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Abstract: This paper proposes a novel fault-tolerant control method based on the integral sliding
mode technique for unmatched uncertain linear systems with external perturbations. Differently
from the existing works, the uncertainties under consideration have an unmatched norm-bounded
form in the system and input matrix. Based on linear matrix inequalities, the existence conditions
of the sliding mode surface are presented. The unknown fault information is then estimated by
some adaptive laws. On the grounds of that, an integral sliding mode controller is also obtained
to guarantee the disturbance attenuation and fault tolerance for linear uncertain systems with
unmatched uncertainties and actuator faults from the initial time. Finally, the comparative simulation
results verify the effectiveness of our presented scheme.
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1. Introduction

A ubiquitous and inevitable factor for practical engineering systems is uncertainty,
which is caused by modeling uncertainty [1,2], exogenous disturbance [3], and communica-
tion noise [4]. Due to various attractive advantages, such as fast responses, easy implemen-
tation, and absolute insensitivity to matched uncertainties and disturbances [5,6], sliding
mode control (SMC) is one promising robust control method for handling the matched
uncertainty [7,8] for linear systems. When being faced with an unmatched one, traditional
SMC may be invalid. In order to get around it, a few authors have combined SMC and other
robust techniques [9,10]. Though lots of attractive results have been achieved to address
matched and unmatched uncertainty, the above-mentioned robustness to uncertainties is
just acquired during the sliding motion. In the presence of a reaching phase, the robustness
may be vanishing. An idea of adding an integral term in the sliding manifold was proposed
in [11,12]. By doing this, the system trajectories can exist in the manifold from the very
beginning. From then on, many authors paid attention to the integral sliding mode control
(ISMC) technique to get around uncertainty problems, such as [13,14].

On the other research front, actuator faults may bring about performance degrada-
tion, and even instability. Additionally, some fault-tolerant control (FTC) techniques for
uncertainty linear systems and corresponding results have been well developed, ranging
from passive control [15,16] to active control [17,18]. It should be mentioned that SMC is
considered a promising FTC tool to deal with actuator faults these days [19–21]. Addition-
ally, reference [19] dealt with the problems of actuator fault compensation for uncertain
linear plants based in sliding mode. Reference [20] considered the design of sliding mode
control for uncertain state-delayed systems with partial actuator degradation. Additionally,
reference [21] proposed a novel variable structure control law to address a pre-specified
subset of actuator failure. To obtain robustness from the very beginning, ISMC has been
applied to get around actuator faults problems. However, such an FTC design technique is
no longer available for uncertainty linear systems when unmatched uncertainty resides in
the state matrix and input matrix simultaneously. The literature [22] dealt with mismatched
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disturbances for discrete-time systems, and reference [23] purposed SMC for nonlinear
systems with mismatched uncertainty, but these failed to consider fault tolerance. We
therefore considered that it is timely to address the FTC control issue for uncertain systems
with unmatched uncertainties using ISMC controller design techniques.

Under the previous considerations, we came up with an integral sliding mode control
method to address the problems of uncertain systems with actuator faults, unmatched
uncertainties and external disturbances. Firstly, in a state of an actuator redundancy, a
novel integral sliding mode surface is derived by applying the matrix full-rank factorization
approach. The gain of the ISM control law can be changed online through several adaptive
laws which can compensate for actuator faults, perturbations and unmatched uncertainties
in the input matrix. In this paper, the chief technical contributions are as follows:

1. This study is the first attempt to apply the FTC technique based on ISMC to deal with
unmatched uncertainties in the input matrix. Existing related works in [14,24] both
only consider unmatched uncertainties in the state matrix.

2. Compared with the existing literature addressing liner systems with unmatched
uncertainty [22,23,25], actuator faults are considered into the sliding mode stabil-
ity. In particular, both fault information and unmatched uncertainty are taken into
account simultaneously.

3. Compared with [26], we purposed a novel integral sliding surface based on a matrix
full-rank factorization approach to guarantee a sliding mode existing throughout the
whole system response, and a sufficient condition, including actuator faults informa-
tion and unmatched uncertainty, is derived through linear matrix inequalities (LMIs).

The structure of this paper is as follows. The description of an unmatched uncertain
system and some preliminary results are introduced in Section 2. In Section 3, the brand
new integral sliding surface of linear systems with unmatched uncertainties is designed
first. Then, the SMC law that compensates for actuator faults, perturbations and un-
matched uncertainties is designed. Section 4 demonstrates the effectiveness of our designed
method through the a set of comparison simulations. At last, Section 5 ends our paper by
summarizing our work.

2. System Description and Problem Statement

We will consider unmatched uncertain system models of the form

ẋ(t) = [A + ∆A(t)]x(t) + [B + ∆B(t)][u(t) + f (t)]. (1)

where the system and input matrices A ∈ Rn×n; B ∈ Rn×m; and x(t) ∈ Rn, u(x) ∈ Rm and
f (x) ∈ Rm are the state vector, the control input and the disturbance input, respectively.
∆A(t) and ∆B(t) are unmatched uncertainties in the system matrix and the input matrix.

In the next section, the faults covering actuator interrupt, stuck and failure are pre-
sented. The unified fault model can be built up as follows:

uF(t) = ρu(t) + σus(t). (2)

where the matrix ρ is diagonal and semipositive-definite. Additionally, ρ models the
effectiveness level of the actuators. ρ can be obtained from the sets

∆ρj =
{

ρj|ρj = diag
{

ρ
j
1, ρ

j
2, · · · , ρ

j
m

}
, ρ

j
i ∈ [ρj

i
, ρ

j
i ]
}

,

and the elements 0 6 ρ
j
i 6 ρ

j
i 6 ρ

j
i 6 1 for i = 1, · · · , m, j = 1, · · · , L. L indicates the

total number of fault categories. i and j represent the ith actuator and the jth fault case,
respectively. The diagonal matrix σ is defined as

σ
j
i =

{
0 0 < ρ

j
i 6 1

0 or 1 ρ
j
i = 0.

(3)
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Obviously, in the condition of ρ
j
i = ρ

j
i = 1, the actuator in this case is normal. However,

ρ
j
i = ρ

j
i = 0 and σ

j
i = 0 imply the actuator is interrupted in this failure condition. In the

case of ρ
j
i = ρ

j
i = 0 and σ

j
i = 1, the actuator gets stuck in the condition. If 0 < ρ

j
i 6 ρ

j
i < 1,

it implies that the actuator gets partial failure.
Combining actuator faults (2) with (1), one can rewrite the system as

ẋ(t) = [A + ∆A(t)]x(t) + [B + ∆B(t)][ρu(t) + σus(t) + f (t)]. (4)

In order to achieve the purpose of fault tolerance and ensure the stabilization, un-
der state information availability, a few assumptions have to be made as follows:

Assumption 1. For given known constants ρA, ρB and a known scalar function ρ f , the following
constraints hold: ‖∆A(t)‖ 6 ρA, ‖∆B(t)‖ 6 ρB, ‖ f (t)‖ 6 ρ f (x, t).

Assumption 2. For any ρ ∈ ∆ρj , {A, (B + ∆B)ρ} is always absolutely stabilizable.

Assumption 3. rank((B + ∆B)ρ) = rank(B + ∆B) for all ρ ∈ ∆ρj , j = 1, 2, · · · , L.

Assumption 4. The actuator stuck fault is unknown but norm-bounded, and then there is an
unknown positive constant ūs meeting ‖us(t)‖ 6 ūs.

Remark 1. Assumption 1 highlights that the uncertainties ∆A(t) and ∆B(t), are unmatched in
the input and state matrix. In addition, ∆A(t) and ∆B(t) are norm-bounded. For the purpose
of fault tolerance, Assumption 2 guarantees the realization of fault tolerance [26]. Just like [26],
Assumption 3 reveals an actuator redundancy assumption to completely compensate for stuck
faults of an actuator. Assumption 4 is greatly common and natural in this kind of robust FTC
literature [14].

Several preliminary results are introduced to accomplish our main works later on.

Lemma 1 ([25]). Given appropriately dimensional matrices X and Y, suppose that (I + XY) is
nonsingular; then, (I + XY)−1 = I − X(I + YX)−1Y.

Lemma 2 ([25]). Given appropriately dimensional vectors x and y, for any W > 0, the following
inequalities can hold:

2
√
‖x‖

√
‖y‖ ≤ ‖x‖+ ‖y‖, 2xTy ≤ xTWx + yTW−1y. (5)

Lemma 3 ([25]). For any matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n and
D(t) ∈ Rp×m, suppose that I > η2DT(t)D(t) holds for η ≥ 0, and give this uncertain form
of system

ẋ =
[
A(t) + B(t)[I − E(t)D(t)]−1E(t)C(t)

]
x, (6)

where the unknown matrix E(t) has a boundary as ‖E(t)‖ ≤ η. Assuming that there is a positive-
definite matrix P satisfying PA(t) + ∗ ηPB(t) ∗

∗ −I ∗
C(t) ηD(t) −I

 < 0. (7)

Then, the above system is stable.
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Lemma 4 ([27]). After full-rank factorization of matrix (10), for any ρ, there is a positive constant
µ satisfying

NρNT > µNNT . (8)

Lemma 5 ([28]). Consider the system:[
ẋ1(t)
ẋ2(t)

]
=

[
A1(t) A2(t)

0 −$I

][
x1(t)
x2(t)

]
, (9)

where x1 ∈ Rn−m; x2 ∈ Rm; $ is a positive constant; and A1(t) and A2(t) have a bounded
norm. Then, the previous uncertain system is quadratically stable when the reduced-order system
ẋ1(t) = A1(t)x(t) is stable.

3. Main Results

The diagram of our proposed FTC scheme based on the ISM technique is depicted in
Figure 1.

Figure 1. Structure diagram of ISMC fault-tolerant scheme.

3.1. Design of Integral Sliding Mode Surface

Through full-rank factorization, the input matrix B is expressed as:

B = BvN, (10)

where Bv ∈ Rn×l , N ∈ Rl×m and rank(Bv) = rank(N) = l ≤ m.
Based on (10), the following equation can be obtained:

∆B(t) = ∆Bv(t) · N. (11)

Now, the switching function is defined by the set {x : α(x) = 0}, with

α(x) = Sx + z, S = (BT
v X−1Bv)

−1BT
v X−1, (12)

where X ∈ Rn×n can be designed to make the sliding mode asymptotically stable. z is a an
m-order vector given as follows:

ż = τSx, z(0) = −Sx(0). (13)



Actuators 2022, 11, 241 5 of 17

For convenience, we define that

η0 = ρBv‖S‖. (14)

Theorem 1. For given matrix Bv, B̃v is any basis of the nullspace of BT
v , and λB =

√
λmin(BT

v Bv).
Let A, Bv, ρA and ρBv be given. If there exists a symmetric positive-definite matrix X > 0 and
scalars d0, d1, d2 > 0, 0 < δ < 1 and 0 < ω < 1 satisfying the following LMIs (15) and (16):

B̃T
v (AX + XAT + d0 I)B̃v ∗ ∗ ∗ ∗

ηB̃v −I ∗ 0 0
AXB̃v η I −(1− δ)I 0 0
ρAXB̃v 0 0 −d0 I 0
ρAXB̃v 0 0 0 −δI

 < 0, (15)


X ∗ 0 0
I d1 I 0 0
0 0 d2 I − X 0
0 0 0 2ηλB − ρBv(d1 + d2)

 > 0, (16)

then the sliding mode dynamics is stable.

Proof of Theorem 1. We first can see that ‖S∆Bv(t)‖ < 1, which is a premise for the
existence of the equivalent control [29] and has been proved in [25].

From [25] we can also derive that

‖S∆Bv(t)‖ 6 ‖S‖‖∆Bv(t)‖ 6 ρBv‖S‖ = η0 < η < 1. (17)

Additionally, the LMI characterization of the sliding surface (16) also has been given
in [25].

Consider the system (4) with the equivalent control approach of [29] and set α̇ = α = 0;
then, one can derive the following equivalent control:

ueq(t) = −[Nρ]+[S(Bv + ∆Bv(t))]
−1S[(A + ∆A(t)) + γI]x(t)− [Nρ]+Nσus(t)

− [Nρ]+N f (t).
(18)

Substitute ueq(t) into the system (4). The following (n− l) reduced-order system can
be expressed as:

ẋ = [A + ∆A(t)]x− [Bv + ∆Bv(t)][I + S∆Bv(t)]−1[S(A + ∆A(t))x + τSx]. (19)

Next, a transformation matrix M and associated vector v are defined:

M ∆
=

[
(B̃T

v XB̃v)−1B̃T
v

S

]
, v ∆

=

[
v1
v2

]
= Mx, (20)

where v1 ∈ Rn−l , v2 ∈ Rl . Then, one can obtain that M−1 = [XB̃v, Bv]. By using the
transformation, Equation (19) can be converted as[

v̇1
v̇2

]
=

[
A1(t) A2(t)

0 −$I

][
v1
v2

]
, (21)

where

A1(t) = (B̃T
v XB̃v)

−1B̃T
v

[
I − ∆Bv(t)[I + S∆Bv(t)]−1S

]
[A + ∆A(t)]XB̃v, (22)
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Applying Lemma 1, A1(t) can be rewritten as

A1(t) = (B̃T
v XB̃v)

−1B̃T
v

[
I − [I + ∆Bv(t)S]−1∆Bv(t)S

]
[A + ∆A(t)]XB̃v. (23)

We can note that $ > 0, ‖A1(t)‖ < ∞ and ‖A2(t)‖ < ∞. Lemma 5 indicates that
the reduced-order transformed system (21) is asymptotically stable when v̇1 = A1(t)v1 is
stable. Since (17) suggests ‖∆Bv(t)S‖ 6 η < 1, in light of Lemma 3 with E(t) = −∆Bv(t)S,
it is clear that when there is a positive-definite matrix P0 ∈ R(n−l)×(n−l) such that the
following LMI holds: P0 A0(t) + ∗ ∗ ∗

ηBT
0 P0 −I ∗

C0(t) η I −I

 < 0; (24)

then, the subsystem is stable, where A0(t) = (B̃T
v XB̃v)−1B̃T

v [A + ∆A(t)]XB̃v,
B0 = (B̃T

v XB̃v)−1B̃T
v , C0(t) = [A + ∆A(t)]XB̃v. If we define P0 = B̃T

v XB̃v, where X can
be obtained from LMIs (15) and (16), the above matrix inequality (24) can be expressed:B̃T

v [A + ∆A(t)]XB̃v + ∗ ∗ ∗
ηB̃v −I ∗

[A + ∆A(t)]XB̃v η I −I

 < 0. (25)

For any nonzero vector zT = [zT
1 , zT

2 , zT
3 ], the previous LMI (25) can be rewritten as:

2zT
1 B̃T

v [A + ∆A(t)]XB̃vz1 + 2zT
3 [A + ∆A(t)]XB̃vz1 + 2ηzT

2 B̃vz1 + 2ηzT
3 z2 − zT

2 z2 − zT
3 z3 < 0, (26)

By Lemma 2 and ‖∆A(t)‖ 6 ρA, the following inequalities satisfy:

2zT
1 B̃T

v ∆A(t)XB̃vz1 6 d0zT
1 B̃T

v B̃vz1 + ρ2
A

1
d0

zT
1 B̃T

v X2B̃vz1, (27)

2zT
3 ∆A(t)XB̃vz1 6 δzT

3 z3 + ρ2
A

1
δ

zT
1 B̃T

v X2B̃vz1, (28)

Taking (27) and (28) into (26), one can yield that

2zT
1 B̃T

v AXB̃vz1 + d0zT
1 B̃T

v B̃vz1 + ρ2
A

1
d0

zT
1 B̃T

v X2B̃vz1

+ ρ2
A

1
δ

zT
1 B̃T

v X2B̃vz1 + 2zT
3 AXB̃vz1 + 2ηzT

2 B̃vz1

+ 2ηzT
3 z2 + δzT

3 z3 − zT
2 z2 − zT

3 z3 < 0.

(29)

Consider the Schur complement formula. The inequality (29) is expressed as the
LMI (15). Thus, LMI (25) holds with P0 = B̃T

v XB̃v > 0, and the matrix X is just the
solution to the LMIs (15) and (16) which implies the reduced-order equivalent system (21)
is asymptotically stable.

Remark 2. A novel integral sliding surface (12) design scheme based on full-rank factorization of
the input matrix is proposed. The stability condition of the sliding mode, including actuator faults
information and unmatched uncertainty, are given in terms of LMIs (15) and (16).

Remark 3. The stability condition of sliding mode is similar to [27]. The difference from the
existing literature is that the considered uncertainties have unmatched norm bounded uncertainty
in the input matrix.
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3.2. Design of Integral Sliding Mode Fault Tolerant Controller

Now, consider the following ISM control law:

u(t) = −ω(x, t)µ̂0NT α(x)
‖α(x)‖ , (30)

where µ̂0 is an estimated value of the unknown positive parameter µ0 = 1
µ . ω(x, t) is a

constant coefficient given as:

ω(x, t) =
1

λ1 − η0µ̂0λ2

(
ρA‖S‖ · ‖x‖+ (1 + η0)‖N‖ρ f (x, t) + ‖S(A + τ I)x‖

+(1 + η0)
m

∑
i=1
‖Ni‖σ̂i ˆ̄usi + ε

)
,

(31)

where Ni is the ith column of N. λ1 and λ2 are the smallest and the biggest eigenvalues
of NNT , respectively. σ̂ is an estimate of the actuator failure impact factor σ, and ˆ̄us is an
estimate of the stuck fault upper threshold ūs. ε is any positive scalar. µ̂0 can be obtained
through the following adaptive law [27]:

˙̂µ0(t) = Proj
[0, λ1

η0λ2
]
{Γ} =

 0 i f
µ̂0 = λ1

η0λ2
and Γ <= 0

or µ̂0 = 0 and Γ >= 0
Γ otherwise

(32)

where Γ = γωλ1‖α(x)‖, and the positive constant γ is the adaptive gain which can be set
by the practical applications. Proj {·} projects µ̂0 to the range (0, λ1

η0λ2
) to satisfy ω(x, t) > 0.

Aiming to define the control law completely, it is henceforth assumed that when α(x) = 0,
we define u(t) = 0.

Moreover, the adaptive laws{ ˙̄̂usi(t) = γ1i‖α(x)‖‖Ni‖, ˆ̄usi(0) = ūsi0,
˙̂σi(t) = γ2i‖α(x)‖‖Ni‖ ˆ̄usi, σ̂i(0) = σi0, i = 1, . . . , m.

(33)

where ūsi0 and σi0 are initial conditions which can be given artificially. Ni is defined in (31).
γ1i and γ2i can be given same with γ.

Denote µ̃0(t) = µ̂0(t) − µ0, ˜̄us(t) = ˆ̄us(t) − ūs and σ̃(t) = σ̂(t) − σ. Based on the
fact that µ0, ūsi, σi are all unknown but constants, and the previous error equations are
simplified into: ˙̃µ0(t) = ˙̂µ0(t), ˙̄̃us(t) = ˙̄̂us(t) and ˙̃σ(t) = ˙̂σ(t).

Remark 4. The designed controller is an active fault-tolerant one whose gain can be adjusted
dynamically when actuator failures occur. Additionally, the adaptive technique is applied to estimate
the lower bound of fault information and the stuck fault.

Theorem 2. Suppose that Assumptions 1–4 hold and LMIs (15) and (16) are feasible. Let the ISMC
law be given in (30) and some adaptive laws be given in (32) and (33). Consider the system (4) with
an actuator fault model, unmatched uncertainties and disturbance; then, a sliding mode is stable
from the very beginning.

Proof of Theorem 2. To demonstrate that robustness starts from the very beginning, it is
sufficient that the value of α(t) is initially set to α(0) = 0 and the standard η-reachability
condition αT α̇ < −ε‖α‖ is satisfied for all α(t) 6= 0.

Let us define the Lyapunov function as

V =
1
2

αTα +
1
2

γ−1µµ̃2
0 +

1 + η0

2

(
m

∑
i=1

σi ˜̄u2
si

γ1i
+

m

∑
i=1

σ̃2
i

γ2i

)
.
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The time derivative of V along the (4)–(13) meets

V̇ =αT α̇ + γ−1µµ̃0 ˙̃µ0 + (1 + η0)

(
m

∑
i=1

σi ˜̄usi
˙̄̃usi

γ1i
+

m

∑
i=1

σ̃i ˙̃σi
γ2i

)
=αT [S(A + ∆A(t))x + (I + S∆Bv(t)N f (t)) + τSx]

+ αT Nρu(t) + αTS∆Bv(t)Nρu(t) + αT Nσus(t) + αTS∆Bv(t)Nσus(t)

+ γ−1µµ̃0 ˙̃µ0 + (1 + η0)

(
m

∑
i=1

σi ˜̄usi
˙̄̃usi

γ1i
+

m

∑
i=1

σ̃i ˙̃σi
γ2i

)
.

(34)

Then, considering the control law u(t) in (30), Assumption 1 and Lemma 4, one can
secure that

αT Nρu(t) = −αTωµ̂0NρNT α(x)
‖α(x)‖

6 −ωµ̂0µλ1‖α‖
= −ωλ1µ̃0µ‖α‖ −ωλ1‖α‖,

(35)

αT Nσus(t) + αTS∆Bv(t)Nσus(t) 6 (1 + η0)
m

∑
i=1
‖α‖‖Ni‖σiūsi

= (1 + η0)
m

∑
i=1
‖α‖‖Ni‖(σ̂i ˆ̄usi − σ̃i ˆ̄usi − σi ˜̄usi).

(36)

Notice that NNT and NρNT are both positive matrices. µ̂0 and ω are both positive
scalars in (31). Since the inequality ρ 6 I holds, it follows that

αTS∆BvNρu(t) = −αTS∆BvNρωµ̂0NT α

‖α‖

6 ‖α‖ · ‖S∆Bv‖ ·ωµ̂0 ·
∥∥∥NρNT

∥∥∥
6 ‖α‖η0ωµ̂0λ2,

(37)

where λ2 is defined in (31); η0 is defined in (14).
Further, substituting (35)–(37) into (34), the inequality can be converted into

V̇ 6 ‖α‖[‖S(A + τ I)x‖+ ρA‖S‖ · ‖x‖+ (1 + η0)‖N‖ρ f (x, t)]

−ωλ1µ̃0µ‖α‖ −ωλ1‖α‖+ ‖α‖η0ωµ̂0λ2

+ (1 + η0)
m

∑
i=1
‖α‖‖Ni‖(σ̂i ˆ̄usi − σ̃i ˆ̄usi − σi ˜̄usi)

+ γ−1µµ̃0 ˙̃µ0 + (1 + η0)

(
m

∑
i=1

σi ˜̄usi
˙̄̃usi

γ1i
+

m

∑
i=1

σ̃i ˙̃σi
γ2i

)
.

(38)

Considering the adaptive laws in (32) and (33), V(t) can be reduced to:

V̇ 6 ‖α‖[‖S(A + τ I)x‖+ ρA‖S‖ · ‖x‖+ (1 + η0)‖N‖ρ f (x, t)]

−ωλ1‖α‖+ ‖α‖η0ωµ̂0λ2

+ (1 + η0)
m

∑
i=1
‖α‖‖Ni‖σ̂i ˆ̄usi.

(39)

Taking the (31) into (39), and simplifying terms, yields:

V̇ 6 −ε‖α‖ < 0. (40)
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The above inequality (40) conforms to the η-reachability condition, and indicates that
the sliding motion exists throughout all the time.

The whole proposed FTC algorithm is shown in Figure 2.

Figure 2. Flowchart of fault-tolerant control based on the ISMC algorithm.
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4. Simulation Results

In this section, to demonstrate the effectiveness of the proposed fault-tolerant control
scheme, two comparative simulation results are shown with a numerical example from [25]
and a single-mode fairing model from [30], which also prove the necessity of considering
the unmatched uncertainty.

4.1. Numerical Example

Consider the unmatched uncertain liner system of (4) with the system matrices [25].

A =

−1 1 0
0 0 1
0 0 0

, B =

 0 0 0
0 0 0

0.5 0.8 1

, Bv =

0
0
1

, N =
[
0.5 0.8 1

]
. (41)

where Bv and N are obtained by the factorization of control input matrix B. Additionally,
∆A(t) and ∆B(t) are chosen to be

∆A(t) =

 0 0.2cos(t) 0
0.2cos(t) 0 0

0 0 0

, ∆Bv(t) =

 0
0.1sin(t)

0

, ∆B(t) = ∆Bv(t)N. (42)

According to Assumption 1, we can have ρA = 0.2, ρBv = 0.1, ρ f (x, t) = 1. By applying
MATLAB LMI toolbox with the data (41) and (42), the solution to LMIs (15) and (16) can be
yielded by

X =

 0.8697 0.1310 −0.0419
0.1310 0.3086 −0.5913
−0.0419 −0.5913 4.4696

,

d0 = 0.2995, d1 = 5.5313, d2 = 6.1998, δ = 0.2464, η = 0.6482.

The existing sliding mode fault-tolerant scheme proposed in [26] fails to handle un-
matched, uncertain system with uncertainty in the input matrix. By contrast, the proposed
ISM fault-tolerant control technique of this paper can work well.

To prove the effectiveness of our designed control strategy, related parameters and
initial conditions are set by: x(0) = [1.5; 0.6; 0.1], ˆ̄us1(0) = ˆ̄us2(0) = ˆ̄us3(0) = 1, µ̂0(0) = 1,
σ̂1(0) = σ̂2(0) = σ̂3(0) = 0, γ = 0.1, γ11 = γ12 = γ13 = 0.1, γ21 = γ22 = γ23 = 0.1, τ = 1.

In order to weaken the discontinuity in (30), the nonlinear control law is smoothed by
employing the continuous approximation

u(t) = −ωµ̂0NT α(x)
‖α(x)‖+ 0.001

. (43)

where ω > 0 is a constant coefficient given in (31), which can be figured out by some
estimate based on adaptive laws and some known values. µ̂0 belongs to the range (0, λ1

η0λ2
),

and it can be obtained by the projection in (32). N is yielded by the full rank factorization
of B in (10).

To show the ability of our designed fault-tolerant controller, simulations with different
faulty cases were sorted out such that

1. The actuator does not have any faults until t = 15 s.
2. There is 50% actuator failure in the first actuator; the second one gets stuck at

us2(t) = 1 + 1 ∗ sin(t) in the meantime.
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Additionally, the perturbations f (t) = [ 0.6cos(t) 0.6sin(t) 0.6cos(t) ]T , 15 < t < 20.
Additionally, for the sake of demonstrating the ability of the proposed method to

cope with the problems related to unmatched uncertainties in the input matrix, the results
in this paper are compared with those without taking the influence of the input matrix
uncertainties into consideration.

Figures 3–6 illustrate the comparison results in the above fault case. In Figure 3,
the states tend to zero under the control initially. After 15 s, actuator faults and disturbance
input occur. The states go to zero again under the ISMC law and then stay stable. By con-
trast, it can be shown that the response curve of the system states adopting the designed
scheme (blue solid line) is more stable than the one adopting the existing scheme (red
dotted-dashed line) when actuator faults and perturbations are added to the system. We
can see the comparison results of sliding surface response curves in Figure 4. Applying
the proposed scheme (blue solid line), as the actuator fault happens at 19s, the stability of
sliding control is better than the existing control (red dotted-dashed line). Figure 5 presents
the estimates of unknown parameter µ0. Figure 6 shows the curves of adaptive laws ˙̄̂usi(t),
˙̂σi(t) in (33). We can notice that the estimates are convergent; only then can the system
be stable. By comparing the simulation results in Figures 3 and 4, it is obvious that the
amplitude without considering the unmatched uncertainty is larger. If the uncertainty is
large enough, divergence may be caused.

0 5 10 15 20 25 30 35 40

Time(sec)

0

0.5

1

1.5

x
i
 in this paper

x
i
 without considering input uncertainties

0 5 10 15 20 25 30 35 40

Time(sec)

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40

Time(sec)

-0.6

-0.4

-0.2

0

0.2

Figure 3. The comparison result of the responses curves of the system states.
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Figure 4. The comparison figure of the sliding surface response curves.

0 5 10 15 20 25 30 35 40

Time(sec)

1

1.1

1.2

1.3

1.4

1.5

1.6

Estimate value of the unknown parameter 
0

Figure 5. The estimate value of the unknown parameter µ0.
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1.005
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1.015
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Estimate of the stuck fault upper bound

0 5 10 15 20 25 30 35 40

Time(sec)

0

0.005

0.01

0.015

0.02
Estimate value of the unknown parameter .

Figure 6. The estimate of the stuck fault upper bound ūs and the unknown parameter σ.

4.2. Single-Mode Fairing Model

Apply our fault-tolerant control strategy to a single-mode fairing model. The single-
mode fairing model from [30] added with unmatched uncertainties and actuator faults can
be presented as follows:

A =


0 1 0.0802 1.0415

−0.1980 −0.115 −0.0318 0.3
−3.0500 1.1880 −0.4650 0.9

0 0.0805 1 0

, B =


1 1.55 0.75

0.975 0.8 0.85
0 0 0
0 0 0

, (44)

The matrix B can be factorized as

Bv =

[
1 0.975 0 0

1.55 0.8 0 0

]T

, N =

[
1 0 1.0088
0 1 −0.167

]
. (45)

The unmatched uncertainties are given as

∆A(t) =


0 0.25cos(t) 0 0

0.25cos(t) 0 0 0
0 0 0 0
0 0 0 0

, ∆B(t) =


0 0.02sin(t)
0 0
0 0
0 0

. (46)

it can be defined that ρA = 0.25, ρBv = 0.02 and ρ f (x, t) = 1.03.
Solving LMIs (15) and (16) with known parameters, one can obtain that

X =


1.4702 −0.3230 0.1230 0.0631
−0.3230 1.2445 0.1597 −0.2668
0.1230 0.1597 0.4389 −0.2980
0.0631 −0.2668 −0.2980 0.4052

.
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To present the advantages of our fault-tolerant control strategy, related initial condi-
tions and designed parameters are selected: x(0) = [1.5; 0.6; 0.1;−0.2], ˆ̄us1(0) = ˆ̄us2(0) =
ˆ̄us3(0) = 0.02, µ̂0(0) = 1, σ̂1(0) = σ̂2(0) = σ̂3(0) = 0, γ = 1, γ11 = γ12 = γ13 = 0.01,
γ21 = γ22 = γ23 = 0.01, τ = 5.

Similarly to the previous simulation, the ISM fault-tolerant control law can be de-
signed as

u(t) = −ωµ̂0

[
1 0 1.0088
0 1 −0.167

]T
α(x)

‖α(x)‖+ 0.001
. (47)

Additionally, the disturbance input f (t) = [ 0.6cos(t) 0.6sin(t) 0.6cos(t) ]T, 15 < t < 20.
The following cases were taken into consideration in this simulation.

1. The actuators being normal until t = 15 s.
2. There is 50% actuator failure in the first actuator, the second one is normal and the third

one gets stuck at us2(t) = 0.02 + 0.02sin(t) simultaneously.

Figures 7–10 demonstrate the comparison simulation results in the above fault case. It
can be noted that the response curves of the system states and the sliding surface adopting
the designed scheme are more stable. This shows that it is necessary to consider the
unmatched uncertainty.
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Figure 7. The comparison result of the responses curves of the system states.
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Figure 8. The comparison figure of the sliding surface response curves.
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Figure 9. The estimate value of the unknown parameter µ0.
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Figure 10. The estimate of the stuck fault upper bound ūs and the unknown parameter σ.

5. Conclusions

In this paper, a novel integral sliding mode scheme has been designed to get around
fault-tolerant problems of liner systems with unmatched uncertainty in the input matrix.
Based on two LMIs, the existence conditions of the sliding mode surface have been solved.
Through adaptive laws estimating unknown fault information online, the design of the
adaptive fault-tolerant controller can deal with liner systems with actuator faults and
unmatched uncertainty. Finally, two sets of comparison simulation results have testified to
the efficiency and advantages of the proposed control method. In future work, nonlinear
systems with mismatched uncertainty and actuator faults should be investigated.
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