
����������
�������

Citation: Dai, H.; Chen, P.; Yang, H.

Fault-Tolerant Control of Skid

Steering Vehicles Based on

Meta-Reinforcement Learning with

Situation Embedding. Actuators 2022,

11, 72. https://doi.org/10.3390/

act11030072

Academic Editor: Hicham Chaoui

Received: 28 January 2022

Accepted: 23 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Fault-Tolerant Control of Skid Steering Vehicles Based on
Meta-Reinforcement Learning with Situation Embedding

Huatong Dai, Pengzhan Chen and Hui Yang *

School of Electrical Engineering and Automation, East China Jiaotong University, Nanchang 330013, China;
2017029081100002@ecjtu.edu.cn (H.D.); 2661@ecjtu.edu.cn (P.C.)
* Correspondence:1962@ecjtu.edu.cn or yhshuo@163.com; Tel.: +86-1387-009-8198

Abstract: Meta-reinforcement learning (meta-RL), used in the fault-tolerant control (FTC) problem,
learns a meta-trained model from a set of fault situations that have a high-level similarity. However,
in the real world, skid-steering vehicles might experience different types of fault situations. The use
of a single initial meta-trained model limits the ability to learn different types of fault situations that
do not possess a strong similarity. In this paper, we propose a novel FTC method to mitigate this
limitation, by meta-training multiple initial meta-trained models and selecting the most suitable
model to adapt to the fault situation. The proposed FTC method is based on the meta deep determin-
istic policy gradient (meta-DDPG) algorithm, which includes an offline stage and an online stage.
In the offline stage, we first train multiple meta-trained models corresponding to different types
of fault situations, and then a situation embedding model is trained with the state-transition data
generated from meta-trained models. In the online stage, the most suitable meta-trained model is
selected to adapt to the current fault situation. The simulation results demonstrate that the proposed
FTC method allows skid-steering vehicles to adapt to different types of fault situations stably, while
requiring significantly fewer fine-tuning steps than the baseline.

Keywords: fault-tolerant control; skid-steering vehicle; reinforcement learning (RL); meta-learning;
situation embedding

1. Introduction

Due to their simple mechanical structure and flexible control, skid-steering dis-
tributed drive vehicles have been widely applied in various scenarios, including wheeled
robots [1,2], agricultural vehicles [3], military vehicles [4,5], and so on. Generally, a skid-
steering vehicle has four independent driving wheels, forming a redundant actuator system,
which delivers remarkable maneuverability and more options for FTC methods [6]. With
the development of meta-RL algorithms, some recent studies applied meta-RL algorithms
to the FTC problem of actuator faults, providing new insights into the FTC mechanism
of skid-steering vehicles [7,8]. Meta-RL learns an initial meta-trained model from a set of
fault situations that have high-level similarity. However, in the real world, skid-steering
vehicles might experience different types of fault situations, where the dynamical models
can be significantly different from one another [9]. The single initial meta-trained model
in conventional meta-RL algorithms limits the ability to learn fault situations that do not
have strong similarity to the learned faults, leading to low generalizability to novel fault
situations [10,11].

Meta-RL approaches were successfully applied to adapt to system failures and ex-
ternal disturbances, especially the most representative model-agnostic meta-learning
(MAML) [12]. In [13–16], the authors presented a series of methods based on meta-RL to
quickly adapt their control policies to maintain degraded performance when faults occur
in aircraft fuel transfer systems. The scheme of FTC methods includes offline meta-training
and online meta-testing stages. In [17], the authors presented a reference trajectory update
method based on meta-RL, to improve the trajectory tracking performance of unmanned

Actuators 2022, 11, 72. https://doi.org/10.3390/act11030072 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11030072
https://doi.org/10.3390/act11030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://doi.org/10.3390/act11030072
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11030072?type=check_update&version=2

Actuators 2022, 11, 72 2 of 22

aerial vehicles (UAVs) under actuator faults and disturbances. They leveraged meta-RL to
quickly adapt the system model at runtime, as well as to update the reference trajectory
without needing access to the control inputs. In [18], an impact-angle guidance law was
proposed for the interception of a maneuvering target using a varying velocity intercep-
tor under partial actuator failures, based on meta-RL and model predictive path integral
(MPPI). The deep neural dynamic can learn the changes and perturbations in the environ-
ment through the online adaption ability of meta-learning, which endows the proposed
method with better tracking performance than the standard MPPI method. In [19], an adap-
tive controller based on meta-RL was proposed for automatic train velocity regulation. The
velocity regulation problem, under the complicated railway environment and uncertain
dynamics of the system, is expressed as a sequence of stationary Markov decision process
(MDP) with unknown transition probabilities. The meta-RL algorithm learns to track the
desired speed under changing conditions. In [20], the authors proposed meta twin-delayed
deep deterministic policy gradient (meta-TD3) to realize the control of UAVs, allowing the
UAVs to quickly track a target characterized by uncertain motion. As meta-RL showed
great potential in quickly adapting to system failures and external disturbances in recent
years, it can provides new insights into the FTC problem of skid-steering vehicles and, as
such, is incorporated into our work.

A major limitation of conventional meta-RL methods is that they seek a common
initialization in the entire task distribution, which substantially limits their application in
multi-task distribution [21,22]. To mitigate this limitation, some methods have extended
MAML with the capability to identify the mode of tasks sampled from a multi-modal
task distribution. In [23,24], the authors developed a Multi-Modal Model-Agnostic Meta-
Learner (MuMoMAML). The model-based learner first effectively recognizes the mode
of the task distribution through a few samples from the target task, and then adapts to
the target task through gradient updates. In [25], the authors introduced a task encoder
into the meta-RL framework and developed a new meta-RL method; namely TESP. TESP
trains a shared policy and a stochastic gradient descent (SGD) optimizer coupled to a task
encoder network from a set of tasks. The SGD optimizer is applied to quickly learn a task
encoder for each task, which generates the corresponding task embedding based on past
experience. Meanwhile, the shared policy is learned across all tasks and conditioned
on task embeddings. To exploit information about task relationship, in [26], the authors
proposed a task embedding of visual classification tasks, named Task2Vec, which provides
a fixed-dimensional embedding of the task that is independent of details and does not
require any understanding of the class label semantics. In [27], the authors proposed
a novel representation, named MATE (model-aware task embedding), which is able to
efficiently fuse the data distribution and model inductive bias. MATE introduces a model-
dependent surrogate function to improve the current kernel mean embedding, which can be
incorporated into deep neural networks. In [28], the authors proposed an algorithm called
FAMLE to learn the multi-modal task distribution by meta-training several initial models
and allowing the robot to select the most suitable initial model as the starting point to adapt
to the current situation. FAMLE leverages the embedding of the meta-trained models to
select the starting point, making it able to adapt faster than a single meta-trained model. In
fact, our method uses FAMLE as the situation-embedding model, to select the most suitable
meta-trained model for the fault situation of a skid-steering vehicle as a starting point for
online adaption.

The main purpose of this study is to develop an FTC method based on meta-RL
which allows skid-steering vehicles to adapt to different types of fault situations. From the
analysis above, meta-training multiple initial models and selecting the most suitable one
could more quickly and better optimize a policy for the fault situation than using a single
initial meta-trained model. The questions that arise here are how to meta-train multiple
initial meta-trained models and how to select the most suitable one among them, based on
the online dataset.

Actuators 2022, 11, 72 3 of 22

Based on the above motivation, we introduce a situation embedding model into the cur-
rent meta-DDPG-based FTC framework, and develop a new FTC method, which achieves
better performance on adapting different types of fault situations; namely meta-DDPGSE
(meta-DDPG with situation embedding). The situation embedding model generates a d-
dimensional vector, which is a specific parameter of meta-trained models, named situation-
embeddings. We first apply the meta-DDPG algorithm to train multiple meta-trained
models for different types of fault situations. Then, states and actions generated from the
meta-trained models under the corresponding fault situations are used as the input for the
situation embedding model in the offline stage. We can use the online data set as input for
the situation embedding model, to select the most suitable meta-trained model for current
fault situation as the starting point for online adaptation. In summary, we combine the
meta-DDPG algorithm and the situation embedding model to facilitate rapid adaptation to
the fault situation through selection of the most suitable initial meta-trained model.

The main contributions of this study are as follows: (1) We develop a meta-DDPGSE-
based FTC method for skid steering vehicles, which achieves high performance on different
types of fault situations; (2) a situation embedding model is introduced into the conven-
tional meta-RL-based FTC framework, in order to select the most suitable meta-trained
model for the current fault situation; and (3) selecting the most suitable meta-trained model
based on online data set allows the agent to quickly adapt the policy to different types
of fault situations. To the best of our knowledge, this is the first work to introduce the
situation embedding model into the meta-RL-based FTC framework and apply it to the
FTC problem of skid-steering vehicles.

The remainder of this paper is structured as follows. Section 2 introduces the torque
distribution agent design and the problem formulation for the meta-DDPGSE-based FTC
method. Section 3 provides the framework of the meta-DDPGSE-based FTC method. In
Section 4, the simulation environment and setting are detailed. We validate the proposed
method with simulation in Section 5. Finally, our conclusions are provided in Section 6.

2. Preliminaries
2.1. DDPG-Based Skid-Steering Vehicle Control Method

The DDPG algorithm is adopted in this work to learn the control policy for skid-steering
vehicles. The DDPG algorithm has a continuous action space, which is very suitable for
applications in complex continuous action control processes [29–32].

As an Actor–Critic algorithm, the DDPG algorithm includes a Critic network and Actor
network [33,34]. The Critic network Q(s, a|θQ) can evaluate the value of taking an action a in
state s, while the Actor network µ(s|θµ) is a function used to map a state s to a deterministic
policy a, where θQ and θµ are the network parameters. The DDPG is a model-free, off-policy
algorithm, and the design of the agent’s state space, action space, and reward function have
important impacts in the performance of the skid-steering vehicle [35].

2.1.1. State Space

The control objective is the actual longitudinal speed and yaw rate, used to track the
desired value accurately and effectively. The state space includes the error of longitudinal
speed vdelta and yaw rate ωdelta, which are defined as:

vdelta = vxd − vxa,

ωdelta = ωφd −ωφa,
(1)

where vxd and ωφd are the desired values of the longitudinal speed and yaw rate, respec-
tively; and vxa and ωφa are the corresponding actual values, respectively. The desired and
actual values are depicted in Figure 1. The longitudinal acceleration, v′xa, and the angular

Actuators 2022, 11, 72 4 of 22

acceleration, ω′φa, are also used as variables of the state space, which seriously affect the
vehicle’s maneuverability. The state space is defined as follows:

state =
{

vdelta, ωdelta, v′xa, ω′φa

}
. (2)

Figure 1. Skid-steering vehicle diagram.

2.1.2. Action Space

A vehicle’s behavior depends on the driving torque on its wheels, its geometry, and
the ground. It is assumed in this study that the geometry and the ground do not change.
Therefore, the driving torque on each wheel is used as an action space variable. Thus, the
action space is defined as follows:

action =
{

Tf l , Trl , Tf r, Trr

}
. (3)

In the learning process of RL, the agent can only select actions based on the randomly
generated policy, and then optimize the policy through ’trial and error’. This action selection
method is likely to generate a low reward at the beginning, and may also lead to sub-optimal
policy actions due to insufficient exploration. Therefore, we use an assisted controller to
generate reference operations within an acceptable time. We call this reference operation as
the criteria action.

The key point is to use the criteria action to assist the agent at the beginning of the
learning process, then eliminate such assistance when the agent can find a safe area. Here,
the agent’s action choice is defined as the agent action, and the real action signal sent to the
system is the execution action.

ae =
(

1− γi
)
· aa + γi · ac, (4)

where γ is the discount factor and i is the iteration episode. ae is execution action, aa is agent
action and ac is criteria action. This is the same as training the agent with an inaccurate
controller first. After a period of assistance, the agent can select actions independently. This
provides the agent with a search direction and accelerate the learning process. The assisted
controller is defined as follows:

Tl f = Tlr = Kp

(
m · vdelta

dt

)
− J · ωdelta

dt
,

Tr f = Trr = Kp

(
m · vdelta

dt

)
+ J · ωdelta

dt
,

(5)

Actuators 2022, 11, 72 5 of 22

where Kp is the proportional coefficient and dt is the time step.

2.1.3. Reward Function

The reward function acts as a signal to evaluate the performance when taking an ac-
tion a when in state s. Rewards are the only feedback signals available for the agent’s
learning. Reasonably designing the reward function is the key to guiding the agent to
obtain an effective control policy. Design of the reward function is mainly based on the
vehicle’s maneuverability, which is reflected in reducing errors related to longitudinal
speeds and yaw rates. Therefore, to ensure the performance of the vehicle, a well-defined
reward function provided at every time step is introduced:

R =−
(

v2
delta + 5×ω2

delta

)
− 0.01×

((
v′xa
)2

+
(

ω′φa

)2
)

− 0.001×
(

T2
f l + T2

rl + T2
f r + T2

rr

)
+ D.

(6)

The first term in the reward function above encourages the agent to minimize errors
with longitudinal speeds and yaw rates. The second and third terms in the reward function
encourage the agent to reduce the action value when the error is within a certain range, to
prevent the error from not converging. The last term is a large positive reward when the
agent is close to the ideal conditions, and is defined as below:

D =

{
3000, i f |vdelta| < 0.01× |vxd| and |ωdelta| < 0.01×

∣∣∣ωφd

∣∣∣
0, otherwise.

(7)

In this way, a large positive reward is applied when the agent is close to the ideal conditions.

2.2. Problem Formulation: Meta-DDPGSE-Based FTC Method

Our approach mirrors the MAML algorithm, and the whole process of the FTC method
is split into two steps: meta-training in the offline stage and meta-testing in the online
stage [36].

In the offline stage, we first train multiple meta-trained models for different types of
fault situations. For each fault situation Fi, we consider a meta-trained model, expressed
as a function fθi . During meta-training, the parameters θi are initialized randomly and

updated to θ′ij while adapting to fault Fj
i :

θ
′
ij = θi − α∇θi LFj

i

(
fθi

)
. (8)

Meta-optimization is conducted across the faults. Then, the model parameters are
updated according to Equation (9):

θi ← θi − β∇θi ∑
Fj

i⊂Fi

L
Fj

i

(
fθ′ij

)
, (9)

where α and β are hyper-parameters for the optimization step size and L is the loss function
of the DDPG algorithm.

The situation embeddings are vectors representing characteristics of multiple meta-
trained models, which are used to select the most suitable model among them. We consider
the situation embedding model as a function fθs(st+1|st, at, h), where st+1, st, at, and h
are the next state, the state, the action, and the situation embedding corresponding to
the current fault situation, respectively. We collect the state-transition data DFi from each
type of fault situation Fi=1:N and construct a data set D. Then, corresponding to each type

Actuators 2022, 11, 72 6 of 22

of fault situation Fi=1:N , the situation embeddings H = {hFi |i = 1, · · · , N} and model
parameters θs are randomly initialized. The negative log-likelihood loss is calculated as:

LDFi

(
θs, hFi=1:N

)
= EDFi

[
− log fθs

(
ss+1|st, at, hFi

)]
. (10)

We train the situation embedding model to obtain the initial model parameters θs and
situation embeddings H. Through the combination of the situation embeddings H and
parameters θs, the situation embedding model could serve for N types of fault situations,
in order to select the most suitable initial meta-trained model.

In the online stage, we first collect the data set of the vehicle operating under fault
situations, then compute the likelihood of each situation embedding in H, and select the
meta-trained model that maximizes the likelihood of the recent data set. To be more precise,
if Donline is the recent data set, then:

hLikely = arg max
h∈H

EDonline [log fθs(st+1|st, at, h)]. (11)

With the selected meta-trained model as the starting point, the agent is able to quickly
adapt its policy to the current fault situation.

Based on the description of meta-DDPGSE-based FTC method above, the process is
as follows: The FTC step begins with an abrupt fault, causing a discontinuous change in
process dynamics p→ p∗. In the aftermath of the fault, the agent continues to interact with
p∗, and records states, actions, and rewards in an online memory buffer Donline using its
current policy parameters θ. Once sufficient interactions have been buffered, the likelihood
of the recent observations for each situation embedding in H are computed. Then, we
select the most suitable meta-trained model to adapt to the current fault situation, while
obtaining a fine-tuned model with updated parameters θ∗. The fine-tuned model is then
used to distribute the driving torque under the current fault situation. The flowchart of the
proposed FTC method is shown in Figure 2.

Figure 2. Flowchart of the meta-DDPGSE-based FTC method.

3. Meta-DDPGSE-Based FTC Method

The proposed FTC method includes offline and online stages. In the offline stage,
we apply the meta-DDPG algorithm to train the corresponding meta-trained models with
respect to N different types of fault situations. The situation embedding model is trained
using the state-transition data generated from the meta-trained models. In the online stage,
the agent collects sufficient interactions after a fault situation occurs, and then selects the
most suitable meta-trained model to adapt the current fault situation. Finally, a fine-tuned
model is obtained and applied to distribute the driving torque in the fault situation. The
framework of the meta-DDPGSE-based FTC method is demonstrated in Figure 3.

3.1. Meta-Training of meta-DDPG

In this work, meta-training of meta-DDPG is a process used to learn different types
of fault situations and obtain meta-trained models corresponding to fault situations. In
each type of fault situation, meta-training mainly includes two update processes: Internal
RL for a single fault and external meta-learning update for multiple different faults. The
faults in meta-training are randomly selected from the same type of fault situation. In the
meta-DDPG algorithm, internal DDPG training and external meta-learning updating are
performed alternately, meeting a certain update frequency. Internal DDPG learns multiple
faults separately to obtain different parameters, and external meta-learning obtains the
initial parameters of meta-DDPG by optimizing these different parameters.

Actuators 2022, 11, 72 7 of 22

(a)

(b)

Figure 3. Framework of the meta-DDPGSE-based FTC method: (a) Offline stage; and (b) Online stage.

In each type of fault situation Fi, we consider a function fθi with parameters θi that

is a policy for mapping a state s to an action a. When a new fault Fj
i in the fault situation

Fi occurs, the policy function adapts to the new fault, and the parameters θi becomes θ′ij
through the one-step gradient descent.

θ′ij = θi − α∇θi LFj
i

(
fθi

)
, (12)

where α is the step size. The initial parameters θi are trained by optimizing for the average
loss of the adapted policy fθ′ij

across faults sampled from p(Fi). The meta-objective is

as follows:

min
θi

∑
Fj

i∼p(Fi)

L
Fj

i

(
fθ′ij

)
= min

θi
∑

Fj
i∼p(Fi)

L
Fj

i

(
θi − α∇θi LFj

i

(
fθi

))
. (13)

Meta-optimization is used to optimize the initial policy parameters, such that only
a few gradient steps produce a maximally effective policy on the new fault. The meta-
optimization formula is as follows:

θi ← θi − β∇θi ∑
Fj

i∼p(Fi)

L
Fj

i

(
fθ′ij

)
, (14)

where β is the meta step size and L
Fj

i
is the loss function, which corresponds to the reward

function in the RL; its formula is given as:

L
Fj

i

(
fθi

)
= −Es,a∼ fθi

[
∑
t=1

Ri(st, at)

]
. (15)

The meta-training process of the fault situation Fi is described in Algorithm 1.

Actuators 2022, 11, 72 8 of 22

Algorithm 1 Meta-training of meta-DDPG algorithm in fault situation Fi.

1: Randomly initialize critic network and actor network with weights θQ
i and θ

µ
i ;

2: for meta_iteration = 1, 2, · · · , M do
3: Initialize a random fault Fj

i ∼ p(Fi);
4: for t = 1, 2, · · · , N do
5: Sample trajectories from Fj

i using policy fθi ;

6: Calculate the meta-learning loss function of fault Fj
i :

L
Fj

i

(
fθi

)
= −Es,a∼ fθi

[∑t=1 Ri(st, at)];

7: Update the adapted parameters with gradient descent: θ′ij = θi − α∇θi LFj
i

(
fθi

)
;

8: Sample trajectories using the adapted policy fθ′ij
in Fj

i ;

9: end for
10: Meta-update θi ← θi − β∇θi ∑Fj

i∼p(Fi)
L

Fj
i

(
fθ′ij

)
;

11: end for

3.2. Training the Situation Embedding Model

In this work, training of the situation embedding model is a process carried out to learn
the characteristics of meta-trained models from the data set D, which is generated from
multiple meta-trained models. The initial model parameters θs and situation embeddings
H are obtained by training the situation embedding model.

We consider the situation embedding model as a function fθs(st+1|st, at, h) that predicts
the next state, where st+1, st, at, and h are the next state, the current state, the current
action, and the situation embedding of the current fault situation, respectively. For each
type of sampled fault situation Fi=1:N , we randomly initialize the situation embedding
H = {hFi |i = 1, · · · , N} and the model parameters θs. Then, the loss function for any type
of fault situation Fi ∈ F is as follows:

LDFi

(
θs, hFi=1:N

)
= EDFi

[
− log fθs

(
ss+1|st, at, hFi

)]
. (16)

The training objective of the situation embedding model is to find the initial model
parameters θs and situation embedding H. We consider this process as a meta-optimization
problem, defined as follows:

θs,H = arg min
θs ,Fi=1:N

EFi∼F
[
LDFi

(
Uk

Fi

(
θs, hFi

))]
, (17)

where Uk
Fi
(·, ·) represents the gradient descent update rule for k gradient descent steps.

For any type of fault situation Fi ∈ F, we use the update rule to update the parameters
of the situation embedding model, including the parameters θs and the situation em-
bedding hFi . At each update step, we randomly choose a fault situation Fi from F, and
update the parameters θs and situation embedding hFi simultaneously, through use of the
following formula:

θ̃s, h̃Fi = Uk
Fi

(
θs, hFi

)
θs := θs + αs

(
θ̃s − θs

)
hFi := hFi + βs

(
h̃Fi − hFi

)
,

(18)

where αs and βs are learning rate parameters. We finally obtain the parameters θs of the
situation embedding model and the situation embeddings H by training the situation
embedding model. The trained situation embedding model can serve for N types of fault

Actuators 2022, 11, 72 9 of 22

situations, and selects the most suitable meta-trained model as the starting point of online
adaptation, based on the current fault situation. The training process of the situation
embedding model is described in Algorithm 2.

Algorithm 2 Training of the situation embedding model.

1: Randomly initialize model parameters θs and situation embeddings H = {hFi |i =
1, · · · , N};

2: for m = 1, 2, · · · do
3: Sample a data set DFi ∼ D;
4: Perform SGD for k steps θ̃s, h̃Fi = Uk

Fi

(
θs, hFi

)
;

5: Update θs and hFi :

θs := θs + αs

(
θ̃s − θs

)
hFi := hFi + βs

(
h̃Fi − hFi

)
;

6: end for
7: Return meta-trained parameters θs and situation embeddings H.

3.3. Update of the Meta-Trained Model

In the offline stage, we learned multiple meta-trained models and the situation em-
bedding model. At runtime, when the vehicle experiences a fault situation F∗, the agent
collects M consecutive data using its current policy and constructs an online data set Donline.
With the dataset Donline, we compute the likelihood for each situation embedding in H.
Then, the most suitable meta-trained model is selected according to the likelihood of the
situation embedding. To be more precise, if Donline are the recent M observations, then:

hLikely = arg max
h∈H

EDonline [log fθs(st+1|st, at, h)]. (19)

The most suitable meta-trained model is adapted according to Algorithm 3, and
the fine-tuned policy fθ∗ with updated parameters θ∗ is obtained. The agent is able to
easily adapt its policy to different types of fault situations, which benefit from the fact
that the selected initial meta-trained model is the most suitable one among the multiple
meta-trained models.

Algorithm 3 Update of the meta-trained model.

1: Compute the most likelihood hLikely, given data set Donline and parameters θs;
2: Select the initial meta-trained model according to the most likelihood hLikely:

hLikely = arg maxh∈H EDonline [log fθs(st+1|st, at, h)];

3: for episode = 1, 2, · · · , K do
4: Initialize parameters θ∗ with θLikely;
5: for t = 1, 2, · · · , N do
6: Sample trajectories from F∗ using policy fθ∗ ;
7: Calculate the meta-learning loss function of fault situation F∗:

LF∗(fθ∗) = −Es,a∼ fθ∗ [∑t=1 Ri(st, at)];

8: Update adapted parameters with gradient descent: θ∗ ← θ∗ − α∇θ∗LF∗(fθ∗);
9: end for

10: end for

Actuators 2022, 11, 72 10 of 22

4. Simulation Environment and Training Results
4.1. SkiSteering Vehicle Model

We established a dynamics model for a skid steering vehicle with four independent
driving wheels [37]. Figure 1 shows that the friction between the wheels and ground results
in the vehicle’s motion. Thus, according to Newton’s Second Law, the dynamics model of
the vehicle system can be described as:

m
(
v′xa − vyaωφa

)
=

i=4

∑
i=1

fxi + dx

m
(

v′ya + vxaωφa

)
=

i=4

∑
i=1

fyi + dy

Jω′φa =
i=4

∑
i=1

τfi + dφ,

(20)

where m is the mass of the vehicle; J is its moment of inertia around the center of gravity
(CG); τfi denotes the torque applied to the vehicle around the CG by the tractive force
fi = fxi x̂ + fyi ŷ at the ith wheel; x̂ and ŷ indicate the unit vectors in the longitudinal and
lateral directions, respectively; and dx, dy, and dφ represent disturbances.

The fxi and fyi in Equation (20) are very complex, and a great number of friction
models have been proposed to describe such wheel–ground interactions. In this work,
the appropriate friction model proposed in [38] is applied, and the friction force can be
calculated as:

fxi = µNiS f (si)
sxi

si

fyi = µNiS f (si)
syi

si

si =
√

s2
xi
+ s2

yi
,

(21)

where Ni represents the vertical force of wheel i; µ is the friction coefficient; the dynamic
feature of the friction force can be approximated by S f (si) =

2
π × arctan(90si); and s(xi)

and s(yi) represent the longitudinal and lateral slip, respectively.
Based on the wheel dynamics model and slip definition in [38], we obtain the wheel

slip dynamic model as:

s′xi
=

r
j
(Ti − r fxi + dwi)− v′xa

s′yi
= v′ya,

(22)

where r represents the wheel radius and j is the rotation moment of the wheel. The sec-
ond term of Equation (20) represents lateral motion. To simplify the problem, we do not
consider the lateral motion of the vehicle. The specifications of the dynamics model are
detailed in Table 1.

The effects of actuator faults on the vehicle system are demonstrated through the
actuator fault modeling. The general form of an actuator fault is defined as follows:

Tij = εijTd_ij, (23)

where Tij is the actual torque, εij ∈ [0, 1] denotes the loss-of-effectiveness gain, and Td_ij
is the desired torque. In this study, we assume that the fault information can be obtained
through the use of fault diagnosis and detection methods [39].

Actuators 2022, 11, 72 11 of 22

Table 1. Specifications of the dynamics model.

Description Symbol Value

Vehicle mass m 2360 kg
Vehicle wheelbase B 2.4 m

Vehicle length L 5.0 m
Wheel radius r 0.2 m

Yaw moment of inertia of the vehicle J 4050 kg·m2

Friction coefficient µ 0.05
Rotation moment of the wheel j 0.85 kg·m2

Max torque of wheel 100 N·m

The fault situations were simulated by assigning different parameters εij to the driving
wheels. During the offline stage, meta-training data were collected under three different
types of fault situations, which are given in Table 2. Simultaneously, the nominal vehicle
model was also used as a type of fault situation, in order to generate meta-training data.
At runtime, testing fault situations were assigned to the vehicle in motion. The testing
fault situations are listed in Table 3, which include that F∗1 , a fault on the front left wheel
(ε f l = 0.2), and F∗2 , a fault on the front left wheel and the front right wheel at the same time
(ε f l = 0.3 and ε f r = 0.3).

Table 2. Fault situations used during training.

Name Fault Situation Description

F1 0.05 ≤ ε f l ≤ 0.80 Fault on front left wheel
F2 0.05 ≤ ε f r ≤ 0.80 Fault on front right wheel
F3 0.05 ≤ ε f l ≤ 0.80 & 0.05 ≤ ε f r ≤ 0.80 Fault on front left and right wheels

Table 3. Fault situations used during testing.

Name Fault Situation Description

F∗1 ε f l = 0.2 Fault on front left wheel
F∗2 ε f l = 0.3 & ε f r = 0.3 Fault on front left and front right wheels

4.2. Meta-DDPGSE Hyper-Parameter Settings

The simulation environment in this study was set up in the Python 3.7 software
using the PyCharm IDE. All training processes were implemented on an Intel Core i5
computer. The deep learning framework TensorFlow-2.0.0 was used to build the networks
on a macOS system.

According to the definitions of the state space and the action space, the meta-DDPG
model had 4-dimensional input and output. The policy neural networks and the Q-value
neural networks are shown in Figure 4. The policy neural networks were constructed
with a 4 × 512 × 512 × 4 structure and the Q-value neural networks were constructed
as 8× 512× 512× 1. The specific parameters of the meta-DDPG algorithm are listed in
Table 4.

The situation embedding model was learned using a neural network with 2 hidden
layers of size 100. The structure of the situation embedding networks is shown in Figure 5,
which were constructed with a 13× 100× 100× 4 structure. The inputs of the network
model include not only the 4-dimensional state space and the 4-dimensional action space,
but also a 5-dimensional embedding vector. Except for the activation function of the last
layer of the network model being a tanh function, the remaining layers use ReLU activation
functions. The specific parameters of the situation embedding model are listed in Table 5.

Actuators 2022, 11, 72 12 of 22

(a)

(b)

Figure 4. The structures of policy neural networks (a) and Q-value neural networks (b).

Table 4. Parameters of meta-DDPG algorithm.

Parameter Name Parameter Value

Meta iterations 150
Meta testing max episodes 5000

Max episode steps 100
Memory capacity 1,000,000

Batch size 512
Actor-network learning rate 0.0001
Critic-network learning rate 0.001

Online data set capacity 200

Actuators 2022, 11, 72 13 of 22

Figure 5. The structure of situation embedding networks.

Table 5. Parameters of situation embedding network.

Parameter Name Parameter Value

Embedding vector size 5
Number of fault situations 3

Input layer size 13
Output layer size 4

Outer iteration 1000
Outer learning rate 0.1

Inner iteration 100
Inner learning rate 0.001

Batch size 128

4.3. Training Results

To evaluate the effectiveness and efficiency of our proposed method, we compared
it with two baseline methods, described in the following. All methods had the same
configuration in the DDPG algorithm.

• meta-DDPG: The meta-DDPG was meta-trained for the same fault situations that were
used in meta-DDPGSE. At testing time, the meta-trained model was updated using
recent data.

• DDPG: We trained a torque distribution controller for the skid-steering vehicle based
on the DDPG algorithm under nominal conditions.

We used the meta-trained models to obtain the torque distribution controller for the
skid-steering vehicle by performing online adaptation under nominal conditions. The
controller based on the DDPG algorithm was trained from scratch. The total rewards’
trend for the methods are shown in Figure 6. The meta-DDPGSE could converge faster and
fluctuated less than the baseline models, obtaining higher total reward.

Actuators 2022, 11, 72 14 of 22

Figure 6. The total reward trends in the meta-testing.

5. Results

In this section, we evaluate the performance of the meta-DDPGSE-based FTC method
through simulation, and compare it with the baseline methods. The baselines included the
DDPG-based torque distribution controller and the meta-DDPG-based FTC method. The
simulation was conducted in two scenarios: A straight scenario and a cornering scenario. In
each scenario, we evaluated the proposed FTC method through its desired value tracking
performance and the fine-tuning steps under fault situations. The study cases are listed in
Table 6:

Table 6. Study cases.

Straight Scenario Cornering Scenario
Fault Situation

F∗
1 F∗

2 F∗
1 F∗

2

Study case Case 1 Case 2 Case 3 Case 4

As a commonly used evaluation method, the integrals of the quadratic function of
the deviations of both the longitudinal speed and the yaw rate from the desired value
were used to evaluate the longitudinal speed tracking performance and yaw rate tracking
performance of vehicles. These two integrals are denoted as J1 and J2, respectively [40]:

J1 =
∫ t

0
v2

delta dτ

J2 =
∫ t

0
ω2

delta dτ.
(24)

5.1. Simulations in the Straight Scenario

Simulations in the straight scenario were performed with a constant zero steering
angle, in order to identify the drifts of the faulty vehicle. Fault situations F∗1 and F∗2 were
employed in the simulations. The simulation results for the straight scenario are shown in
Figures 7 and 8, respectively.

The longitudinal speed was set as 2.0 m/s at the beginning, 3.1 m/s at 200 s, and
1.2 m/s at 300 s, which was maintained until the end. The yaw rate was always 0 rad/s
during the simulation in the straight scenario. The fault situation F∗1 occurred at 100 s, and
continued until the end of the simulation. The selected initial meta-trained model was

Actuators 2022, 11, 72 15 of 22

fine-tuned for 200 steps to obtain a fine-tuned model, which was then used for vehicle
control under fault situations.

(a) (b)

(c) (d)

Figure 7. Simulation results in the straight scenario with fault F∗1 : (a) Longitudinal speed; (b) Longi-
tudinal speed error; (c) Yaw rate; (d) Heading.

The longitudinal speeds at different moments in the simulation are shown in Figure 7a.
As observed in Figure 7b, the error in the case with the DDPG-based controller exceeded
0.2 m/s, significantly greater than in other cases. The yaw rates in different cases are
shown in Figure 7c. The desired yaw rate was zero in the straight scenario. The cases with
FTC methods maintained the yaw rate error within 0.2 rad/s; however, without FTC, the
error exceeded 0.2 rad/s and fluctuated more drastically than in other cases. As shown in
Figure 7d, the heading deviation was also larger in the case without FTC than other cases
using FTC methods.

The second simulation in the straight scenario was conducted under fault situation F∗2 .
The simulation results are shown in Figure 8, which had a similar trend to the simulation
of fault situation F∗1 . Without FTC, the longitudinal speed error exceeded 0.2 m/s after
the fault occurred, and the maximum error even reached 0.4 m/s, as shown in Figure 8a,b.
The tracking performance showed no significant difference between cases with different
FTC methods, and the errors in both cases were kept within 0.2 m/s, better than in the
case without FTC. As observed in Figure 8c, the yaw rate errors in the cases with FTC
methods were kept within 0.2 rad/s; however, without FTC, the maximum error exceeded
0.2 rad/s during the simulation. From Figure 8d, it can be observed that the heading
deviation in the case without FTC exceeded 0.2 deg, which was greater than in other cases
usingFTC methods. The above analysis indicates that both our proposed FTC method and
the meta-DDPG-based FTC method worked well.

Actuators 2022, 11, 72 16 of 22

(a) (b)

(c) (d)

Figure 8. Simulation results in the straight scenario with fault F∗2 : (a) Longitudinal speed; (b) Longi-
tudinal speed error; (c) Yaw rate; (d) Heading.

The above results show that fault situations severely affect the performance of desired
value tracking, which can be overcome by the FTC methods. To illustrate the improvement
when using our proposed FTC method more specifically, we quantitatively compared it
with the meta-DDPG-based FTC method. Equation (24) was used to evaluate the desired
value tracking performance. The quantitative evaluation results in the straight scenario are
displayed in Figure 9.

The results for J1 and J2 in different cases were obtained based on the aforementioned
simulations. The FTC method based on meta-DDPG reduced J1 by 73.15% in the fault
situation F∗1 and 75.53% in the fault situation F∗2 , and reduced J2 by 71.38% in the fault
situation F∗1 and 69.44% in the fault situation F∗2 . Similarly, the FTC method based on meta-
DDPGSE reduced J1 by 75.28% in the fault situation F∗1 and 79.25% in the fault situation F∗2 ,
and reduced J2 by 80.32% in the fault situation F∗1 and 79.74% in the fault situation F∗2 . The
quantitative evaluation results in the straight scenario demonstrate that both FTC methods
can effectively reduce the severity of fault situations; however, the meta-DDPGSE-based
FTC method performed better.

In the above simulations, the number of online fine-tuning steps of the meta-trained
models was 200 in the different FTC methods. We also evaluated the online adaptation
speed of different FTC methods through the effect of the online fine-tuning steps on the
desired value tracking performance. In this simulation, vehicles were assigned the same
desired values and fault situations F∗1 and F∗2 as in previous simulations, but we set different
online fine-tuning steps. We analyzed J1 and J2 of the two FTC methods with numbers
of different fine-tuning steps. When the number of fine-tuning steps was 0, the offline
meta-trained model was directly used to control the vehicle after the fault occurred.

Actuators 2022, 11, 72 17 of 22

(a) (b)

Figure 9. The quantitative evaluation in the straight scenario: (a) J1 in the straight scenario; (b) J2 in
the straight scenario.

The simulation results are shown in Figure 10. Each data point in the figure is an aver-
age of the same process repeated five times. When the number of fine-tuning steps was
0, J1 and J2 obtained by the meta-DDPGSE-based FTC method were significantly smaller
than those obtained by the meta-DDPG-based FTC method. This result indicates that the
meta-DDPGSE-based FTC method can select a suitable meta-trained model for the current
fault situation as the starting point of online adaptation. The meta-DDPGSE-based FTC
method could achieve high performance after 100 steps of online fine-tuning, while the
meta-DDPG-based FTC method needed 200 steps to achieve the same results, thus demon-
strating that the meta-DDPGSE-based FTC method was able to adapt to fault situations
more quickly than the meta-DDPG-based FTC method.

(a) (b)

Figure 10. Effect of number of fine-tuning steps on J1 and J2 in the straight scenario: (a) J1 value vs.
fine-tuning steps; (b) J2 value vs. fine-tuning steps.

5.2. Simulations in the Cornering Scenario

Simulations of the cornering scenario were conducted to identify the vehicle’s cornering
ability under fault situations. The fault situations assigned to the vehicle were consistent
with those in Section 5.1 and are listed in Table 3. Figures 11 and 12 show the simulation
results of the vehicle under fault situations F∗1 and F∗2 in the cornering scenarios, respectively.

The longitudinal speed tracking results for the vehicle with fault situation F∗1 in
the cornering scenario are shown in Figure 11a,b. Without FTC, the longitudinal speed
fluctuated sharply, and the maximum error exceeded 0.4 m/s, significantly worse than that
in the cases using FTC methods. With FTC, the longitudinal speed tracking performance in
the fault situation did not deteriorate significantly, and errors remained within 0.2 m/s. The
yaw rate tracking results are shown in Figure 11c,d. After the fault situation F∗1 occurred,
the desired yaw rates were still well-tracked in the cases with FTC methods. However,

Actuators 2022, 11, 72 18 of 22

without FTC, the yaw rate fluctuated sharply, and the error became significantly larger,
which demonstrates that the case without FTC had no ability to track the desired yaw rate
after the fault occurred.

(a) (b)

(c) (d)

Figure 11. Simulation results in the cornering scenario with fault F∗1 : (a) Longitudinal speed; (b) Lon-
gitudinal speed error; (c) Yaw rate; (d) Yaw rate error.

Similar trends were observed in the simulation with fault situation F∗2 in the cornering
scenario, as shown in Figure 12. Without FTC, the longitudinal speed and yaw rate
fluctuated more severely after fault situation F∗2 occurred. The DDPG-based controller
had no ability to track the desired value as accurately as before the fault situation F∗2
occurred. With FTC, the tracking performance of the longitudinal speed and yaw rate
was not significantly degraded, being similar to the tracking performance before the fault
situation F∗2 occurred. The longitudinal speed errors and yaw rate errors could be kept
within 0.2 m/s and 0.2 rad/s, respectively. The results demonstrate that fault situations F∗1
and F∗2 can impose serious impacts on the desired value tracking performance; however,
such impacts can be overcome by implementing FTC methods such as those based on
meta-DDPG and meta-DDPGSE.

The results for J1 and J2 in the cornering scenario are shown in Figure 13. The FTC
method based on meta-DDPG reduced J1 by 77.50% in the fault situation F∗1 and 59.99% in
the fault situation F∗2 , and reduced J2 by 82.34% in the fault situation F∗1 and 87.86% in the
fault situation F∗2 . Similarly, the FTC method based on meta-DDPGSE reduced J1 by 87.42%
in the fault situation F∗1 and 76.44% in the fault situation F∗2 , and reduced J2 by 90.39% in
the fault situation F∗1 and 95.76% in the fault situation F∗2 . The quantitative evaluations in
the cornering scenario had the same results as in the straight scenario, indicating that the
FTC methods can effectively improve the tracking performance of vehicles with faults.

To better reflect the performance of our proposed FTC method, we set different
numbers of online fine-tuning steps in the cornering scenario. The simulation results are
shown in Figure 14. As the number of fine-tuning steps increased, J1 and J2 decreased with

Actuators 2022, 11, 72 19 of 22

a similar trend as in the straight scenario. The meta-DDPGSE-based FTC method had the
ability to select a suitable meta-trained model as the starting point for online adaptation,
according to the current fault situation. The meta-DDPGSE-based FTC method could
obtain good testing error results after 100 steps of online fine-tuning, while the meta-DDPG-
based FTC method needed 200 steps to achieve the same results. Therefore, the proposed
FTC method benefits from the selection of the most suitable initial meta-trained model,
which makes it able to more quickly adapt to fault situations than the meta-DDPG-based
FTC method.

(a) (b)

(c) (d)

Figure 12. Simulation results in the cornering scenario with fault F∗2 : (a) Longitudinal speed; (b) Lon-
gitudinal speed error; (c) Yaw rate; (d) Yaw rate error.

(a) (b)

Figure 13. The quantitative evaluation in the cornering scenario: (a) J1 in the cornering scenario;
(b) J2 in the cornering scenario.

Actuators 2022, 11, 72 20 of 22

(a) (b)

Figure 14. Effect of fine-tuning steps on J1 and J2 in the cornering scenario: (a) J1 value vs. fine-tuning
steps; (b) J2 value vs. fine-tuning steps.

6. Conclusions

In this work, we proposed a meta-DDPGSE-based FTC method for skid-steering
vehicles, which could maintain the desired value tracking performance under different
types of fault situations. Based on the DDPG algorithm, we developed an agent that can
perform dual-channel control over the longitudinal speed and yaw rate of skid steering
vehicles. Differing from conventional meta-RL methods, which only use a single meta-
trained model for the entire task distribution, multiple initial meta-trained models were
trained for different types of fault situations in the offline stage. We introduced the situation
embedding model into the current meta-DDPG-based framework and developed a new
FTC method based on meta-DDPGSE. Based on the online data set, the situation embedding
model could select the most suitable initial meta-trained model as the starting point for
adapting to the current fault situation. The simulation results from four testing scenarios
demonstrated that, thanks to the selection of the most suitable meta-trained model, the
meta-DDPGSE-based FTC method was able to more quickly adapt different types of fault
situations, performing better than the considered baseline methods.

This work opens an exciting path for the FTC method of skid-steering vehicles using
meta-RL methods under multiple types of fault situations. At present, we are exploring
ways to extend this work by incorporating fault detection techniques. We also plan to
apply the proposed FTC method to different vehicle systems, such as independent driving
electric vehicles, as they are also prone to different types of fault situations.

Author Contributions: Conceptualization, P.C. and H.Y.; methodology, H.D.; software, H.D.; vali-
dation, H.D. and P.C.; formal analysis, P.C.; investigation, P.C.; resources, H.D.; data curation, H.D.;
writing—original draft preparation, H.D.; writing—review and editing, P.C.; visualization, P.C.;
supervision, H.Y.; project administration, H.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This project is partially supported by the National Natural Science Foundation of China
under Grants 61903141, and the National Natural Science Foundation of China under Grants 62163014.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Actuators 2022, 11, 72 21 of 22

References
1. Krecht, R.; Hajdu, C.; Ballagi, A. Possible Control Methods for Skid-Steer Mobile Robot Platforms. In Proceedings of the 2020 2nd

IEEE International Conference on Gridding and Polytope Based Modelling and Control , Gyor, Hungary, 19–19 November 2020;
pp. 31–34.

2. Liao, J.F.; Chen, Z.; Yao, B. Adaptive robust control of skid steer mobile robot with independent driving torque allocation. In
Proceedings of the 2017 IEEE International Conference on Advanced Intelligent, Mechatronics, Munich, Germany, 3–7 July 2017;
pp. 340–345.

3. Fernandez, B.; Herrera, P.J.; Cerrada, J.A. A simplified optimal path following controller for an agricultural skid-steering robot.
IEEE Access 2019, 7, 95932–95940. [CrossRef]

4. Zhang, Y.; Li, X.; Zhou, J.; Li, S.; Du, M. Hierarchical control strategy design for a 6WD unmanned skid-steering vehicle. In
Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation, Changchun, China, 5–8 August 2018;
pp. 2036–2041.

5. Zhang, H.; Yang, X.; Liang, J.; Xu, X.; Sun, X. GPS Path Tracking Control of Military Unmanned Vehicle Based on Preview Variable
Universe Fuzzy Sliding Mode Control. Machines 2021, 12, 304. [CrossRef]

6. Zhang, X.; Xie, Y.; Jiang, L.; Li, G.; Meng, J.; Huang, Y. Fault-Tolerant Dynamic Control of a Four-Wheel Redundantly-Actuated
Mobile Robot. IEEE Access 2019, 7, 157909–157921. [CrossRef]

7. Hua, C.; Li, L.; Ding, S.X. Reinforcement Learning-aided Performance-driven Fault-tolerant Control of Feedback Control Systems.
IEEE Trans. Autom. Control. 2021, 99, 1. [CrossRef]

8. Antonio, P.; Lorenzo, R.C. Discrete-Time selfish Routing Converging to the Wardrop Equilibrium. IEEE Trans. Autom. Control.
2019, 64, 1288–1294.

9. Stolte, T. Actuator Fault-Tolerant Vehicle Motion Control: A Survey. arXiv 2021, arXiv:2103.13671.
10. Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098.
11. Ma, J.Q.; Zhao, Z.; Yi, X.Y.; Chen, J.L.; Hong, L.C.; Chi, E.H. Modeling task relationships in multi-task learning with multi-gate

mixture-of-experts. In Proceedings of the 24th ACM International Conference on Knowledge Discovery & Data Mining, London,
UK, 19–23 August 2018; pp. 1930–1939.

12. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Network. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1126–1135.

13. Ahmed, I.; Quiones, G.M.; Biswas, G. Complementary Meta-Reinforcement Learning for Fault-Adaptive Control. arXiv 2020,
arXiv:2009.12634.

14. Ahmed, I.; Khorasgani, H.; Biswas, G. Comparison of Model Predictive and Reinforcement Learning Methods for Fault Tolerant
Control. arXiv 2020, arXiv:2008.04403.

15. Ahmed, I.; Quiones, G.M.; Biswas, G. Fault-Tolerant Control of Degrading Systems with On-Policy Reinforcement Learning.
arXiv 2020, arXiv:2008.04407.

16. Ahmed, I.; Quiones, G.M.; Biswas, G. Performance-Weighed Policy Sampling for Meta-Reinforcement Learning. arXiv 2020,
arXiv:2012.06016.

17. Yel, E.; Bezzo, N. A Meta-Learning-Based Trajectory Tracking Framework for UAVs under Degraded Conditions. arXiv 2021,
arXiv:2104.15081.

18. Liang, C.; Wang, W.; Liu, Z.; Lai, C.; Zhou, B. Learning to Guide: Guide Law Based on Deep Meta-learning and Model Predictive
Path Integral Control. IEEE Access 2019, 7, 47353–47365. [CrossRef]

19. Zhao, F.; You, K.; Fan, Y.; Yan, G. Velocity Regulation for Automatic Train Operation via Meta-Reinforcement Learning. In
Proceedings of the 2020 39th Chinese Control Conference, Shenyang, China, 27–30 July 2020; pp. 1969–1974.

20. Li, B.; Gan, Z.; Chen, D.; Aleksandrovich, D. UAV Maneuvering Target Tracking in Uncertain Environments Based on Deep
Reinforcement Learning and Meta-Learning. Remote Sens. 2020, 12, 3789. [CrossRef]

21. Ma, Y.; Zhao, S.L.; Wang, W.X.; Li, Y.M.; King, I. Multimodality in meta-learning: A comprehensive survey. arXiv 2021,
arXiv:2109.13576.

22. Yu, T.H.; Quillen, D.; He, Z.P.; Julian, R.; Hausman, K.; Finn, C.; Levine, S. Meta-World: A Benchmark and Evaluation for
Multi-Task and Meta Reinforcement Learning. In Proceedings of the Conference on Robot Learning, Cambridge, MA, USA, 16–18
November 2020; Volume 100, pp. 1094–1100.

23. Risto, V.; Sun, S.H.; Hu, H.X.; Lim, J.J. Multimodal model-agnostic meta-learning via task-aware modulation. arXiv 2019,
arXiv:1910.13616.

24. Risto, V.; Sun, S.H.; Hu, H.X.; Lim, J.J. Model-Agnostic Meta-Learning for Multimodal Task Distributions. In Proceedings of the
ICLR 2019 Conference, New Orleans, LA, USA, 6–9 May 2019.

25. Lin, L.; Li, Z.G.; Guan, X.H.; Wang, P.H. Meta Reinforcement Learning with Task Embedding and Shared Policy. arXiv 2019,
arXiv:1905.06527.

26. Achille, A.; Lam, M.; Tewari, R.; Ravichandram, A.; Maji, S.; Fowlkes, C.C.; Soatto, S.; Perona, P. TASK2Vec: Task embedding for
meta-learning. In Proceedings of the IEEE/CVF International Conference on Computer Visio, Seoul, Korea, 27–28 October 2019;
pp. 6430–6439.

27. Chen, X.H.; Tang, S.Y.; Muandet, K. MATE: Plugging in model awareness to task embedding for meta-learning. Nerual Inf. Process.
Syst. 2020, 33, 11865–11877.

http://doi.org/10.1109/ACCESS.2019.2929022
http://dx.doi.org/10.3390/machines9120304
http://dx.doi.org/10.1109/ACCESS.2019.2949746
http://dx.doi.org/10.1109/TAC.2021.3088397
http://dx.doi.org/10.1109/ACCESS.2019.2909579
http://dx.doi.org/10.3390/rs12223789

Actuators 2022, 11, 72 22 of 22

28. Kaushik, R.; Anne, T.; Mount, J.B. Fast Online Adaptation in Robotics through Meta-Learning Embeddings of Simulated Priors.
In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24–30
October 2020; pp. 5269–5276.

29. Jin, L.; Tian, D.; Zhang, Q.; Wang, J. Optimal Torque Distribution Control of Multi-Axle Electric Vehicles with In-wheel Motors
Based on DDPG Algorithm. Energies 2020, 13, 1331. [CrossRef]

30. Hu, H.Y.; Lu, Z.Y.; Wang, Q.; Zheng, C.Y. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using
a Deep Deterministic Policy Gradient Algorithm. Sensors 2020, 20, 5443. [CrossRef]

31. Yu, L.L.; Shao, X.Y.; Wei, Y.D.; Zhou, K.J. Intelligent Land-Vehicle Model Transfer Trajectory Planning Method Based on Deep
Reinforcement Learning. Sensors 2018, 18, 2905.

32. Sun, Y.; Zhang, C.; Zhang, G.; Xu, H.; Ran, X. Three-Dimensional Path Tracking Control of Autonomous Underwater Vehicle
Based on Deep Reinforcement Learning. J. Mar. Sci. Eng. 2019, 7, 443. [CrossRef]

33. Sliver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning , Beijing, China, 21–26 June 2014; Volume 32, pp. 387–395.

34. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement
learning. arXiv 2015, arXiv:1509.02971.

35. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglo, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep Reinforce-
ment Learning. arXiv 2013, arXiv:1312.5602.

36. Dai, H.T.; Chen, P.Z.; Y, H. Metalearning-Based Fault-Tolerant Control for Skid Steering Vehicles under Actuator Fault Conditions.
Sensors 2022, 22, 845. [CrossRef]

37. Liao, J.F.; Chen, Z.; Yao, B. Performance-Oriented Coordinated Adaptive Robust Control for Four-wheel Independently Driven
Skid Steer Mobile Robot. IEEE Access 2017, 5, 19048–19057. [CrossRef]

38. Liao, J.; Chen, Z.; Yao, B. Model-Based Coordinated Control of Four-Wheel Independently Driven Skid Steer Mobile Robot with
Wheel-Ground Interaction and Wheel Dynamics. IEEE Trans. Ind. Inform. 2019, 15, 1742–1752. [CrossRef]

39. Zhang, B.H.; Lu, S.B. Fault-tolerant control for four-wheel independent actuated electric vehicle using feedback linearization and
cooperative game theory. Control. Eng. Pract. 2020, 101, 104510. [CrossRef]

40. Zhang, H.; Zhao, W.; Wang, J. Fault-Tolerant Control for Electric Vehicles with Independently Driven in-Wheel Motors Considering
Individual Driver Steering Characteristics. IEEE Trans. Veh. Technol. 2019, 68, 4527–4536. [CrossRef]

http://dx.doi.org/10.3390/en13061331
http://dx.doi.org/10.3390/s20185443
http://dx.doi.org/10.3390/jmse7120443
http://dx.doi.org/10.3390/s22030845
http://dx.doi.org/10.1109/ACCESS.2017.2754647
http://dx.doi.org/10.1109/TII.2018.2869573
http://dx.doi.org/10.1016/j.conengprac.2020.104510
http://dx.doi.org/10.1109/TVT.2019.2904698

	Introduction
	Preliminaries
	DDPG-Based Skid-Steering Vehicle Control Method
	State Space
	Action Space
	Reward Function

	Problem Formulation: Meta-DDPGSE-Based FTC Method

	Meta-DDPGSE-Based FTC Method
	Meta-Training of meta-DDPG
	Training the Situation Embedding Model
	Update of the Meta-Trained Model

	Simulation Environment and Training Results
	SkiSteering Vehicle Model
	Meta-DDPGSE Hyper-Parameter Settings
	Training Results

	Results
	Simulations in the Straight Scenario
	Simulations in the Cornering Scenario

	Conclusions
	References

