

∑
j=1


1
2 k1pe2

1j +
1
2 k2pe2

2j +
1
2 k3pe2

3j +
1
2 J1

.
θ

2
1

+ 1
2 J2

( .
θ1 +

.
θ2

)2
+ 1

2 J3
.
θ

2
3 +

1
2 ml2

1

.
θ

2
1

+ 1
2 ρ
∫ l2

0

.
R

T .
Rdx + 1

2 EI
∫ l2

0 [ωxx(x, t)]2dx

+ W1(t) (51)

Then, according to (51), one has:

k

∑
j=1


k1pe2

1j + k2pe2
2j + k3pe2

3j

+J1
.
θ

2
1 + J2

( .
θ1 +

.
θ2

)2
+ J3

.
θ3

+ml2
1

.
θ

2
1 + ρ

∫ l2
0

.
R

T .
Rdx + EI

∫ l2
0 [ωxx(x, t)]2dx

 ≤ 2(W1(t)−Wk(t)) ≤ 2W1(t) (52)

So, the above procedure can demonstrate that Wk(t) is bounded for k ∈ Z+ and
∀t ∈ [0, T].

To sum up, we can see that the control objectives can be verified by adaptive iterative
learning control law through the proving process.

4. Simulations

In this section, we perform several numerical simulations on a two-link rigid-flexible
coupled manipulator that has the condition of input constraints and time-varying distur-
bances in three-dimensional space. The results of simulations give an intuitive description
of the effectiveness of the system, which is projected adaptive iterative learning control law
(10)–(12). The parameters of the system are given in Table 1 and the parameters of adaptive
iterative learning control law are listed in Table 2.
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Table 1. The parameters of flexible robotic manipulator [29,30].

Symbol Value Unit Symbol Value Unit

J1 0.15 kg m2 J2 0.02 kg m2

J3 0.20 kg m2 l1 0.1 m
l2 0.6 m m 2 Kg
ρ 0.2 Kg/m EI 9 N m2

Table 2. The parameters of adaptive iterative learning control law [27].

Symbol Value Unit Symbol Value Unit

k1p 110 \ k1d 60 \
k2p 80 \ k2d 40 \
k3p 80 \ k3d 40 \
τ0 6 \ τ1 18 \
τ2 18 \ τ3 18 \
γ1 10 \ γ2 6 \
γ3 13 \

Remark 5. In [27,29,30], the authors studied the related research of two-link rigid-flexible coupling
manipulator and the relevant simulation results are given. The parameters in Tables 1 and 2 are
further modified and tried from the parameters in the references to make it more in line with the
adaptive iterative learning control law in this paper.

Firstly, setting the time step to 6× 10−2 m, the space step is set to 2.5× 10−3 s and
the number of iterations is set to 15, respectively. Secondly, we define that desired angle
as: θ1 = 0.1 rad, θ2 = 0.4 rad, θ3 = 0 rad and the time-varying disturbances are set as:
d1(t) = 0.24× (0.3× sin πt) + cos(5πt)) , d2(t) = 0.32× (0.5× sin πt) + cos(2πt)) , and
d3(t) = 0.28× (0.3× sin πt) + cos(4πt)) , respectively. The problem of input saturation is
not considered in the simulation.

In Figures 2–7, the simulation results show the performance of angle tracking for
three angles before and after applying the adaptive iterative learning control law. From
the figures we can see that the control law has an obvious effect on the convergence of
the angle tracking. Similarly, in Figures 8 and 9, it can be seen that the control law is
also very effective in suppressing elastic deformation. In summary, the simulation results
demonstrate the effectiveness of the adaptive control law.
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5. Conclusions

This paper studied the two-link rigid-flexible coupled manipulator in three-dimensional
(3D) space with time-varying disturbances and input constraints. Furthermore, in the pro-
cess of the designing of control law, we proposed an adaptive iterative learning law based
on disturbance observers and dealing with the conditions of the input constraints by using
hyperbolic tangent function. By considering the composite Lyapunov function stability
theory, we proved thar the angle error and the value of the elastic deformation variable
are convergent. Through the simulation results, the effect of angle tracking and elastic
suppression before and after applying the adaptive iterative learning control law to the
system are compared. The effectiveness of the control law is further illustrated. Our future
research direction is in the improvement of response time and optimizing the control law
for the system in three-dimensional space, in addition, we will try to compare the results of
different control methods together.
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