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Abstract: To reduce the amount of computation in traditional model predictive current control, to
improve the flexibility in choosing the direction and amplitude in the voltage vector synthesis of
a dual three-phase motor by two degrees of freedom, and to reduce the output torque ripple and
current ripple, this paper proposes a dual second-order model predictive control algorithm based
on current loop operation optimization. Compared with the conventional speed loop using the PI
control algorithm and the traditional MPC control algorithm, the proposed algorithm adopts the
second-order MPC control mode in the speed loop, which decreases the speed regulation time and
increases motor immunity. Meanwhile, the second-order MPC control mode is adopted in the current
loop, and the traditional iterative calculation method is improved to calculate the direction and
amplitude of the output voltage vector through the analytic function, which increases the flexibility of
the output voltage vector. Additionally, a four-vector SVPWM is employed to modulate the voltage
vector to reduce the current amplitude in the harmonic subspace. The simulation results indicate that
the algorithm proposed in this paper can significantly reduce the torque ripple and the current ripple
as well as increase the transient performance of the motor.

Keywords: dual three-phase permanent magnet synchronous motor; dual second-order model
predictive control; current loop optimization; iterative optimization

1. Introduction

The multi-phase motor drive system featured low voltage and high-power output, low
torque ripple, high-operation reliability, and high- control flexibility. It has good application
prospects in many fields, such as electric vehicles, metallurgical steel rolling, and electric
ship propulsion [1].

The control algorithms for multi-phase motors are mainly divided into three cate-
gories, namely vector control, direct torque control, and model predictive control (MPC) [1].
Among them, MPC can handle multi-input and multi-output nonlinear systems with
complex constraints and has superior dynamic performance and parameter robustness.
Numerous studies have been conducted on the application of MPC in motor drive sys-
tems [2–6]. The traditional MPC conducts rolling optimization on the control variables
and selects the voltage vector with the minimum objective function value as the optimal
solution for the output. Meanwhile, the process of traversing each voltage vector requires a
large amount of calculation. Compared with the traditional three-phase motor, the multi-
phase motor involves more voltage vectors geometrically, and the calculation amount also
increases. For the limited number of voltage vectors and uncertainty conduction sequences,
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the current harmonic will deteriorate; Reference [7] proposed a simplified model predic-
tive torque control, in which the harmonic currents were suppressed effectively, and the
computational burden can be alleviated.

Y. Luo et al. [8] proposed multi-channel voltage control based on reference voltage
vectors. To suppress current harmonics, 24 groups of virtual voltage vectors were defined,
thereby reducing the computational burden. Then, based on Reference [8], a six-phase
motor MPC with a reduced-dimension cost function was proposed, which simplified the
prediction model and effectively suppressed the harmonic current [9]. X. Sun et al. [10]
proposed 24 new virtual voltage vectors that do not need to adjust MPC weighting factors.
J. J. Aciego et al. [11] proposed a six-phase motor with predictive control and two virtual
voltage vectors, which limited the appearance of secondary currents, improved the accuracy
of control actions, and [12] provided a proof study for AC machines with traditional
predictive current control. Waleed A et al. [13] proposed adopting virtual space vector-
based MPC for the three-level T-type converters inherent in DC-link voltage balancing,
in which the proposed approach not only simplified the controller design by using a
simplified cost function but also reduced the execution time of MPC significantly. Based on
Reference [12], Guo et al. added the duty cycle control method to adjust the amplitude of
the output voltage vectors and to suppress the current and torque ripple. However, this still
could not adjust the direction of the voltage vectors. M.J. Duran et al. [13] proposed a novel,
constrained search-predictive control algorithm that utilized more basic voltage vectors.
Although the algorithm can increase the degree of freedom of the control vectors and
improve the dynamic performance of the motor, it increases the amount of computation.
A. Taheri et al. [14] proposed a Kalman filter-based predictive control for six-phase motors,
which ensured robustness amidst parameter uncertainty and external disturbances.

In traditional MPC, optimizing the voltage vector takes a substantial amount of time
during the current loop rolling optimization process. For the dual three-phase permanent
magnet synchronous motor, the number of voltage vectors is a multiple of the three-phase
PMSM; it is difficult for MPC to complete optimization in one PWM period. Aiming to solve
this problem, this study proposes a dual second-order model predictive control algorithm
based on current loop operation optimization. The proposed algorithm can calculate the
direction and amplitude of the output voltage vector in the next time step using only one
calculation. This increases the flexibility of the output voltage vector, reduces the content
of current harmonics, and reduces the number of MPC loop computations. Meanwhile,
to reduce the current amplitude in the harmonic subspace, the maximum four-vector
SVPWM was used to modulate the calculated optimal voltage vector. To further improve
the transient performance of the motor, both the speed loop and the current loop are
replaced by the MPC regulation control algorithm using the second-order discrete model.
Finally, simulation results prove the feasibility and validity of the proposed algorithm.

2. Mathematical Model of Dual Three-Phase Permanent Magnet Synchronous Motor

This study takes the hidden-pole dual three-phase permanent magnet synchronous
motor as the research object. Its stator is composed of two sets of three-phase windings
with a phase shift of 30◦ in space. The neutral points of the windings are not connected,
and the three-phase windings are spatially separated by an electrical angle of 120◦. The
drive circuit is a two-level six-arm inverter. The topology diagram of the research object is
shown in Figure 1.

To facilitate the analysis, this study adopts the method of space vector decoupling
coordinate transformation. Meanwhile, the principle of constant amplitude transformation
is employed to transform the variables in the natural coordinate system of the dual three-
phase motor into three mutually orthogonal subspaces. The transformation equation is
as follows:

[hα hβ hx hy ho1 ho2]
T = T1[hA hB hC hU hV hW ]T (1)

where hA, hB, hC, hU , hV , and hW are the variables of the six-phase natural coordinate
system; hα and hβ are the variables of the α− β subspace; hx and hy are the variables of
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the x − y subspace; ho1 and ho2 are the variables of the o1− o2 subspace; and T1 is the
transformation matrix, which can be represented as

T1 =
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Figure 1. Dual three-phase permanent magnet synchronous motor and its drive circuit.

The components in the α− β subspace participate in electromechanical energy con-
version. The components in the x− y subspace do not participate in the electromechanical
energy conversion and cause energy loss. The components in the o1− o2 subspace are
zero-sequence components. Since the neutral points of the two sets of three-phase windings
in this study are not connected, the zero-sequence components do not exist. Thus, only
the α− β subspace and the x− y subspace can be analyzed. The voltage equation after the
above coordinate transformation is expressed as

vα = Rsiα + Lα
diα

dt
−ωeψf sin(θe)

vβ = Rsiβ + Lβ

diβ

dt
+ ωeψf cos(θe)

vx = Rsix + Ll
dix

dt

vy = Rsiy + Ll
diy

dt

(3)

where vα, vβ, vx, and vy are voltage components of the α − β and x − y subspaces; iα,
iβ, ix, and iy are current components of the α − β and x − y subspaces; Lα and Lβ are
inductances of the α- and β-axes; Ll is leakage induction, and Lα = Lβ = Ll + 3Lm (Lm is
self-inductance); ωe is the rotor electric angular velocity; θe is the electrical angle of the rotor
relative to the phase A axis in the counterclockwise direction; ψf is the rotor permanent
magnet flux linkage; and Rs is the stator resistance.
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3. The Principle of MPC and Model Establishment
3.1. Establishment of a Prediction Model for Dual Three-Phase PMSM

As shown in Reference [11], if the speed loop and the current loop are combined into
a link and the MPC control strategy is adopted, the dynamic response of the motor can
be enhanced, but the complexity of the objective function will be increased. To reduce the
complexity of the objective function, this study adopts the cascade scheme; that is, the
speed loop and the current loop are cascaded. The PID control algorithm is widely used
because of its simple structure and easy adjustment [12]. By using the PID control algorithm
for speed loop regulation and cascading the latter-stage current loop MPC algorithm, a
conventional dual three-phase PMSM dual-loop regulation drive system can be established,
as shown in Figure 2. The system includes the speed outer loop controlled by PI and the
current inner loop controlled by MPC. The output of the speed loop is used as the given
value of the current of the q axis in the current loop. Additionally, the given values of the
current of the d-, x-, and y-axes are set to 0. By calculating MPC in one time step, the PWM
waveform is output. Meanwhile, the six-phase inverter bridge is controlled to drive the
dual three-phase PMSM so that the actual current of the motor tracks the given value of the
current loop.
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To facilitate the analysis, the first-order forward Euler discretization is performed on
Equation (3), and the result is represented as

ik+1
α =

(Lα − RsTs)

Lα
ik
α +

Tsvk
α + ωk

r Tsψf sin(θk
e )

Lα

ik+1
β =

(
Lβ − RsTs

)
Lβ

ik
β +

Tsvk
β −ωk

r Tsψf cos(θk
e )

Lβ

ik+1
x =

(Ll − RsTs)

Ll
ik
x +

Tsvk
x

Ll

ik+1
y =

(Ll − RsTs)

Ll
ik
y +

Tsvk
y

Ll

(4)

where ik
α, ik

β, ik
x, ik

y, ik+1
α , ik+1

β , ik+1
x , and ik+1

y are current components of α − β and x − y
subspaces at time k and k+1, respectively; Ts is the calculation sampling period.
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Then, Equation (4) is written as
ik+1
α = k1vk

α + bk
1

ik+1
β = k1vk

β + bk
2

ik+1
x = k2vk

x + bk
3

ik+1
y = k2vk

y + bk
4

(5)

where k1 = Ts/Lα = Ts/Lβ, and k2 = Ts/Ll ,

bk
1 = [(Lα − RsTs)ik

α + ωk
e Tsψf sin(θk

e )]/Lα,

bk
2 = [(Lβ − RsTs)ik

β −ωk
e Tsψf cos(θk

e )]/Lβ,

bk
3 = (Ll − RsTs)ik

x/Ll , bk
4 = (Ll − RsTs)ik

y/Ll .

The objective function is selected as

Jk
1 = µ1

(
ik
α_re f − ik+1

α_pre

)2
+ µ2

(
ik
β_re f − ik+1

β_pre

)2

+ µ3

(
ik
x_re f − ik+1

x_pre

)2
+ µ4

(
ik
y_re f − ik+1

y_pre

)2 (6)

where Jk
1 is the objective function at time k; µ1, µ2, µ3, and µ4 are weight coefficients; ik

α_re f ,

ik
β_re f , ik

x_re f , and ik
y_re f are the reference currents of α− β and x− y subspaces at time k; and

ik+1
α_pre, ik+1

β_pre, ik+1
x_pre, and ik+1

y_pre are the predicted currents of the corresponding components at
time k + 1.

In the conventional model predictive current control of the dual three-phase permanent
magnet synchronous motor, 1 of the 48 independent voltage vectors and 0 vectors in the
α − β subspace (Figure 3) are usually selected as the voltage vector that minimizes the
objective function, and it is output after the calculation of the current time step. As a result,
49 loop computations will be performed in the current time step calculation process, and
the calculation amount is large. However, the limitation of the number of selectable voltage
vectors leads to a large output torque ripple. Additionally, since only one voltage vector is
selected and the voltage vectors of the x− y subspace are not controlled, the current in the
x− y subspace is large and the motor loss is high.
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3.2. First-Order Model Predictive Current Control Based on Four-Vector SVPWM

This study adopts the maximum four-vector SVPWM modulation technique in Refer-
ence [13] for the voltage calculated by the current MPC. Since the voltage synthesis vector of
the x− y subspace of the four-vector SVPWM is 0, only the α− β subspace can be analyzed.
Then, the objective function in Equation (6) can be transformed into

Jk
2 = µ1

(
ik
α_re f − ik+1

α_pre

)2
+ µ2

(
ik
β_re f − ik+1

β_pre

)2
(7)

By taking µ1 = µ2 = 1 and substituting it into Equation (7), we have

Jk
2′ =

Jk
2

k2 =

(
vk

α −
ck

1
k

)2

+

(
vk

β −
ck

2
k

)2

(8)

where ck
1 = ik

α_re f − bk
1 and ck

2 = ik
β_re f − bk

2.
In the maximum four-vector SVPWM linear modulation region, the maximum com-

posite voltage vector amplitude of the α− β plane is 0.577Udc (Udc is the DC bus voltage of
the drive bridge). Hence, the constraint condition of the objective function is

(vk
α)

2
+ (vk

β)
2 ≤ (0.577Udc)

2 (9)

To minimize Jk
2′ , there can be two cases.

One case is when (ck
1/k)2

+ (ck
2/k)2 ≤ (0.577Udc)

2,vk
α = ck

1/k, and vk
β = ck

2/k are taken.

The other case is when (ck
1/k)2

+ (ck
2/k)2

> (0.577Udc)
2, the nearest intersection point of

the circle (vk
α)

2
+ (vk

β)
2
= (0.577Udc)

2, and the coordinate (vk
α, vk

β) = (ck
1/k, ck

2/k) are taken,
that is, to solve the following equation group:

vk
β =

ck
2/k

ck
1/k

vk
α

(vk
α)

2
+ (vk

β)
2
= (0.577Udc)

2

(10)

The two solutions are as follows.

vk
α(1) =0.577Udc

√√√√ (ck
1)

2

(ck
1)

2
+ (ck

2)
2

vk
β(1) =0.577Udc

ck
2

ck
1

√√√√ (ck
1)

2

(ck
1)

2
+ (ck

2)
2

(11)



vk
α(2) = −0.577Udc

√√√√ (ck
1)

2

(ck
1)

2
+ (ck

2)
2

vk
β(2) = −0.577Udc

ck
2

ck
1

√√√√ (ck
1)

2

(ck
1)

2
+ (ck

2)
2

(12)

The coordinates (vk
α(1), vk

β(1)) and (vk
α(2), vk

β(2)) with the closest linear distance to

the coordinate (ck
1/k, ck

2/k) is taken as the output vk
α and vk

β of the MPC at this time step,
i.e., the given value of the maximum four-vector SVPWM. This output is the MPC control
output using the first-order discrete voltage model.
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3.3. Second-Order Model Predictive Current Control Based on Four-Vector SVPWM

To improve the current tracking performance, the above voltage equation is modified
into a second-order form by changing the first two terms of Equation (5) into

ik+1
α = k1vk

α + bk
1

ik
α = k1vk−1

α + bk−1
1

ik+1
β = k1vk

β + bk
2

ik
β = k1vk−1

β + bk−1
2

(13)

By further organization, we have{
ik+1
α = k1vk

α + dk−1,k
1

ik+1
β = k1vk

β + dk−1,k
2

(14)

where {
dk−1,k

1 = bk
1 − bk−1

1 − k1vk−1
α + ik

α

dk−1,k
2 = bk

2 − bk−1
2 − k1vk−1

β + ik
β

(15)

The above equation is the second-order discrete voltage model. Referring to the
previous solution process using the first-order discrete voltage model, ck

1 is replaced with
ik
α_re f − dk−1,k

1 and ck
2 is replaced with ik

β_re f − dk−1,k
2 . In this approach, the MPC control

output voltage vector can be solved using the second-order discrete voltage model.

3.4. Dual Second-Order Model Predictive Current Control Based on Four-Vector SVPWM

In the conventional speed loop, the PI controller is usually selected as the regulator
(Figure 2), and its output is used as the given value of the current loop. To improve the
dynamic performance and anti-interference ability of the motor, this study replaces the PI
controller of the conventional speed loop with the MPC controller using the second-order
discrete mechanical equation.

According to the electromagnetic torque equation of the dual three-phase permanent
magnet synchronous motor, we have

Te = 3pn[ψfiq + (Ld − Lq)idiq] (16)

where Te is the electromagnetic torque; pn is the number of motor pole pairs; ψf is the
permanent magnet flux linkage; id and iq are the current of d axis and q axis, respectively;
and Ld and Lq are the inductance of d axis and q axis, respectively.

Since this study takes the hidden-pole dual three-phase motor as the research object,
then Ld = Lq, and the above equation can be changed into

Te = ktiq (17)

where kt = 3pnψf is denoted as the torque coefficient.
According to the mechanical equation of the dual three-phase permanent magnet

synchronous motor, we have

Te − TL −ωrBm = J
dωr

dt
(18)

where TL is the load torque, ωr is the rotor mechanical angular velocity, Bm is the friction
coefficient, and J is the rotational inertia.
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Let TL = 0. After conducting the first-order forward Euler discretization on the above
equation and organizing the results, we have

ωk+1
r = m1ωk

r + n1ik
q (19)

where m1 = (J − BmTs)/J and n1 = Tskt/J.
From the above equation, there is

ωk
r = m1ωk−1

r + n1ik−1
q (20)

Combined with equations (19) and (20), the following equation can be obtained.

ωk+1
r = (1 + m1)ω

k
r −m1ωk−1

r + n1ik
q − n1ik−1

q (21)

Then the model-predicted rotational speed equation of the second-order discrete
mechanical equation can be obtained:

ωk+1
r_pre = (1 + m1)ω

k
r −m1ωk−1

r + n1ik
q − n1ik−1

q (22)

where ωk+1
r,pre is the predicted speed at time k + 1.

Then, the given current ik
q_re f of the q axis at time k is

ik
q_re f =

ωk+1
r_pre − (1 + m1)ω

k
r + m1ωk−1

r

n1
+ ik−1

q (23)

Substituting the given current ik
d_re f = 0 of the d axis at time k into Equation (14), the

current given values of the α- and β-axes at time k can be obtained.[
ik
α_re f

ik
β_re f

]
=

[
cos(θe) − sin(θe)

sin(θe) cos(θe)

][
ik
d_re f

ik
q_re f

]
(24)

According to the previous equations, the proposed MPC, based on a dual second-
order model, was shown in Figure 4, where the current loop and speed loop can be seen
using the second order model, shown in Equations (22)–(24).
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4. Simulation Analysis

To verify the feasibility and validity of the proposed algorithm, the algorithm is verified
by Matlab/Simulink. The parameters of the non-salient dual three-phase permanent
magnet synchronous motor and the drive system used in the simulation are presented in
Table 1.

Table 1. Parameters of the motor and drive system.

Parameters Value

Stator resistance/Ω 1
Quadrature axis and direct axis inductance /H 0.003

Leakage inductance/H 0.0007
Permanent magnet flux linkage/Wb 0.12

Number of pole pairs 4
Rotational inertia/(kg·m2) 0.01
Rated load torque/(N·m) 30

Rated speed/(r/min) 1000
Friction coefficient/(N·m·s) 0.0003

Inverter bridge DC bus voltage/V 200

This study compares the responses of four control modes. The information and the
corresponding abbreviations of the four control modes are listed in Table 2.

Table 2. Control methods and their abbreviations.

Control Methods Abbreviations

Speed loop P1 + current loop traditional MPC P1 + traditional MPC
Speed loop P1 + current loop first-order MPC P1 + first-order MPC

Speed loop P1 + current loop second-order MPC P1 + second-order MPC
Second-order MPC for both speed loop and current loop Dual second-order MPC

To compare the results, the principle of a single variable is adopted in this study.
Additionally, the maximum four-vector SVPWM is used to modulate the voltage vector for
‘PI + traditional MPC’ to eliminate the impact on the comparison of simulation results due
to different modulation modes.

The initial value of the given speed is 1000 r/min with a no-load start. Then, a rated
load of 30 N·m is applied at 0.06 s. Figure 4 illustrates the speed of response of the four
control modes. Figure 5 illustrates the torque response of the four control modes. Table 3
presents the performance of the four control modes.

As shown in Figures 5 and 6, and Table 3, for the steady-state situation, the current
loops of the ‘PI + first-order MPC’, ‘PI + second-order MPC’, and ‘dual second-order MPC’
control modes all adopt the MPC derived in this study, and these three control modes adjust
the direction and amplitude of the output voltage vector. As a result, their steady-state
speed fluctuation and torque fluctuation are much smaller than those of the ‘PI + traditional
MPC’ control mode. For transient situations, the current loop adopts the MPC mode, and it
has a strong tracking ability to the speed loop. Therefore, the speed response performance
is subject to the speed loop adjustment mode. Meanwhile, the adjustment process curves
of the speed response and torque response of ‘PI + traditional MPC’, ‘PI + first-order MPC’,
and ‘PI + second-order MPC’ approximately overlap, and the performance data are nearly
equal. However, the speed loop of ‘dual second-order MPC’ adopts MPC control. Therefore,
it achieves more excellent performance data than the speed loop using PI control, and the
speed response is fast with a small overshoot, indicating that its transient performance
is stronger.
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Table 3. Performance comparison of the four control modes.

Control Modes Overshoot
/(r/min)

Steady-State
Time /ms

Speed Drop
/(r/min)

Recovery Time
/ms

P1 + traditional MPC 96.5 27.31 40.31 7.24
P1 + first-order MPC 96.2 27.29 40.30 7.24

P1 + second-order MPC 96.3 27.30 40.30 7.23
Dual second-order MPC 21.6 18.88 18.73 4.04

To illustrate the difference in current regulation between the first-order MPC and the
second-order MPC of the current loop, Figure 7 shows the comparison of the difference
between the given values and the response values of the α-axis and β-axis currents of
‘P1 + first-order MPC’ and ‘P1 + second-order MPC’, respectively. It can be seen that the
difference between the current given value and the response value of ‘PI + second-order
MPC’ is smaller than that of ‘PI + first-order MPC’, indicating that the former achieves
better tracking performance for the given current value than the latter.

Figure 8 shows the A-phase and U-phase current waveforms of the three current loop
MPC control algorithms. After local amplification, the current loop using the traditional
MPC algorithm exhibits obvious current ripples, while the current ripples of using the
first-order MPC and the second-order MPC are relatively small.

The fundamental amplitude and total harmonic distortion (THD) of the A-phase
current in the steady state after adding the load can be calculated through Fourier analysis.
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As shown in Table 4, compared to the traditional MPC, the THD of the phase current is
significantly reduced in the first/second-order MPC. It indicates that the first/second-order
MPC reduces current ripples and harmonics by adjusting the magnitude and direction of
the output voltage vector.

Table 4. Current analysis of the three current loop control algorithms.

Current Loop Control Modes Fundamental Amplitude/A THD/%

Traditional MPC 9.82 17.62
First-order MPC 9.80 3.12

Second-order MPC 9.80 3.11
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5. Experiment of Dual Second-Order Model Predictive Control Based on Current
Loop Optimization

In order to further verify the effectiveness of the proposed algorithm, an experimental
platform was built. The experimental platform is shown in Figure 6, which mainly consists
of a controller (TI DSP TMS320F28335, Texas, USA); an IGBT switch device (Infineon
FF450R17ME4, Germany); a current Hall sensor (LEM CASR15-NP, Swiss); a dynamometer
system, which is composed of a tension measurement and control (Zhangli 610L, China);
and a magnetic power brake (Zhangli CZ-40, China). High-speed serial communication is
used to change the speed command, to read the back EMF and speed information of the
motor, and to record the read data; the experiment was recorded with an oscilloscope of
Yokogawa DLM3034 and a Zhangli 610L power dynamometer system.

As shown in Table 3, the speed loop effect of ‘PI + first-order MPC’ is almost the same
as that of ‘PI + second-order MPC’. Meanwhile, as shown in Table 4 and Figure 6, the
current control effect of a second-order MPC in the current loop is also almost the same as
that of a first-order MPC in the current loop. Additionally, the current tracking ability of
the former is slightly better than that of the latter. Thus three types of control strategies
(‘PI + traditional MPC’, ‘PI + second-order MPC’, and ‘dual second-order MPC’) are used
for the experiments and comparisons to clearly compare the advantages and disadvantages
of using PI or MPC in the speed loop or adopting traditional MPC or the current MPC
algorithm proposed in this study in the current loop.,.

The given speed is 500 r/min with a no-load start. Meanwhile, to reduce the mechan-
ical impact, the given speed is ramped. The speed waveform of each algorithm and the
related performance indicators in the start-up process are presented in Figure 9.

As shown in Figure 10, the current loops of ‘PI + traditional MPC’ and ‘PI + second-
order MPC’ adopt different current MPC control algorithms. However, since the speed
loops are limited by PI control, the overshoot and steady-state time of their speed are
almost the same. Meanwhile, due to the use of MPC control algorithms, the steady-state
time and overshoot of dual second-order MPC are both smaller than the former two. This
indicates that, after the speed loop is changed from the PI algorithm to the MPC algorithm,
the transient performance of the motor is improved.

After the no-load speed becomes stable, a load torque of 20 N·m is applied. When the
speed is stable, the current is collected by the current clamp. Then, the current waveforms
of both the traditional MPC and the second-order MPC control algorithm proposed in this
study in the current loop are observed through the oscilloscope (Figure 10).
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As shown in Figure 10, the current harmonics controlled by the traditional MPC
algorithm in the current loop are relatively large. Obvious current ripples can be observed in
Figure 10a. However, the current waveform controlled by the second-order MPC algorithm
in the current loop is smoother, which makes the current ripple in Figure 9b smaller.
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6. Conclusions

Based on the traditional MPC adopted in the current loop, this study proposes a
dual second-order MPC algorithm based on current loop operation optimization. The
second-order MPC is applied to both the speed loop and the current loop. Meanwhile,
the maximum four-vector SVPWM is used to modulate the calculated voltage vector. The
following conclusions can be obtained:

(1) The proposed current MPC calculation method can adjust the voltage direction and
amplitude at the same time through the voltage vector calculated at one time, which
reduces the rotating speed and fluctuations of the current and torque. Additionally, the
current tracking of the second-order current MPC is better than that of the first-order
current MPC, thus improving the steady-state performance of the motor.

(2) The speed loop adopts the second-order MPC rotating speed control. The overshoot
and adjustment time of the motor speed response is much smaller than that of the PI
control, which greatly improves the transient performance of the motor.

According to the simulation and experimental indications, some further research can
be conducted on the heavy load and high frequency of PMSM application, and the fast
convergence of the MPC algorithm is worth further researching. In practical applications,
the performance of MPC is similar to that of traditional proportional control, so the steady-
state error should be ensured by the cost function.
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