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Abstract: Three-dimensional (3D) printing has been proven to be a reliable manufacturing method
for a diverse set of applications in engineering. Simple benchtop tools such as mini centrifuges,
automated syringe pumps, and basic-robotic platforms have been successfully printed by basic 3D
printers. The field of lab-on-a-chip offers promising functions and convenience for point-of-care
diagnostics and rapid disease screening for limited resource settings. In this work, stereolithography
(SLA) 3D resin printing is implemented to fabricate a microfluidic device to be used for separation
of HeLa cells from smaller polystyrene particles through titled angle standing bulk acoustic wave
actuation. The demonstrated device achieved continuous and efficient separation of target cells with
over 92% HeLa cell purity and 88% cell recovery rates. Overall, 3D printing is shown to be a viable
method for fabrication of microfluidic devices for lab-on-a-chip applications.

Keywords: microfluidics; 3D printing; acoustic separation

1. Introduction

Separation of heterogenous particle and cell mixtures is an important task for various
applications in chemical sciences, biology, and medical fields [1,2]. Especially for cell-based
therapies and medical research, isolation of different cell types and removal of undesired
particles such as bacteria and debris from cell solutions is critical for diagnostic and thera-
peutic purposes. Currently, these cell isolation and washing procedures generally rely on
expensive and bulky equipment which are not readily available in developing countries.
The field of microfluidics present new opportunities with small volumes and miniaturized
mechanisms that can enable simple and low-cost tools for biomedical applications for
resource-limited environments [3–7].

There are various approaches to separate target particles or cells from a heterogenous
solution [8]. A commonly used method is centrifugation of mixed solutions that can separate
suspended particles based on their density differences [9]. During this process, high shear
forces can be exerted to cells at high gravitational accelerations which can be detrimental to
living cells. Furthermore, centrifugation-based methods usually require lengthy and labori-
ous steps which may result in sample contamination. Microfluidic platforms have also been
implemented in separation of different types of cells and particles [10]. Microfluidic-based
methods can be grouped into two categories as passive and active separation methods [11].
Passive methods include deterministic lateral displacement (DLD), inertial microfluidics,
microfiltration, hydrodynamic filtration, and pinch-flow fractionation [12–15]. In filtration-
based methods, the major issue is device clogging. Apart from this, most of the passive
separation methods lack the sample type dependent dynamic adjustability. For example,
DLD-based devices are usually designed for certain sample properties; for different particle
size and geometry, different device structures may be required.

Active forces have also been implemented in microfluidic cell separation applica-
tions including electrophoresis, dielectrophoresis, magnetophoresis, optical tweezers, and
acoustophoresis [10,16–22]. For example, Song et al. applied dielectrophoresis forces in
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a continuous flow device to separate human mesenchymal stem cells (hMSCs) and differ-
entiated products [23]. They reported collection efficiencies over 92% and 67% for hMSCs
and osteoblasts. Piacentini et al. demonstrated implementation of dielectrophoresis in
separation of platelets from blood samples and reported 98.8% platelet purity [24]. Even
though dielectrophoresis-based cell separation has been shown to result in high separation
efficiencies, this method requires expensive device fabrication steps and specific require-
ments on sample and liquid medium conductivity. In magnetophoresis-based separation
methods, particle separation occurs due to selective attraction to an external magnetic
field [25]. Therefore, magnetic labeling is generally required for inherently non-magnetic
cells and particles [26]. In acoustic-based methods, particles with different sizes, densities,
and mechanical properties can be manipulated through the differential effect of acoustic ra-
diation forces [27–30]. Acoustophoresis-based separation methods have been demonstrated
in various cell and particle separation applications [31–35]. For example, Li et al. presented
a standing surface acoustic-based approach to separate Escherichia coli and human blood
cells with 96% cell purity [36]. Acoustophoresis-based methods generally does not require
labeling and result in high separation efficiencies, but device preparation in these systems
requires expensive central facilities and lengthy fabrication procedures including multiple
steps of lithography for fluidic parts, and metal deposition and lift-off for the interdigital
transducers in SAW devices. Overall, the existing microfluidic devices for active particle
separation rely on cleanroom fabrication facilities which are not available to majority of
researchers. Therefore, different approaches to device fabrication for cell separation is
needed to enable alternative methods for resource-limited laboratories.

In this work, a three-dimensional (3D) printed microfluidic device is fabricated and ap-
plied in separating HeLa cells and polystyrene microparticles by using tilted standing bulk
acoustic wave (SBAW) approach. In recent years, 3D printing has been increasingly adopted
in device manufacturing, providing a cheap and rapid prototyping option [37–41]. Here,
a consumer grade resin printer is implemented to print a transparent fluidic channel, and
piezo ceramic transducers are used to assemble an acoustophoretic device. HeLa cells are
separated from 1 µm diameter polystyrene particles which are selected to simulate bacteria.
The presented low-cost and simple device enabled around 88% cell recovery efficiencies and
92% cell purity which are comparable to the performance of the existing acoustophoretic
separation devices that are complex and expensive to fabricate. The demonstrated 3D
printed tilted SBAW device shows promising potential in biomedical applications.

2. Materials and Methods

A consumer grade resin 3D printer (Photon S, ANYCUBIC, Shenzhen, China) was used
to fabricate the microfluidic device. A clear color 405 nm photocurable resin (Basic clear,
ANYCUBIC, Shenzhen, China) was used in the printer. As for the printing parameters,
layer height was chosen to be 20 µm, and exposure time, off-time, bottom layer count, and
bottom exposure time were selected as 8 s, 1 s, 8, and 60 s, respectively. After printing the
device, a thin layer of uncured resin was applied around the device and cured at 405 nm UV
light to obtain a better surface finish and higher transparency. Then, polyethylene tubing
was inserted into inlets and outlets of the device. Finally, two piezoceramic transducers
(SMPL20W15T3R111, Stem, Inc., Pompano Beach, FL, USA) were bonded on the sides of the
channel using a fast-curing epoxy (E340, Akfix, Istanbul, Turkey). The microfluidic channel
was designed to have a tilted mid-section, as shown in Figure 1. The fluidic channel width
and height are 1.5 mm and 0.3 mm, respectively. The tilted section of the micro channel has
a length of 16 mm, and before and after this section there is a 2.5 mm straight part. The
microfluidic device was designed to have three inlets and two outlets as shown in Figure 1.
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Figure 1. The 3D printed and assembled microfluidic device. (a) Schematic depiction of the device
geometry. (b) Actual picture of the acoustic device.

The experiments were conducted on the sample stage of an inverted optical micro-
scope (OX.2053-PLPH, Euromex, Arnhem, The Netherlands) equipped with 10× and 20×
objective lends and a CMOS camera (HD, Euromex, Arnhem, Netherlands). The piezo
ceramic transducers were driven at higher harmonics and their working frequency was
determined using a vector network analyzer (NanoVNA, Huayang, Guangdong, China).
A resonance mode of the transducers that was observed at 10.11 MHz (Figure 2) was
implemented in the experiments. A function generator (TBS2104, Tektronix, OR, USA) was
used to drive the transducers. A custom-built RF amplifier was used to amplify the driving
frequency. Two transducers were driven at the same driving frequency. A programmable
syringe pump was employed to infuse the solutions into the device [42]. The experimental
setup is shown in Figure 3.

HeLa cells were maintained in DMEM/F12 cell medium with 10% fetal bovine serum
(Gibco, Life Technologies, Carlsbad, CA, USA). For the separation experiments, HeLa
cells with a concentration of 106 cell/mL were suspended in phosphate buffered saline
solution and mixed with 1 µm polystyrene particles with approximately 107 particles/mL.
A standard hemocytometer was used to analyze the cell counts in the experiments. HeLa
cell viability was evaluated using Trypan blue staining. For this, HeLa cells were sus-
pended in 1 mL PBS solution added with 0.4% trypan blue. After 3 min incubation, viable
(unstained) cells were counted using a hemacytometer.
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3. Results
3.1. Working Mechanism

In the acoustic device, two oppositely positioned transducers are driven at about
10.11 MHz frequency, which can establish a standing bulk acoustic wave field inside the
fluidic channel. The standing wave field includes an array of alternating minimum and
maximum acoustic pressure regions (nodes). The tilted geometry of the channel result in
a 15◦ angle between the pressure nodes. This angle was selected based on the standing
surface acoustic wave literature that implement tilted geometry for cell manipulation. Cells
and particles suspended in the fluid near a pressure node experience an acoustic radiation
force given by [43]:

FR = −
(
πp2

oVpβf

2λ

)
φ(β, ρ) sin(2kx) (1)

φ(β, ρ) =
5ρp − ρ f

2ρp + ρ f
−

βp

β f
(2)

here, vp, βf, βp, ρf, ρp, and p0 are volume of the particle, compressibility of fluid, compress-
ibility of particle density of fluid, density of particle, and acoustic pressure, respectively.
φ, x, λ, and k are the acoustic contrast, distance of a particle from node line, wavelength,
and wavenumber, respectively. The acoustic contrast factor is an important parameter
that determines the direction of the acoustic radiation force (towards pressure node or
antinode) based on the relative density of the particle with respect to the fluid. The acoustic
radiation force scales with the particle size, density, and compressibility. Thus, a larger
particle experiences a bigger force compared to smaller particle.

Another important force that influences the behavior of suspended particles in a fluid
flow is Stoke’s drag force (FSt) which depends on the radius of the suspended particles (aS),
dynamic viscosity of the fluid (µ), and the relative velocity of the particle with respect to
the velocity of the fluid. For particles with smaller sizes, FSt dominates over the acoustic
radiation force [44]. Stoke’s drag force is given by:

FSt = 6 πµaSuS (3)

In Figure 4a, cell and particle separation is schematically illustrated. In this device,
cell and particle suspension in infused from the center inlet and hydrodynamically focused
before entering the acoustic field. In the laminar flow, cells and particles preserve their
relative position inside the channel. In the standing acoustic field, the periodic linear
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pressure field that are aligned with a tilt angle to the flow direction forces suspended
inclusions to move along the minimum pressure lines. In this process, the acoustic radiation
force pushes cells and particles to the pressure nodes, but larger cells experience a bigger
force compared to the particles. Therefore, cells tend to follow the pressure node lines rather
than the flow streamline and become separated from the smaller particles. The scaling of
the acoustic radiation force for 10 µm, 7 µm, 5 µm, and 1 µm polystyrene particles is given
in Figure 4b. In this calculation, the fluid medium is considered as water, acoustic pressure
is assumed to be 0.2 MPa, the acoustic wavelength is set to be 150 µm, compressibility of
the particles and the fluid are 4.58 × 10−10 Pa−1 and 2.46 × 10−10 Pa−1, and density of
the particles and the fluid are 1050 kg m−3 and 1000 kg m−3, respectively [17,45,46]. From
Equations (1) and (2), it is evident that 10 µm diameter particle will experience a much
larger acoustic radiation force compared to smaller particles. It is also evident that particles
with higher densities will result in a larger force. Because HeLa cells (1040 kg m−3) and
polystyrene particles (1050 kg m−3) have very similar densities, their volume differences
will have a rather significant effect on the scale of the acoustic radiation forces.
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Figure 4. Working principle of the acoustic device. (a) A schematic depiction of the acoustic device
geometry and acoustic pressure nodes. FR: Acoustic radiation force, FSt: Stoke’s drag force. (b) Plot
of the acoustic radiation force for different size polystyrene microparticles. PN: pressure node. ARF:
Acoustic radiation force.

3.2. Cell and Particle Separation

HeLa cell and 1 µm polystyrene particle mixture was injected from the center inlet of
the device and focused with the PBS buffer flows. Lower and upper inlet flow rates were 20
and 30 µL/min, and the sample inlet flow rate was 10 µL/min. This way all the suspended
cells and particles were directed to the upper outlet of the device when the acoustic field
was off (Figure 5a). When the standing acoustic wave field was established, HeLa cells
started following the pressure nodes and deflected from the mid-flow streamlines as sown
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in Figure 5b. On the other hand, 1 µm diameter polystyrene particles were not affected by
the acoustic radiation force and kept following the laminar flow.
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Figure 5. Separation of HeLa cells and polystyrene particles is shown by stacked images. (a) When
the acoustic field is turned off, the mixture of the particles and cells flow together. (b) In the standing
acoustic wave field, HeLa cells mostly follow the pressure nodes and separated from the smaller
polystyrene particles.

The deflection of the HeLa cells needs to be high enough to separate them from the
particles and cell debris and push them to the lower outlet. For this, increasing power
amplitudes were applied and for each case number of HeLa cells recovered from the
original solution was characterized as shown in Figure 6. Starting from 20 VPP, the applied
voltage was increased up to 60 VPP which was the highest voltage provided by the amplifier
circuit. At the highest voltage, over 88% HeLa cell recovery was obtained at around 92%
cell purity. Cell recovery rate is calculated by the ratio of the number of the sorted target
cells and the number of the target cells available for separation. Cell purity is defined as the
ratio of the number of the target cells isolated and the total number of the cells and particles
isolated. Cell viability is defined as the ratio between the difference of total number of
cells–stained cells and the total number of cells. Here, the stained cells are the dead ones
that intake the staining dye. The viability of the HeLa cells was also characterized after
they are acoustically being separated from the particles. HeLa cell viability values for
increasingly higher applied voltages are shown in Figure 7. At lower voltage amplitudes,
the viability of the HeLa cells was found to be over 95%. As the voltage was increased, the
viability was dropped to about 90% at 60 VPP.
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deviation of 5 measurements.

4. Discussion

While lab-on-a-chip platforms can provide sample preparation, disease diagnostics,
and bioanalysis in a small chip, the fabrication of lab-on-chip devices is still a challenging
and expensive task in low-resource settings. In this work, stereolithography (SLA) 3D
printing provided a simple and rapid approach for fabricating a microfluidic device to
separate HeLa cells from the stream of polystyrene particles using tilted angle standing
bulk acoustic waves. Overall, the device was printed with decent surface quality, but a thin
layer of uncured resin application and subsequent curing greatly enhanced the surface
roughness and improved the optical clarity of the device in the channel region. It was
observed that the printing resolution of the device can affect the flow behavior inside
the channel due to the undesired imperfections within device. These imperfections can
also influence the cell separation performance negatively by unwanted flow perturbations.
This device fabrication method is very convenient for researchers with limited budgets
and infrastructure including cleanroom lithography facilities. Even though the printing
resolution of most of the SLA printers is not as low as the resolutions that can be acquired
through optical lithography, 3D printing can still be applied in numerous microfluidic
applications that do not need minimum feature sizes lower than roughly 50 µm. With the
advancement of the SLA printers, the resolution of these printers could be improved in
the future.
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The presented acoustic device demonstrated over 90% efficient HeLa cells separation
efficiency. In Figure 5, the recovery efficiency of HeLa cell is shown to increase with the
increasing applied power. At 20 VPP, the cell recovery efficiency is about 40%, and at
60 VPP, cell recovery goes up to 88%. This is meaningful because the acoustic radiation
force scales with the acoustic pressure. As the power applied to the transducers is increased,
the acoustic radiation force also increases. A larger acoustic radiation force is more effective
to deviate the HeLa cells from their laminar flow and push them to the lower collection
outlet. On the other hand, 1 µm polystyrene particles stay in the center flow because the
acoustic radiation force exerted on these particles is about 1000 times smaller due their
smaller volumes. The output of the power amplifier used in this work is limited to 60 VPP.
With larger power amplitudes, it could be possible to attain better recovery efficiencies. At
the current device operation parameters, the HeLa cells showed over 90% viability rate,
which is comparable to the reported literature [47]. If higher powers will be applied to
improve the device performance, an active cooling strategy could be needed to prevent
device overheating which can negatively affect the cell viability. In the current acoustic
system, 60 VPP applied voltage results in 88% cell recovery rate and about 90% cell viability
which is acceptable for basic cell separation studies. Here, the most important parameters
are cell recovery and cell purity, which can be critical to keep important target cells for
therapeutic applications. If the cell viability is over 90 percent, these separation yields can
be considered significant for general purposes.

5. Conclusions

Herein, SLA printing is shown to be a viable solution for fabricating microfluidic
devices for acoustofluidic applications. The acoustic device shown here is capable of
separating HeLa cells from smaller particles with decent cell purity (92%) and recovery
(88%) rates under the applied voltage of 60 Vpp and driving frequency of 10.11 MHz.
On-chip cell washing and separation from bacteria are useful and desired capabilities for
cell-based therapies, rapid diagnostics, and sample preparation. Implementation of 3D
printed microfluidic devices in biomedical research is promising for widespread adaptation
of low-cost and open-sourced tools for the researchers in low-income countries.
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