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Abstract: In this paper, the calculation method of dynamic stress concentration around piezoelectric
ceramics containing regular n-sided holes under the action of electroelastic coupling wave was stud-
ied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic
governing equations were decomposed by using the auxiliary function method, and the solution
forms of the elastic wave field and electric field were obtained by using the wave function expansion
method. Then, the triangular boundary was simplified to a circular boundary using the mapping
function, and the corresponding modal coefficients were determined according to simplified bound-
ary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the
dynamic stress concentration. We performed numerical simulations with a correlation coefficient of
(1− x)[(Ba0.94Ca0.06) (Ti0.92Sn0.08)]-xSm2O3-0.06 mol% GeO2 (abbreviated as (1− x)BCTS-xSm-0.06G).
The numerical calculation results show that the incident wave number, piezoelectric properties, shape
parameters of the hole, and deflection angle have a great influence on the dynamic stress around the
defect, and some significant laws are summarized through analysis.

Keywords: regular polygon hole; lead-free piezoelectric composites; electroelastic coupling waves;
dynamic stress concentration factor; incident angle

1. Introduction

The commercialization of piezoelectric ceramics has developed rapidly in the past
10 years [1–3]. Opportunities for its application in the fields of piezoelectric energy har-
vesting, piezoelectric fuel injection, piezoelectric motors, piezoelectric printing presses,
piezoelectric controlled wire guides, micropositioning systems, and so on are also increas-
ing [4–7]. For a long time, lead zirconate titanate (Pb(Zr1−xTix)O3 or PZT) has been the main
material of piezoelectric ceramics due to its excellent piezoelectric properties [8,9]. How-
ever, the production and application of PZT result in a large amount of lead pollution in the
form of lead oxide and lead zirconate titanate [10,11]. In order to protect the environment,
increasing attention is being paid to research of lead-free piezoelectric materials [12–15].

In the processing and application of lead-free piezoelectric materials, geometric dis-
continuities (holes, cuts, notches) may occur. Under complex loads and harsh conditions,
stress concentration is likely to occur, resulting in fatigue cracks in the periphery, and
even structural failure [16–18]. Furthermore, stress concentration around the geometric
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discontinuity is the basis of subsequent fracture and fatigue analysis, which has important
practical significance.

Some scholars have applied different engineering methods to analyze the stress con-
centration. Smith and Kullgren et al. [19] obtained the stress intensity factor around the
partial elliptical crack caused by the fastener hole on the finite-thick plate by the finite
element-alternating method. In addition, Kim et al. [20] applied finite element analysis
to calculate a polynomial expression for the calculation of the stress intensity factor for
a lug with a through-thickness crack. Liang et al. [21] performed a series of numerical
simulations on circular piezoelectric plates with holes using a special boundary element
method. However, neither FEM nor BEM can obtain the analytical formula of stress factor.
These numerical methods cannot reveal a clear relationship between stress concentrations
and related factors (material parameters, hole shape parameters, etc.) [22,23].

Therefore, more and more researchers are trying to derive analytical solutions using
elastic mechanics and complex functions. Wang et al. [24] used the Stroh-type formula to
study the anti-plane problem of equilateral triangle hole cracking in transversely isotropic
piezoelectric materials. Fan et al. [25] studied the inverse plane problem of edge cracks
generated by equilateral triangular holes in one-dimensional hexagonal piezoelectric qua-
sicrystals by introducing numerical conformal mapping using the Stroh-type formula.
These studies only discuss a single common shape and do not discuss the effect of different
shape parameters on stress concentration [26,27]. Wang et al. [28] solved arbitrary holes
with edge cracks in transversely isotropic piezoelectric materials using the complex variable
method and the numerical conformal mapping method. The loads used in these studies
are all static. However, real-world loading conditions are often dynamic and complex.

In this paper, diffraction and dynamic stress concentration near several common-
shaped holes of lead-free piezoelectric ceramics under the action of electroelastic coupled-
load waves are investigated. First, we reduce the problem to a 2D inverse plane problem by
setting the load to be an inverse plane shear wave. Then, the basic form of elastic wave field
and electric potential solution is obtained by the wave function expansion method. Affine
transformations are used to map common-shaped holes into circular holes to simplify
boundary conditions. Then, according to the simplified free boundary conditions, the
undetermined coefficients of the diffraction field are determined, and the analytical solution
of the dynamic stress concentration factor (DSCF) around the hole is given. Finally, taking
(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 as an example, the DSCF results of common-shaped holes under
different parameters are calculated and analyzed, as well as the effects of incident wave
number, shape parameters and piezoelectric parameters on stress concentration.

2. Problem and Basic Equations

In order to meet the needs of engineering design, it is inevitable to open holes of
various shapes on the lead-free piezoelectric ceramics. In addition, some structures may also
have holes or cracks during service, and these holes may produce stress concentration or
even break under the action of daily dynamic load. We intend to use incident elastic waves
to simulate dynamic loads in everyday life. Among them, the dynamic stress concentration
caused by the anti-plane shear wave (SH wave) is normally used as the basis for the
calculation of the stress field intensity factor of the type iii dynamic fracture. Therefore,
the inverse plane shear wave (SH wave) was selected as the incident wave in this paper.
According to the characteristics of SH waves, the three-dimensional electroelastic coupling
problem can be transformed into a two-dimensional anti-plane problem.

The hole model of arbitrary shape on the lead-free piezoelectric ceramic is shown in
Figure 1. We took the centroid of the shape as the origin and the incident direction of the SH
wave as the polar axis to establish a cylindrical coordinate system. Lead-free piezoelectric
ceramics are set to be isotropic and uniform.
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Figure 1. Schematic diagram of the setting of the coordinate system and the incidence of SH waves.

For the two-dimensional anti-plane problem, the out-of-plane displacement and in-
plane electric field are only functions of coordinates r and θ, and all physical quantities
depend only on the anti-plane displacement w and in-plane electric potential ϕ.

ux = uy = 0
w = w(r, θ)
ϕ = ϕ(r, θ)

(1)

where ux and uy are used to describe the in-plane displacement.
In the cylindrical coordinate system, the coupling characteristics of mechanical de-

formation and electric field of lead-free piezoelectric ceramics can be described by the
following constitutive equation:

τrz = c44
∂w
∂r + e15

∂ϕ
∂r

τθz = c44
1
r

∂w
∂θ + e15

1
r

∂ϕ
∂θ

Dr = e15
∂w
∂r − ε11

∂ϕ
∂r

Dθ = e15
1
r

∂w
∂θ − ε11

1
r

∂ϕ
∂θ

(2)

where c44 is the elastic constant; e15 is the piezoelectric constant; ε11 is the dielectric con-
stant. In the quasi-static electromagnetic approximation, the stress (τrz, τθz) and electric
displacement (Dr, Dθ) should satisfy the following equilibrium equation:

∂τrz
∂r + 1

r
τθz
θ + τrz

r = ρ ∂2w
∂t2

r ∂Dr
∂r + 1

r
Dθ
θ + Dr = 0

(3)

Substituting Equation (2) into (3) and sorting it, the general equation describing the
problem in the cylindrical coordinate system can be obtained as follows:

c44(
1
r2

∂2w
∂θ2 + ∂2w

∂r2 + 1
r

∂w
∂r ) + e15(

1
r2

∂2φ

∂θ2 + ∂2φ

∂r2 + 1
r

∂φ
∂r ) = ρ ∂2w

∂t2

e15(r ∂2w
∂r2 + 1

r
∂2w
∂θ2 + ∂w

∂r )− ε11(r
∂2φ
∂r2 + 1

r
∂2φ
∂θ2 + ∂φ

∂r ) = 0
(4)
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3. Forms of Solutions for Incident, Scattered and Electroelastic Waves

Since the differential equation to be solved is electroelastic coupling, we used the
auxiliary function method for decoupling. Construct the auxiliary function γ = φ− e15

ε11
w

and substitute it into Equation (4):

1
r2

∂2w
∂θ2 + ∂2w

∂r2 + 1
r

∂w
∂r = 1

cs2
∂2w
∂t2

1
r2

∂2γ
∂θ2 + ∂2γ

∂r2 + 1
r

∂γ
∂r = 0

(5)

where cs =
√

χ/ρ0 is the propagation velocity of SH waves, χ = c44 + e15
2/ε11. The

decoupled equations are all classical differential equations, and their solution forms can be
obtained. Therefore, we can obtain the displacement field and electric potential field of the
scattered wave as follows:

ws =
∞
∑

n=−∞
An H(1)

n (kr)einθ

γ =
∞
∑

n=0
Bnk−nr−neinθ

φs = e15
ε11

ws + γ

(6)

where An and Bn are the undetermined coefficient used to describe the scattered elastic
wave field and scattered potential field, respectively. H(1)

n (·) is the n-th order Bessel function
of the third kind. k = ω/cs is the incident wave number. The superscript s refers to the
scattered wave field.

Since the SH wave is also a classical incident wave, the form of the solution of its
displacement field and electric potential field can be described by the following formulas:

wi = w0
∞
∑

n=−∞
in Jn(kr)einθ

φi = e15
ε11

wi
(7)

The superscript i refers to the incident wave field. The total field and total potential
field of elastic waves in lead-free piezoelectric ceramics can be obtained by superimposing
the incident field and scattered field:

wt = wi + ws

φt = e15
ε11

(wi + ws) + γ
(8)

where the superscript t refers to the total wave field. In the hole, the elastic wave field does
not exist, and the electric displacement field is not equal to zero. The form of the electric
displacement field in the hole can be expressed as

φc =
∞

∑
n=0

Cn(kr)neinθ (9)

where Cn is the undetermined coefficient; similar to An and Bn, it needs to be determined
by boundary conditions. The superscript c refers to the wave field inside the hole.

4. Mapping Function

In order to simplify the boundary of regular polygons, we can introduce complex
variables according to the theory of complex functions:

ζ = x + iy = r(cos θ + i sin θ)
ζ = x− iy = r(cos θ − i sin θ)

(10)
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Then, we need to map the polygon boundary to a unit circle using the conformal
transformation. A schematic diagram of conformal mapping is shown in Figure 2.
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To map the outer region of the regular n-sided hole on the ζ plane to the outer region
of the unit circle in the η plane, the mapping function for the SC transformation is given
below [29]:

ζ = Ω(η) = R
∫ η

1

m

∏
j=1

(t− aj)
αj−1dt + C1 (11)

where the constants R and C1 are the shape coefficient and position coefficient of the regular
n-sided hole, respectively. R and C1 can be calculated by selecting two sets of corresponding
points. One of the sets of points is selected as the corresponding set of points at infinity on
the two planes, resulting in C1 = 0. Another set of points can be selected as a vertex of a
regular polygon and a corresponding point on the circle for subsequent calculation of R.
m is the number of sides of a regular n-gon, aj is the vertex corresponding to the regular
n-gon, αj(j = 1, 2, . . . , k) is the group angle of the j-th interior angle divided by π. Then,

m

∑
j=1

αj = m + 2 (12)

Substitute aj and αj in Equation (11), and integrate them in the range of 1 and η to
obtain the mapping function as follows:

ζ = Ω(η) = R(η +
s

∑
i=1

ci

ηim−1 ) (13)

where

c1 =
2

m(m− 1)
, c2 =

m− 2
m2(2m− 1)

, · · · , ci =
s

∑
i=3

i
∏
j=2

(j− 1)m− 2

(i!/2)mi(im− 1)

5. Boundary Conditions and Determination of Mode Coefficients

The boundary conditions on the η plane can be simplified as

τρz
∣∣
ρ=a = 0

Dρ

∣∣∣ρ=a = Dρ
c
∣∣∣ρ=a = −ε11

∂φc

∂r

∣∣∣
ρ=a

φ(t)
∣∣∣ρ=a = φc

(14)
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Substitute Equation (12) into Equations (8) and (9):

w(t) =
∞
∑

n=−∞
[w0in Jn(k|Ω(η)|) + AnHn

(1)(k|Ω(η)|)]
{

Ω(η)
|Ω(η)|

}n

φ(t) = e15
ε11

∞
∑

n=−∞
[w0in Jn(k|Ω(η)|) + An Hn

(1)(k|Ω(η)|)]
{

Ω(η)
|Ω(η)|

}n

+
∞
∑

n=0
Bnk−n(Ω(η))

−n

φ(c) =
∞
∑

n=0
Cn[k|Ω(η)|]n

{
Ω(η)
|Ω(η)|

}n

(15)

Substituting Equation (15) into (14), the boundary conditions under the conformal
transformation can be obtained:

τρz
∣∣
ρ=a = 0

k
2 c44(1 +

e15
2

c44ε11
)

∞
∑

n=−∞
w0in

{
w0in

[
η
ρ

Ω′(η)
|Ω′(η)| Jn−1(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n−1

− η
ρ

Ω′(η)
|Ω′(η)| Jn+1(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n+1
]
+ An

[
η
ρ

Ω′(η)
|Ω′(η)|H

(1)
n−1(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n−1

− η
ρ

Ω′(η)
|Ω′(η)|H

(1)
n+1(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n+1
]}
− e15

∞
∑

n=0
Bnnk−n η

ρ
Ω′(η)
|Ω′(η)| (Ω(η))

−n−1
= 0

Dρ

∣∣∣ρ=a = Dρ
c
∣∣∣ρ=a = −ε11

∂φc

∂r

∣∣∣
ρ=a

ε11
∞
∑

n=0
Bnnk−n η

ρ
Ω′(η)
|Ω′(η)| [Ω(η)]

−n−1
= −ε0

∞
∑

n=0
Cnnkn η

ρ
Ω′(η)
|Ω′(η)| [Ω(η)]n−1

φ(t)
∣∣∣ρ=a = φc

e15
ε11

∞
∑

n=−∞
[An Hn

(1)(k|Ω(η)|)]
{

Ω(η)
|Ω(η)|

}n
+ Bn[k|Ω(η)|]−n

{
Ω(η)
|Ω(η)|

}n

−
∞
∑

n=0
Cn [k|Ω(η)|]n

{
Ω(η)
|Ω(η)|

}n
= e15

ε11

∞
∑

n=−∞
w0in Jn(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n

According to the above derivation, the boundary conditions can be written as an
infinite-dimensional system of equations.

∞

∑
n=−∞

EnXn = E (16)

where

En =

E11 E11 E11
E21 E22 E23
E31 E32 E33

 Xn =

An
Bn
Cn

 E =

E1
E2
E3

 (17)

Using the orthogonality of complex exponential functions, multiply both sides of the
equation by e−isθ(s = 1, 2, . . . , 3n).

∞

∑
n=−∞

EnsXn = Es (18)

where

En =

En
11 En

11 En
11

En
21 En

22 En
23

En
31 En

32 En
33

 Xj
n =

An1
An2
Bn

 Es =

E1
E2
E3

 (19)
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According to Equation (18), we can derive the infinite system of linear equations for
computing the mode coefficients An, Bn, Cn, where n = −∞ ∼ +∞.

6. Dynamic Stress-Concentration Factor

The dynamic stress concentration around the hole can be described by the Dynamic
Stress-Concentration Factor (DSCF). The DSCF is the ratio of the hoop dynamic stress
around the defect to the hoop stress amplitude in the incident direction of the incident
wave [30].

DSCF =

∣∣∣∣τθz
τ0

∣∣∣∣ (20)

where τ0 = w0χk and

τθz = c44
1
r

∂w
∂θ

+ e15
1
r

∂ϕ

∂θ
(21)

Then,

DSCF = k
2 c44i(1 + e2

15
c44ε11

)
+∞
∑

n=−∞

{ η
a [w0in Jn−1(k|Ω(η)|)

+An H1
n−1(k|Ω(η)|)][ Ω(η)

|Ω(η)| ]
n−1

+ An H1
n+1(k|Ω(η)|)][ Ω(η)

|Ω(η)| ]
n+1

+ η
a [w0in Jn+1(k|Ω(η)|)

}
+ e15i

+∞
∑

n=0

η
a nBnk−nΩ(η)

−(n+1)

(22)

7. Simulation of Numerical Examples and Discussion

According to the above derivation, we can calculate the DSCF around the regular
polygonal hole on any piezoelectric ceramic under the condition of known piezoelectric
ceramic-related parameters. However, the resulting DSCF forms are infinite. According to
the characteristics of the Bessel function, as n increases, the coefficients (An, Bn, Cn) all tend
to 0. In the actual calculation, we can choose the appropriate minimum value of n according
to the decision to truncate the DSCF. In order to check the correctness and usability of the
derivation, we carried out a numerical simulation with a specific material and analyzed the
results, which is presented below.

BaTiO3 (BT)-based piezoelectric ceramics are widely regarded as one of the candidates
for lead-free piezoelectric ceramics due to their superior piezoelectricity. Wang et al. [31]
studied the BT-based ceramics’ (1 − x)[(Ba0.94Ca0.06) (Ti0.92Sn0.08)]-xSm2O3-0.06 mol%
GeO2 (abbreviated as (1 − x)BCTS-xSm-0.06G) comprehensive electrical properties. They
proposed that the material obtained optimized piezoelectric properties under the condition
of 3 kv/mm (non-180◦ domain switching under high polarization electric field). Therefore,
we selected (1 − x)BCTS-xSm-0.06G with a different doping ratio (x) under the condition of
3 kv/mm for numerical simulation, as shown in Figure 3.

It can be determined from the dynamic stress-concentration formula of Equation (22)
that the dynamic stress-concentration coefficient is related to the wave number (ka) of
the incident elastic wave, the piezoelectric constant (d33) of the material and the mapping
function (Ω(η)). By changing ka, we obtained the stress concentration around the regular
n-sided hole on (1 − x)BCTS-xSm-0.06G with different doping amounts (i.e., different d33),
as shown in Figures 4 and 5.
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It can be determined from the dynamic stress-concentration formula of Equation (22) 
that the dynamic stress-concentration coefficient is related to the wave number (ka ) of 
the incident elastic wave, the piezoelectric constant (d33) of the material and the mapping 

function ( ( ) ). By changing ka, we obtained the stress concentration around the regular 
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8. Results

In this paper, the dynamic stress concentration around regular n-sided holes in
piezoelectric ceramics was studied. Firstly, decoupling was carried out by the auxiliary
function method, and the form of analytical solution was obtained by wave function
expansion. Then, the mode coefficients in the analytical solution were determined by the
simplified boundary conditions obtained after conformal mapping and the orthogonality
of the complex exponential function. Finally, the dynamic stress concentration coefficient
around the hole could be obtained by truncation according to the required accuracy. We
used (1 − x)BCTS-xSm-0.06G piezoelectric ceramics for numerical simulation to verify
the feasibility of the method, and obtained the following conclusions:

1. According to the material support, the piezoelectric constant e15 of (1 − x)BCTS-xSm-
0.06G under different values of x varies. When x is around 0.03, the piezoelectric
constant e15 reaches the peak. Selecting an appropriate value of x will effectively
improve the piezoelectric properties of the material.

2. Within the data range, the larger the piezoelectric constant e15, the stronger the
piezoelectric effect of the material, and the larger the dynamic stress concentration
factor at the same position.

3. When ka increases, the dynamic stress concentration around the defect fluctuates more
violently, but the value decreases, and the dynamic stress concentration of materials
with different piezoelectric constants e15 is closer.

4. The maximum value of the dynamic stress concentration coefficient of the regular
polygon is obtained at its vertices. It can be seen that the dynamic stress concentration
of the regular polygon is mainly significant at the vertices.

5. The maximum value of the dynamic stress concentration factor of the regular m-gon
decreases with the increase in m, and the speed of change is first fast and then slow.
Since the increase of m leads to an increase of the vertices of the regular m-polygon,
the dynamic stress concentration is more dispersed and moderate, and the maximum
value of the dynamic stress concentration is also smaller.

The theoretical and numerical results presented in this paper are expected to be applied
to the dynamic analysis and strong design of piezoelectric ceramic structures, and provide
suggestions for the subsequent large-scale application and production of BCTS materials.
By changing the piezoelectric material constant and the conformal transformation formula,
the DSCF of any hole in any piezoelectric material can theoretically be obtained.
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