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Abstract: In a multi-agent system, the complex interaction among agents is one of the difficulties
in making the optimal decision. This paper proposes a new action value function and a learning
mechanism based on the optimal equivalent action of the neighborhood (OEAN) of a multi-agent
system, in order to obtain the optimal decision from the agents. In the new Q-value function,
the OEAN is used to depict the equivalent interaction between the current agent and the others.
To deal with the non-stationary environment when agents act, the OEAN of the current agent is
inferred simultaneously by the maximum a posteriori based on the hidden Markov random field
model. The convergence property of the proposed methodology proved that the Q-value function
can approach the global Nash equilibrium value using the iteration mechanism. The effectiveness of
the method is verified by the case study of the top-coal caving. The experiment results show that
the OEAN can reduce the complexity of the agents’ interaction description, meanwhile, the top-coal
caving performance can be improved significantly.

Keywords: multi-agent reinforcement learning; optimal decision; hidden Markov random field;
top-coal caving

1. Introduction

Optimal decision-making in a multi-agent system with uncertainty [1–3] in the non-
stationary environment [4–6] is a challenging problem. Reinforcement learning (RL) [7,8] is
an effective method to yield the optimal decision of the multi-agent system based on the
Markov decision-making process and dynamic programming [9–14]. Theoretically, each
agent calculates its action based on the current state and the interaction with other agents.
The calculation always retraces all the possible decision processes from the terminal
state, and the complexity will become exponential with a higher number of agents [15].
The method to obtain the cooperative policy of each agent is based on the Q-value about
state and joint actions of a multi-agent system [16,17]. Hence, how to establish the expres-
sion of Q-value to describe the interaction structure among the agents is one of the most
important issues in a multi-agent system.

The existing approaches include recording all interactions among agents [15,18,19].
In these methods, each agent has its Q-value function to depict the joint actions of all the
other agents. Hence, it can fully present the relationships of any agent pair. However, the
computing complexity will rise dramatically as well as the space complexity. More impor-
tantly, it is even impossible to enumerate all the relationships if the number of agents is
very large. Employ graph network is a new method to establish the relationship among
the agent [20], establishes a graph network to describe attention. The target agents and
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traffic participants are covered by the graph network [21] proposes a graph-based attention
communication method to coordinate the interactions of scheduler and message processor.

Sharing neighbors’ equivalent actions is another effective method to construct the
interaction among agents. The parameters of the Q-value function include the action value
of the current agent and the equivalent action of the agents in the neighbours. That reduces
the number of Q-value functions and decreases the learning complexity significantly. These
approaches [18,22] obtain the optimal decision of two competitor agents, in which the
opponent action of the current agent could be considered to be a special kind of equivalent
action. A computation rule to calculate joint action for Q-value function is proposed
to reduce the compute complexity [23], and the Q-value function of the current agent is
designed using the neighborhood equivalent action [24]. They do not consider the incidence
relation of all the agents, hence the memory space for training the Q-value is smaller and
the training process is faster.

In a multi-agent system, if the neighborhood agents choose optimal action, the current
agent could obtain the optimal action more easily. Based on this, we develop a new Q-
value function to depict the environment state, the current agent action, and the optimal
equivalent action of the neighborhood agents.

However, it is well-known that the environment of a multi-agent system is non-
stationary when the agents execute their policy [25,26]. Therefore, it is hard to obtain the
optimal equivalent action from the neighbors. To address these issues, this paper proposes
a multi-agent optimal decision method based on a new Q-value function that consists
of the system state, the current agent action, and the optimal equivalent action of the
neighborhood (OEAN). To obtain the OEAN, the hidden Markov random field (HMRF)
is employed to establish the probability graphical model (PGM) [22] for the multi-agent
system decision, then the OEAN is obtained by the maximum a posterior (MAP) estimation.
The main contribution of this work includes:

(1) A new Q-value function based on OEAN is proposed to establish the interaction
between the current agent and its neighbors, so that the current agent could obtain the
optimal decision more easily.

(2) The PGM is used to infer the optimal actions of agents in the neighborhood by the
MAP, based on the HMRF model, to avoid the issue due to non-stationary environment.
The OEAN of the current agent is calculated based on the PGM inference result.

(3) The learning mechanism of the new Q-value function based on the OEAN is
presented to guarantee the Q-value converging to the global Nash equilibrium.

The remainder of the paper is organized as follows. Section 2 presents related work
in order to motivate our work. In Section 3, the new Q-value function is proposed for the
multi-agent RL. In Section 4, the HMRF model is employed to estimate the OEAN, and
the convergence of the method is proved. In Section 5, the experiment of top-coal caving
demonstrates the effectiveness of the method. The conclusion is given in Section 6.

2. Related Work

This paper addresses the issue of multi-agents optimal decision by RL with PGM.
Setting the independent Q-value function for each agent is the direct method [25,27],
in which the interaction of each agent is depicted by the actions of the current agent and
the other agents [28]. In 2003 [29], proposed the Nash Q-learning to the non-cooperative
multi-agent, and the RL iteration can converge to the Nash equilibrium point. A similar
convergence proof can be found in [30,31]. At present, Nash Q-learning is extended
to electricity markets [32], interconnected multi-carrier systems [33], continuous control
systems [34], etc. However, if the agent number is huge, the calculation and storage for
depicting the relationship between each current is complex. To decrease the calculation and
storage [24], defines a new Q-function, in which the neighbor’s action is transformed into
an equivalent action based on mean field theory. In this paper, we propose a new Q-value
function based on the optimal OEAN along the way of above references .
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The OEAN is inferred by PGM. Actually, PGM is one of the effective ways to describe
the Markov decision problem by RL, in which the random field is used to formulate the
relationship of agents by node and edge [35]. The implementation of PGM for Markov
decision process often includes the Bayesian network [36–38] and the conditional random
field [39,40] and they are classical model-based method, which means the ground truth is
often needed to train the parameters of the model.

Nevertheless, the environment of the multi-agent system is non-stationary during the
decision process [41], hence it is difficult or even impossible to obtain the ground truth.
The Hidden Markov Model (HMM) [42] is an available method to deal with parameter
learning without ground truth in RL, in which the unknown ground truth is action con-
sidered to be a hidden variable [43]. At present, to the best of our knowledge, HMM is
employed to deal with the signal-agent systems due to the principle of HMM is restricted
for a single Markov decision. Hidden Markov random field (HMRF) [44] extends the single
hidden variable to a hidden random field. Despite the fact that it is proposed to deal with
image segmentation problem [44,45], it provides an available method to infer the optimal
decision without ground truth.

This paper follows Nash Q-learning and proposes a new Q-value function based on
OEAN for the optimal decision of multi-agent based on HMM and HMRF.

3. Reinforcement Learning Based on the OEAN
3.1. Background

For the decision process of a multi-agent system, let the state space be S , and the
state of the multi-agent system be s ∈ S , the action space be A. For agent i, let its action
be ai ∈ Ai, where Ai ⊆ A. The Markov decision process of the agents is defined as
M , {S ;A1, . . . ,AN ; r1, . . . , rN ; p; γ}, where N is the agents number, the discount factor
of reward is γ, γ ∈ (0, 1). For agent i:

(1) the reward function is ri : S ×A1 × . . .×AN → R;
(2) the transition probability is p : S × A1 × . . .×AN → Γ(S), Γ(S) describes the

states’ transition probability distribution over S ;
(3) the policy is defined as πi(ai | s) : S → ΓA(Ai), ΓA(Ai) characterizing the probabil-

ity distribution over action space Ai; the joint policy of all the agents is π, π = [π1, . . . , πN ].
If the multi-agent system initial state is s, the value function of agent i under the joint

policy π is formulized as

vπ
i (s) = Eπ

(
∞

∑
t=0

γtrt
i | s

)
(1)

The action value function of agent i under the joint policy π is defined as
Qπ

i : S ×A1 × . . .×AN → R, and

Qπ
i (s, a) = ri(s, a) + γEs′∼p

(
vπ

i
(
s′
))

(2)

where a = [a1, . . . , aN ] is the action of each agent under the joint policy π, s′ is the state of
next step. By Equation (1), the action value function can be rewritten as

vπ
i (s) = Eπ(Qπ

i (s, a)) (3)

In the multi-agent system, the input and output of the agents could be, respectively,
considered to be a random field of states and a Markov random field (MRF) of the actions.
In this paper, we suppose the input random field is the state of the multi-agent s, and the
MRF of action is denoted by a = {a1, . . . , aN}. In the multi-agent system, each action value
function Q(s, a) with the joint action of its neighborhood could be factored as follows [24].

Qi(s, a) =
1
bNic ∑

k∈Ni

Qi(s, ai, ak) (4)
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where Ni is the neighborhood of agent i, and bNic is the neighborhood size.
For agent i, the Q-value function with joint actions can be estimated by an approxi-

mated function Qi(s, ai, āi), āi is the equivalent action of the neighborhood. This conclusion
can be found in [24] shown as the following lemma.

Lemma 1 ([24]). In a multi-agent system, for agent i, the neighborhood is Ni, in which the agent
k belongs to Ni, k ∈ Ni; āi is the equivalent action of Ni, āi =

1
bNic ∑k∈Ni

ak, such that Qi(s, a)
can be expanded into Taylor series at the point (s, ai, āi), and Qi(s, a) can be approximated as
Qi(s, ai, āi), i.e.,

Qi(s, a) ≈ Qi(s, ai, āi) (5)

3.2. Multi-Agent Policy with the OEAN

When the current agent makes a decision in a multi-agent system, if the actions of
neighborhood agent Ni are optimal, the current agent i could be easily to obtain the optimal
action. Hence, we define the optimal equivalent action of the neighborhood (OEAN) as
follows to describe the neighborhood condition:

ā∗i =
1
bNic ∑

k∈Ni

a∗k (6)

where a∗k is the optimal action of agent k in the neighborhood Ni. Based on the OEAN,
this paper proposes a new action value function Qi

(
s, ai, ā∗i

)
to describe the relation of the

environment, the current agent, and the equivalence of the neighbors.
It should be noted that ā∗i is result of picking the optimal equivalent action in the opti-

mal action a∗k of neighborhood, k ∈ Ni. We denote the equivalent policy of neighborhood
agents as π̄i. That means if all the neighborhood agents obtain the optimal policy, π̄i is
an optimal equivalent policy, and the policy decided by Q-value function for the current
agent would be more directly and feasibly. π̄i is a hypothesis policy because it is difficult
to directly calculate the optimal action of the neighbors on time in the non-stationary
environment, and the estimating method of OEAN ā∗i will be given in Section 4.

According to Lemma 1 and Q-learning algorithm [7], we consider the OEAN ā∗i to
substitute the equivalent action āi, and establish the learning mechanism for the Q-value
function as follows:

Qt+1
i (s, ai, ā∗i ) = (1− α)Qt

i(s, ai, ā∗i ) + α
(
ri + γvt

i
(
s′
))

(7)

where

vt
i
(
s′
)
= Eπ̄i(ā∗i |s′)

Eπt
i (ai |s′ ,ā∗i )

Qt
i
(
s′, ai, ā∗i

)
(8)

in which γ ∈ [0, 1) is the discount factor, α is the learning rate; π shown as follows is the
policy of the agent i.

πt
i (ai | s, ā∗i ) =

exp
(

βQt
i
(
s, ai, ā∗i

))
∑a′i∈Ai

exp
(

βQt
i
(
s, a′i, ā∗i

)) (9)

As we all know, training the Q-value function converging to optimal value is one of the
keys in RL. In the dynamic environment, the system state depends on the executing action.
Hence the Q-value function is difficult to train due to the fact that the state space is hard
to be covered especially when the system is huge. This paper proposes a state extension
training method for an especially kind RL in which the state and the corresponding reward
meets the following condition:

r
(
ak | sj

)
≥ r
(
ak | sj−1

)
(10)
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where ak ∈ A, sj, sj−1 ∈ S , sj is the next state of sj−1. Equation (10)) means the reward
function is a monotonous regarding to the same action. If the current state is sj, the following
state extension training method can accelerate the Q-value function training.

ä
k=j+1,j+2,...,L

M(k), if ri > 0

ä
k=1,2,...,j

M(k), if ri ≤ 0
(11)

where M(k) is the learning mechanism

Qt+1
i
(
sj, ai, ā∗i

)
= (1− α)Qt

i
(
sj, ai, ā∗i

)
+ α
(

ri + γEπ̄iEπt
i
Qt

i
(
s′, ai, ā∗i

))
(12)

and ä
k

M(k) means M(k) execute the learning process.

3.3. Nash Equilibrium Policy Based on the OEAN

In the multi-agent system, the agents learn action value function Qt converging to the
optimal policy. In the learning process, the policy is denoted by πt =

[
πt

1, . . . , πt
N
]
. If the

agent obtains its optimal policy non-cooperatively, the multi-agent system could achieve
Nash equilibrium [46].

The Nash equilibrium policy of the multi-agent system is denoted by π∗. Actually, the
policy is produced by Q, hence the Nash equilibrium of Q-value function Q∗ is equivalent
to the π∗.

For agent i, generally, the global Nash equilibrium policy is defined as follows:

Eπ∗−i
Eπ∗i

Qi(s, ai) ≥ Eπ−iEπi Qi(s, ai) (13)

and the Nash equilibrium saddle of the policy is defined as Equation (14)

Eπ∗−i
Eπ∗i

Qi(s, ai) ≥ Eπ∗−i
Eπi Qi(s, ai)

Eπ∗−i
Eπ∗i

Qi(s, ai) ≤ Eπ−iEπ∗i
Qi(s, ai)

(14)

where π−i = [π1, . . . , πi−1, πi+1, πN ].
The OEAN of the current agent means the neighbourhood agents obtain the optimal

policy; hence, we defined the Nash equilibrium policy based on the OEAN as follows:

Eπ̄iEπ∗i
Qi(s, ai, ā∗i ) ≥ Eπ̄iEπi Qi(s, ai, ā∗i ) (15)

We should note that π̄i is an equivalent policy of the agents in neighbourhood, and the
neighbor agents are supposed to obtain the optimal policy. Because π̄i is an optimal equiv-
alent policy, hence based on OEAN, the agent just has the global Nash equilibrium policy.

The proposed learning mechanism of Qi
(
s, ai, ā∗i

)
is shown in Equation (8). It can

converge to the Nash equilibrium defined above. The convergence proof will be given in
the next section.

4. OEAN Based on HMRF
4.1. HMRF for Multi-Agent System

According to the defined random field and MRF for multi-agent system in Section 3.1,
the input states of the system s = {s1, . . . , sN} can be considered to be the observable
random variables, and the output a = {a1, .., aN} can be regarded as the latent random
variables. Hence, we employ the hidden Markov random field (HMRF) [47] to estimate the
optimal action of agent in the neighbourhood.
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Suppose that the conditional probability distribution of each state p(si | ai) follows
the same function f (s; θai ), i.e.,

p(si | ai) = f (s; θai ) (16)

This paper assumes that each element in the random fields of the state and the corre-
sponding action is conditional independent, therefore we can obtain the following result:

p(s | a) = ∏
i

p(si | ai) (17)

Define the neighborhood set of agent i is Ni, i /∈ Ni and the following result can be
yielded [44]

p(si, ai | Ni) = p(si | ai, Ni)p(ai | Ni)

= p(si | ai)p(ai | Ni)
(18)

The marginal probability distribution of si under the condition of Ni is

p(si | Ni; θai ) = ∑
ai∈Ai

p(si, ai | Ni)

= ∑
ai∈Ai

f (s; θai )p(ai | Ni)
(19)

where the prior probability p(ai | Ni) could be obtained as Equation (9), hence the HMRF
model can be rewritten as follows:

p(si | Ni; θai ) = ∑
ai∈Ai

f (s; θai )
exp

(
βQt

i
(
s, ai, ā∗i

))
∑a′i∈Ai

exp
(

βQt
i
(
s, a′i, ā∗i

)) (20)

4.2. Optimal Equivalent Action of the Neighborhood

Based on the above definition of HMRF, the optimal action of each agent denote by â
can be estimated by maximum a posterior (MAP) estimation as follows:

â = arg max
a

p(s | a)p(a) =

arg max
a1,...,aN

∏
i

f (s | ai, Ni)
exp

(
βQt

i
(
s, ai, ā∗i

))
∑a′i∈Ai

exp
(

βQt
i
(
s, a′i, ā∗i

)) (21)

The above problem can be considered to be maximizing the likelihood function
as follows:

L2(θ) =

− log

(
∏

i
f (s | ai, Ni)

exp
(

βQt
i
(
s, ai, ā∗i

))
∑a′i∈Ai

exp
(

βQt
i
(
s, a′i, ā∗i

)))
= ∑

i
log f (s | ai, Ni) + βQt

i(s, ai, ā∗i ) + log Z

(22)

where Z = log
(

∑a′i∈Ai
exp

(
βQt

i
(
s, a′i, ā∗i

)))
is a constant respected to ai. Hence the MAP

can be transformed as

â = arg min
ai ,...,aN

∑
i

(
− log f (s | ai, Ni)− βQt

i(s, ai, ā∗i )
)

(23)

If the parameters of f (s | ai, Ni) are unknown, the expectation maximization (EM) al-
gorithm [48] can be used to learn the parameters. It should be noted that Equation (24)
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is a mathematical method to obtain MAP probability; however, in practice, the general
approach is the iteration method [49] as follows: Suppose

Tφ = ∑
i

(
− log f (s | ai, Ni)− βQt

i(s, ai, ā∗i )
)

(24)

The convergence condition of the iteration is

Tm+1
φ − Tm+1

φ < ζ (25)

where ζ is a constant, m is the iteration counter. In Equation (23), the last term of the
parentheses is derived from the prior probability, it is could be considered to be a constant
in the certain iteration steps, hence the OEAN of agent i can be formulized as

āi
∗ = π̄i(ā∗i | s) =

1
bNic ∑

k∈Ni

âk (26)

Based on HMRF and OEAN, we can obtain the following lemma.

Lemma 2. For agent i, the OEAN ā∗i obtained by Equation (26), such that Qi(s, a) can be approxi-
mated to Qi

(
s, ai, ā∗i

)
.

Proof. According to Equation (26), âk is obtained by Equation (23), hence âk ∈ Ak ⊆ A, and
âk belongs to the domain of Q-value function at the right hand of Equation (5). Therefore,
based on Lemma 1, Qi(s, a) can be expanded into Taylor series at the point

(
s, ai, ā∗i

)
, and

Qi(s, a) can be approximated to Qi
(
s, ai, ā∗i

)
.

4.3. Convergence Proof

The action value function for iteration is denoted by Qt =
[
Qt

1, . . . , Qt
N
]
, and the Nash

equilibrium defined in Section 3.3 is denoted by Q∗ =
[
Q∗1 , . . . , Q∗N

]
. Furthermore, the

following assumptions should be held:

Assumption 1. The learning rate αt in Equation (7) is time variable, 0 ≤ αt(s, a) ≤ 1 meets the
following condition [50]

(1) ∑∞
t=0 αt(s, a) = ∞, ∑∞

t=0
(
αt(s, a)

)2
= ∞ holds uniformly with probability 1.

(2) αt(s, a) = 0 if (s, a) 6=
(
st, at).

The Q converges to the optimal value by iteration, hence there is a value space of
Q-value, denote by Q, for agent i, Qi ∈ Q. According to references [29,50], we can obtain
the following lemma

Lemma 3 ([29,50]). Define the following iteration

Qt+1 =
(
1− αt)Qt + αtΨ

(
Qt) (27)

If the learning rate α meets Assumption 1, for all Q ∈ Q, the mapping Ψ : Q → Q meets the
following condition:

(1) There exists a constant 0 < η < 1 and a sequence λt ≥ 0 converging to zero with
probability 1;

(2)‖Ψ
(
Qt)−Ψ(Q∗)‖ ≤ η‖Qt −Q∗‖+ λt

(3) Q∗ = E(Ψ(Q∗))
Such that the iteration of Equation (27) converges to Q∗ with probability 1.

Based on the above assumptions and the Lemma 3, the convergence of Equation (7)
can be guaranteed by the following theorem.
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Theorem 1. If Q∗ =
[
Q∗1 , . . . , Q∗N

]
is a global Nash equilibrium, and Q-value of the multi-agent

is updated by Equation (7) with the Assumption 1, such that Qt =
[
Qt

1, . . . , Qt
N
]

converges to the
Nash equilibrium Q-value Q∗ =

[
Q∗1 , . . . , Q∗N

]
.

Proof. According to Lemma 3 and Equation (7), the mapping Ψ for agent i can be formal-
ized as follows:

Ψ
(
Qt

i
)
= ri(s, ai, ā∗i ) + γEπ̄iEπt

i
Qt

i
(
s′, ai, ā∗i

)
(28)

Now we need to proof Ψ
(
Qt

i
)

meet the condition of Lemma 3.
(1) According Equation (2), the Nash equilibrium Q-value meet the following equation

Q∗i = ri(s, ai, ā∗i ) + γEs′∼p

(
vπ∗

i
(
s′
))

= ri(s, ai, ā∗i ) + γ ∑
s′∈S

pai ,ā∗i
s,s′ vπ∗

i
(
s′
)

= ∑
s′∈S

pai ,āi
s,s′

(
ri(s, ai, ā∗i ) + γEπ̄iEπ∗i

Q∗i
(
s′, ai, ā∗i

))
= ∑

s′∈S
pai ,āi

s,s′ Ψ(Q∗)

= E(Ψ(Q∗i ))

(29)

Hence the condition (3) in Lemma 3 is meted by iterating of Equation (7).
(2) To prove Ψ

(
Qt) meets the condition 2 of Lemma 3, we should define the following

metric operator at first

‖Qt −Q∗‖ = max
i

{
‖Qt

i −Q∗i ‖
}

=max
i

{
max

s

{
‖Qt

i(s)−Q∗i (s)‖
}}

=max
i

{
max

s

{
max
ai ,ā∗i

{
|Qt

i(s, ai, ā∗i )−Q∗i (s, ai, ā∗i )|
}}} (30)

It should be noted that Q is a tensor and the dimension could be write as N× L×D×D,
N is the number of the agent, L and D are, respectively, the dimension of state space and
action space. The metric operator of Equation (30) is to define a distance between Q and Q∗.
Hence, we can obtain the following deduction on current step

‖Ψ
(
Qt)−Ψ(Q∗)‖

=max
i
‖Ψ
(
Qt

i
(
s′, ai, ā∗i

))
−Ψ

(
Q∗i
(
s′, ai, ā∗i

))
‖

=max
i

max
s′
|Ψ
(
Qt

i
(
s′, ai, ā∗i

))
−Ψ

(
Q∗i
(
s′, ai, ā∗i

))
|

=γ max
i

max
s′
|Eπ̄iEπt

i
Qt

i
(
s′, ai, ā∗i

)
−Eπ̄iEπ∗i

Q∗i
(
s′, ai, ā∗i

)
|

(31)

Because of the definition of theNash equilibrium policy by Equation (15), we can obtain:

|Eπ̄iEπt
i
Qt

i
(
s′, ai, ā∗i

)
−Eπ̄iEπ∗i

Q∗i
(
s′, ai, ā∗i

)
|

≤|Eπ̄iEπ∗i
Qt

i
(
s′, ai, ā∗i

)
−Eπ̄iEπ∗i

Q∗i
(
s′, ai, ā∗i

)
|

(32)



Actuators 2022, 11, 99 9 of 16

Equation (31) can be rewritten as follows:

‖Ψ
(
Qt)−Ψ(Q∗)‖

≤γ max
i

max
s′
|Eπ̄iEπ∗i

(
Qt

i
(
s′, ai, ā∗i

)
−Q∗i

(
s′, ai, ā∗i

))
|

≤γ max
i

max
s′

max
ai ,ā∗i
|
(
Qt

i
(
s′, ai, ā∗i

)
−Q∗i

(
s′, ai, ā∗i

))
|

=γ‖Qt −Q∗‖

(33)

Since γ ∈ (0, 1), hence the mapping Ψ meets the condition (2) in Lemma 3. That means
the Q-value update mechanism Equation (7) could make the Q-value converging to the
Nash equilibrium value Q∗ =

[
Q∗1 , . . . , Q∗N

]
.

5. Top-Coal Caving Experiment
5.1. Top-Coal Caving Simulation Platform

Coal is one of the most important energy sources at present. Currently, top-coal caving
is the most efficient method for mining the thick coal seam underground, as shown in
Figure 1, the hundreds of hydraulic supports (HSs) are the key equipment for roof supporting
and top-coal mining.

Figure 1. Top-coal caving process. A: Shearer, B: Tail boom of a hydraulic support, it acts as a
window open and close. C: Drag conveyor. When the window is opened, the top-coal will collapse
and be captured by the drag conveyor. In the sub-graph, the window is closed to prevent the rock
falling down.

The top-coal mining sequence functions as follows: the shearer cuts coal in the coal
wall, then the tail boom of HSs opens to captures the falling coal. In this process, the tail
boom action is the key of HSs to exploit the maximum top-coal with minimum rocks.
Hence, the tail boom acts as a window, it will open when the top-coal falling, while they
will close to prevent the rock falling into the drag conveyor if all the top-coal has been
captured [47,51,52]. However, it is hard to obtain a perfect performance by operating HSs
individually [52]. Hence, considering the window of HSs as a multi-agent system is a direct
choice to improve the top-coal mining performance.

In this paper, we employ the simulation platform developed by ourselves based on
DICE [53] to validate the proposed method. The DICE system is an open source system to simu-
late a complicated dynamic process and interaction of discrete elements [54]. Our code [47] can
be found in github (https://github.com/YangYi-HPU/Reinforcement-learning-simulation-
environment-for-top-coal-caving accessed on 2 December 2019).

The Markov process of top-coal caving is shown in Figure 2a. Based on the Markov
model, the top-coal caving dynamic is shown in Figure 2b. In this platform, there are
five windows opening and closing to obtain and prevent the particles falling. The particles
above the windows consist of three kinds: coal, rock from the immediate-roof, and rock
from the main-roof [47].

https://github.com/YangYi-HPU/Reinforcement-learning-simulation-environment-for-top-coal-caving
https://github.com/YangYi-HPU/Reinforcement-learning-simulation-environment-for-top-coal-caving
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(a) Simulation process (b) Sectional view of the workspace

Figure 2. simulation platform of top-coal caving. In (a), The si, at
i , respectively, denote the state and

action of agent i on the time point t . In (b), a number of rock and coal particles distribute randomly
in the boundary of rock and coal. Our aim is to obtain the maximum coal with minimum rock by
opening and closing the windows.

5.2. Top-Coal Caving Decision Experiment Based on OEAN

In this experiment, the action space of HSs is set asA = {ã1, ã2}, ã1 and ã2, respectively,
which denote the opened and closed state of the windows. The condition of agent i by~si,
i = {1, 2 . . . , 5}, if the coal ration near the window is great than 0.5, set~si = 1, otherwise
~si = 0. Hence, we define the state space of the multi-agent system as S = {s1, . . . , s32},
shown in Table 1.

Table 1. State space of the top-coal caving.

State ~s5 ~s4 ~s3 ~s2 ~s1 State ~s5 ~s4 ~s3 ~s2 ~s1

s1 0 0 0 0 0 s17 0 0 1 1 1
s2 0 0 0 0 1 s18 0 1 1 1 0
s3 0 0 0 1 0 s19 1 1 1 0 0
s4 0 0 1 0 0 s20 0 1 0 1 1
s5 0 1 0 0 0 s21 1 0 1 1 0
s6 1 0 0 0 0 s22 1 0 0 1 1
s7 0 0 0 1 1 s23 0 1 1 0 1
s8 0 0 1 1 0 s24 1 1 0 1 0
s9 0 1 1 0 0 s25 1 1 0 0 1
s10 1 1 0 0 0 s26 1 0 1 0 1
s11 0 0 1 0 1 s27 0 1 1 1 1
s12 0 1 0 1 0 s28 1 1 1 1 0
s13 1 0 1 0 0 s29 1 1 1 0 1
s14 0 1 0 0 1 s30 1 1 0 1 1
s15 1 0 0 1 0 s31 1 0 1 1 1
s16 1 0 0 0 1 s32 1 1 1 1 1

According to the states defined above, the function of HMRF shown in Equation (20)
is given as follows:

f (s | ai, Ni) = exp
(
−σai

(s− Nµai )

ω

)
(34)

where ω is a positive constant; µai , σai are variables and formalized as follows:

µai =

{
1, ai = ã1

0, ai = ã2
(35)
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σai =

{
−1, ai = ã1

1, ai = ã2
(36)

By Equation (23), the optimal action is

â = arg min
ai ,...,aN

∑
i

(
σai

(s− Nµai )

ω
− βQt

i(s, ai, ā∗i )
)

(37)

and the OEAN can be calculated by Equation (26).
The reward architecture for reinforcement learning is

R = nrrr + ncrc − τ (38)

where nr is the obtained rock number, rr is the reward of each rock; nc is the obtained coal
number, rc is the reward of each coal, τ is the time constant. The performance indices of
top-coal caving experiment are focus on total reward (TR), shown as Equation (38), coal recall
(CR) and the rock ratio in all mining (RR) [47].

CR =
nc

nc_total

RR =
nr

nc + nr

(39)

where nc_total is the number of all coal particle. In this experiment, we set the parameters as
rr = −3, rc = 1, α = 0.2, β = 0.1, ω = 1, ζ = 0.0001.

5.3. Experiment Result Analysis

The comparative experiments are carried out in this section. The three methods of
multi-agent controlling are employed: independent RL [25], RL with mean field theory [24]
and the method proposed in this paper. In the following sections, they are denoted by RL,
MF, and OEAN, respectively.

The training and testing processes are alternatively carried out during the model
learning. To make the states of each step covering the state space as much as possible, the
location of rock particle in the coal layer is set as random.

The TR of test during the model learning are shown in Figure 3a. As we can find
out that the TRs increase with the learning process. The RL and OEAN can obtain the
highest TR after 15 epochs learning. The OEAN swaying at the end, especially, in 20 epoch,
there is a singular point. Although the imperfection of the swaying, the OEAN can obtain
the perfect performance in top-coal caving, shown in Figure 3b, and the RR is lower with
greater CR.

The dynamic process of MAP obtaining optimal decision is shown in Figure 4. We should
note that the environment is changed during the top-coal mining, and TΦ converges to
the minimum. It is obvious that in the training process, the action decision is produced
by ε-greedy algorithm, and most of them is random, hence it makes the frequent changes
in dynamic process of TΦ. While in the test process, the action is optimal decision by the
agent, hence there are few changes in the dynamic process of TΦ.
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(a) Simulation process (b) Sectional view of the workspace

Figure 3. Performance indies of test process during the learning process. (a) is the total reward of the
three methods. (b) is the ration of the ratio of CR to RR. As we can find out, the convergent tendency
of the three methods is obvious in the two sub-figures. The TR is increased with the training process
of the three method, and HMRF obtain best TR and the performance of the top-coal caving.

(a) AMP iteration in training (b) AMP iteration in the test

Figure 4. TΦ dynamic during AMP iterating. It indicts the process of optimal decision making for the
neighbourhood by MAP. If the change rate of TΦ closes to zero, MAP obtains the OEAN.

After completing the training of Q-value, 10 tests are carried out for validating the
method effect. In the tests, the rock particles location in the coal layer are given randomly.
The performance indices are shown in Table 2 and Figure 5.

Table 2. Performance index of top-coal caving.

No.
CR RR

RL MF OEAN RL MF OEAN

1 0.90 0.94 0.91 0.17 0.23 0.18
2 0.94 0.96 0.92 0.18 0.27 0.17
3 0.91 0.92 0.89 0.18 0.19 0.16
4 0.90 0.93 0.66 0.16 0.19 0.13
5 0.93 0.95 0.91 0.17 0.24 0.17
6 0.92 0.94 0.89 0.19 0.23 0.17
7 0.93 0.92 0.89 0.17 0.17 0.16
8 0.94 0.94 0.92 0.18 0.19 0.18
9 0.92 0.93 0.92 0.19 0.2 0.19

10 0.93 0.94 0.93 0.17 0.19 0.15

According to Figure 5a the TR of RL and OEAN can approach a high level, and in
Figure 5b, the rate of CR to RR shows that OEAN could obtain the most performance of
top-coal caving. Especially in the Tests No. 1, 3, 6, 9, and 10, the total reward and rate of
CR to RR are the best if the OEAN is employed. That indicates in those tests, the OEAN
method could obtain the global optimal decision. In the other tests of adopting the OEAN,
although the total reward cannot approach the optimum level, the rate of CR to RR is the
best. That means the OEAN method can obtain a better pose between the coal recall and
rock ratio in the top-coal caving.
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(a) Total reward (b) Rate of CR/RR

Figure 5. Tests result with the random location of the rock particles in the coal layer. (a) is the total
reward of the three methods. (b) is the rate of CR to RR.

To analyze the details of optimal decision making, we chose the middle window in
Test 10 to show the states and actions in the complete process of top-coal caving. The results
are shown in Figure 6. Before the 15th iteration, the actions and states of the three methods
are the same. Subsequently, the shearer approached the boundary of coal layer and rock
layer. In this stage, the RL and MF method just close the window, while the OEAN method
regulates the window switching close and open. Therefore the system state changes slowly,
and the agent can obtain better performance of the top-coal caving.

(a) (b)

(c) (d)

Figure 6. Tests result with the random location of the rock particles in the coal layer. (a) is the states
of three methods. (b) is the states and actions of RL. (c) is the states and actions of MF. (d) is the states
and actions of OEAN.

6. Conclusions

This paper proposes a new action value function of reinforcement learning-based
OEAN for multi-agent system to approach the optimal decision. The new Q-value function
contains the relationship between the current agent and its OEAN, and the proposed OEAN
makes the communication between the agents simple and direct. The effectiveness of this
method is validated by a case study of top-coal caving. The experiment results show that
our method improves the training process of RL and obtains a better reward compared
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with the other two methods. For the top-coal caving, our method can decrease the rock
ratio in the mining and relieves the conflict between RR and CR.

In future, we will extend to the following two research topics to improve the perfor-
mance of top-coal caving.

(1) The agent state of this paper depicts the global environment, hence the dimension
of state space is great. If the number of multi-agents is huge, there needs to be a vast state
space to describe the environment more detail. In the future, the local state of environment
will be researched to decrease the state space dimension and improve the performance of
the RL for multi-agent.

(2) The relationship between current agent and its neighbors is depicted by the HMRF
model, and an explicit formula is used to establish the HMRF model. Hence, the gener-
alization of the HMRF model is imperfect. In future work, the graph network based on
OEAN will be employed to depict the relationship of multi-agent.
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