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Abstract: A Pseudo-satellite system that transmits signals similar to GNSS can provide positioning
services in places where GNSS signals are not captured and have enormous potential for indoor
machine system and airports. Different paths of the device have different carrier phase initial solution
positioning accuracy. Existing methods rely on measuring instruments or use many coordinate points
for solving ambiguity resolution (AR), which creates inconvenience for real-time ground positioning.
This study aims to find a new on-the-fly (OTF) method to achieve high accuracy and convenient
positioning. A new method is proposed based on a two-difference observation model for ground-
based high-precision point positioning. We used an adaptive particle swarm algorithm to solve the
initial solution, followed by a nonlinear least-squares method to optimize the localization solution. It
is free of priori information or measuring instruments. We designed several different paths, such as
circular trajectory and square trajectory, to study the positioning accuracy of the solution. Simulation
experiments with different trajectories showed that geometric changes significantly impact solutions.
In addition, it does not require precise time synchronization of the base stations, making the whole
system much easier to deploy. We built a real-world pseudo-satellite system and used a multi-sensor
crewless vehicle as a receiver. Real-world experiments showed that our approach could achieve
centimeter-level positioning accuracy in applications.

Keywords: path plan; navigation; robot system; ground-based positioning

1. Introduction

Navigation and positioning functions are essential components of robotic systems
and are attracting increasingly widespread attention. GNSS can provide high accuracy
positioning and timing services, and has become the first choice of navigation technology in
various fields [1–3]. However, due to building obstructions, GNSS cannot provide services
in urban canyon environments or warehouses. This raises serious challenges for driverless
technology in urban environments and warehouse robots. Pseudo-satellites are ground-
based transmitters that can be flexibly placed in scenarios where positioning services are
required [4–6]. In addition, they can contribute to enhanced GNSS performance in open-air
situations or provide an independent positioning service [7–10].

Ground-based Pseudo-satellite Systems (GBPS) consists of several base stations as
transmitters and receivers [11]. Due to the severe multipath of the ground environment
and the close distance between the base station and the receiver, the pseudo-distance
value in the received signal has a significant deviation [12,13]. Therefore, compared with
carrier phase measurement, the error of the code measurement could be relatively large.
The carrier phase measurement value is less affected by multipath interference and has
centimeter-level positioning capabilities. AR is an essential component of the carrier phase
algorithm and plays a vital role in the GBPS positioning methods [14,15]. Some scholars
have suggested that there is a connection between geometric diversity and AR, but to the
best of our technology, there is still a lack of relevant theoretical, experimental analysis. In

Actuators 2022, 11, 54. https://doi.org/10.3390/act11020054 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11020054
https://doi.org/10.3390/act11020054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-3288-2573
https://doi.org/10.3390/act11020054
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11020054?type=check_update&version=1


Actuators 2022, 11, 54 2 of 19

GBPS, the base stations are connected by wired or wireless methods, and the frequencies
are synchronized with each other. Due to noise and line delay, there is a fixed time deviation
between the stations, which also brings difficulty to the positioning solution [16,17].

The motivation in this paper is aimed at finding an AR solution using path planning
relying only on the carrier phase and reduce the dependence on time synchronization.
Without loss of generality, we first analyze the existing AR methods.

The existing approaches are mainly divided into two categories: known points and
OTF. Known point initialization (KPI) is one of the first high-precision positioning methods
used in GBPS [3,18]. The coordinates of the initial point of the receiver are calibrated with
high accuracy. The AR is solved by the geometric relationship between the position of
the point and the base stations. This method is simple and has high positioning accuracy.
However, the position of the initial point requires the use of auxiliary equipment such as
a total station, which makes the machine system unable to operate independently. The
dynamic key point initialization (DKPI) method does not require a precise initial position
and does not rely on high-precision auxiliary measuring equipment [19,20]. However,
the DKPI method requires passing through several already calibrated positions before
positioning, which creates difficulties in positioning. The OTF method does not use a priori
information. The existing OTF methods can be basically divided into two types. One type
uses the pseudo-distance information to assist in solving the initial coordinate position, and
this approach has location errors in GBPS due to severe multipath [21]. Another category
is the use of a squared double difference model, and this OTF approach uses dozens of
coordinate points to resolve AR iteratively [22–24]. This method does not rely on pseudo-
distance but requires the model of the receiver crystal for fitting the clock drift. In addition,
the use of a large number of points puts a burden on the computation.

We propose an adaptive OTF (A-OTF) method for resolving AR. This method does not
rely on supplementary measurement or use pseudo-distance information. The AR can be
solved with high accuracy by employing only a few points using the geometric information
of the path.

The main contributions of this paper are as follows.

1. A-OTF model is proposed in this paper, which achieves high-precision localization
without relying on the initial point, and does not require inter-station time synchro-
nization. Moreover, it has a high sensitivity for cycle slip detection. This new model
dramatically reduces the engineering difficulty of the robot positioning system and
improves the robustness of positioning.

2. In this work, the relationship between path distance and solution accuracy is derived
theoretically for the first time, and different path planning and solution accuracy are
simulated.

3. It is worth mentioning that our method is validated in real-world systems, which
demonstrates that our method can be implemented in a practical system.

This paper consists of the following parts: Section 2 introduces the measurements of
GBPS and reviews the single-difference model. In this section, the relationship between ge-
ometric scaling and AR is analyzed. Section 3 presents the proposed model and the solution
steps by using the nonlinearized adaptive particle swarm algorithm. The simulation and
real experiment scenarios and solution results are given in Sections 4 and 5, respectively.
In addition, Section 5 introduces the method of cycle slip detection. The advantages of
the method are summarized in the Section 6. Finally, the conclusions are summarized in
Section 7.

2. Observation Model of Robotic System

The crewless vehicle used in this paper is equipped with GBPS signal receiving equip-
ment similar to the GNSS receiver. This section introduces the mathematical model of the
observation signal. It also introduces the relationship between the vehicle’s displacement
and the observation.
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2.1. Carrier Phase Measurement

GBPS consists of multiple base stations and receivers. The base stations have known
location coordinates information and transmit signals similar to GNSS satellites. The
receiver obtains its position by calculating the distance to different base stations. The base
stations are connected through a wired connection, ensuring that the base stations have the
same output frequency. There is still a small-time offset between base stations, even with
wired connections.

The observed value of the carrier phase between the transmitter and receiver of the ith
base station can be expressed as [20]:

φi = λ−1
(∥∥∥si − u

∥∥∥+ cδtu − cδti + cτu + cτi
)
+ Ni + wi (1)

where λ represents the wavelength distance, and
∥∥si − u

∥∥ represents the geometric distance
between the ith base station s and the receiver u. δtu and δti are the time errors of the
receiver and base station, respectively. τu and τi represent the internal hardware delay of
the receiver and transmitter. Ni denotes the ambiguities and wi stands for the noise value
such as multipath.

After the carrier phase observation values of base stationi and base stationj are differ-
entiated, the time deviation of the receiver can be eliminated, as follows:

φij = λ−1
[
∆rij − c

(
δtij − ∆τij

)]
+ Nij + wij

∆rij =
∥∥si − u

∥∥− ∥∥sj − u
∥∥

δtij = δti − δtj
τij = τi − τ j

Nij = Ni − N j

wij = wi − wj

(2)

It can be seen from Equation (2) that the deviation between the single differential AR
and the transmit channel does not change with the location. They can be combined into
one item and solved as an unknown number:

Zij = − c
λ

(
δtij − ∆τij

)
+ Nij (3)

It should be noted that Zij is a floating AR solution containing the time difference
between the base stations. Bringing Equation (3) into Equation (2):

φij = λ−1
(∥∥∥si − u

∥∥∥− ∥∥∥sj − u
∥∥∥)+ Zij + wij (4)

Equation (4) can be solved if the initial and the final position of the vehicle is known.

2.2. Analysis of the Ambiguity Accuracy of Different Paths

Different variations of geometric distances in Equation (4) have varying effects on the
accuracy of the solution. Figure 1 shows the impact of changes in geometric diversity on
ambiguity.

As shown in Figure 1, assume that the receiver moves from position p to point q. Base
station 1 and base station 2 are at the same height. The carrier phase can be expressed as: φ1

p = λ−1
(∥∥s1 − up

∥∥+ cδtup − cδt1 + cτup + cτ1
)
+ N1 + w1

p

φ2
p = λ−1

(∥∥s2 − up
∥∥+ cδtup − cδt2 + cτup + cτ2

)
+ N2 + w2

p
(5)



Actuators 2022, 11, 54 4 of 19

where Z denotes AR and λ denotes wavelength, w denotes the noise term. The difference
between the two equations gives:

φ12
p + w21

p =
rp1 − rp2

λ
+ Z12

=
1
λ
· rd

(
1

sin θp1

− 1
sin θp2

)
+ Z12

(6)

Let
(

1
sin θp1

− 1
sin θp2

)
equal to Ap. Similarly, based on the above analysis, the following

relationship can be obtained at point q:

φ12
p + w21

p =
rd
λ

Ap + Z12

φ12
q + w21

q =
rd
λ

Aq + Z12
(7)

[
φ12

p + w21
p

φ12
q + w21

q

]
=

[
Ap 1
Aq 1

][
λ−1rd

Z12

]
(8)

The solution of AR can be deduced as:[
λ−1rd

Z12

]
=

1
Ap − Aq

[
1 −1
−Aq AP

][
φ12

p + w21
p

φ12
q + w21

q

]
(9)

When the movement of the receiver has a small displacement, the value of the angular
change is minimal, which also means that Aq and Ap are almost equal. In this case, there
is the linear correlation of the matrix in Equation (8). Even if the noise term is small,
huge errors would be introduced in the positioning, resulting in an erroneous AR solution.
Therefore, geometric changes have an impact on AR.

Figure 1. Base station and receiver location relationship.

2.3. Linearization of the Model

It can be seen from Equation (4) that when the value of Zij is obtained, the received
carrier phase difference value can be used to calculate the position of the receiver. At the
kth epoch, the differenced geometric range can be defined as:

∆rij
k =

∥∥∥si − uk

∥∥∥− ∥∥∥sj − uk

∥∥∥
=

√(
xk

u − xi
)2

+
(
yk

u − yi
)2

+
(
zk

u − zi
)2

−
√(

xk
u − xj

)2
+
(
yk

u − yj
)2

+
(
zk

u − zj
)2

(10)
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Taking the initial receiver location as (x0, y0, z0), the Taylor series of (10) is expanded
to the first-order term as [19]:

∆rij
k = ∆rij

0 +
∂∆rij

k
∂xu

∣∣∣∣∣
x0

(
xk

u − x0

)
+

∂∆rij
k

∂yu

∣∣∣∣∣
y0

(
yk

u − y0

)
+

∂∆rij
k

∂zu

∣∣∣∣∣
z0

(
zk

u − z0

)
(11)

Suppose the total number of base stations is M + 1, the epoch’s unknown coordinate
is k and the reference base station is j. Then, The eth iteration loop of the system can be
expressed as:

ρk(e) = Hk
A(e)x

n
A(e) + Hk

BZB + ωk (12)

It is important to note that Equation (12) is derived from Equation (4). e is the itera-
tion index.

ρk(e) =


λφ

1j
k − ∆r1j

k (e− 1)
λφ

2j
k − ∆r2j

k (e− 1)
...

λφ
Mj
k − ∆rMj

k (e− 1)

 (13)

Hk
A(e) =



∂∆r1j
k

∂xk
u

∣∣∣∣
x̂k

u(e−1)

∂∆r1j
k

∂yk
u

∣∣∣∣
ŷk

u(e−1)

∂∆r1j
k

∂zk
u

∣∣∣∣
ẑk

u(e−1)
∂∆r2j

k
∂xk

u

∣∣∣∣
x̂k

u(e−1)

∂∆r2j
k

∂yk
u

∣∣∣∣
ŷk

u(e−1)

∂∆r2j
k

∂zk
u

∣∣∣∣
ẑk

u(e−1)
∂∆rMj

k
∂xk

u

∣∣∣∣
x̂k

u(e−1)

∂∆rMj
k

∂yk
u

∣∣∣∣
ŷk

u(e−1)

∂∆rMj
k

∂zk
u

∣∣∣∣
ẑk

u(e−1)


(14)

xk
A(e) =

[(
xk

u − x̂k
u(e− 1)

)(
yk

u − ŷk
u(e− 1)

)(
zk

u − ẑk
u(e− 1)

)]T
(15)

Hk
B = λIM×M (16)

ZB =
[

Z1j Z2j · · · Z
]T (17)

The covariance matrix of the noise ω is described as:

Rρ(m) =


σ2

∆φ

σ2
∆φ

2 · · ·
σ2

∆φ

2
σ2

∆φ

2 σ2
∆φ · · ·

σ2
∆φ

2
...

...
. . .

...
σ2

∆φ

2
σ2

∆φ

2 · · · σ2
∆φ


(18)

When selecting data of several epochs:

ρ = HAxA + HBZB + ω (19)

ρ =
[

ρ1 · · · ρk · · ·
]T (20)

xA =
[

x1
A · · · xk

A · · ·
]T (21)

HA =


H1

A
. . .

Hk
A

. . .

, HB =


H1

B
...

Hk
B

...

 (22)

Equation (19) can be solved using the least squares method.
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2.4. Linearization Error and Solution Analysis

Though it is possible to linearize the model by Taylor expansion and then use the least-
squares method to find the estimator. The linearization error depends on the function’s
degree of nonlinearity and how far from the working point the linear approximation is
used. Therefore there are limitations. The linearization error is small when the initial
position deviation is slight, as shown in Figure 2.

Figure 2. Nonlinear errors.

Moreover, the algorithm can converge in point xinitial1. If the initial deviation is
significant, as in the case of scenario xinitial2, the linearization error is significant. When
Jacobi Matrix does not have an inverse matrix, the solution cannot be obtained using the
least square method.

The ground-based position system dynamics are highly nonlinear. Furthermore, there
are many cases where the Jacobian cannot be found analytically. Since the uncertainty of
the unknown value of the AR is substantial, its range cannot be limited, and the search
method cannot find the initial value. In some existing methods, several known points are
used for solving AR, which would cause inconvenience to the solution. In the next part
of this paper, we introduce the proposed new model, which does not require the aid of
known points.

3. The Proposed Method of the Robotic System

In this section, the proposed model is introduced, which eliminates ambiguity. After
that, the swarm intelligence optimization algorithm can be used to find the close initial
point coordinates.

3.1. A-OTF Model

We propose the A-OTF model is a double difference ground-base model. It should
be emphasized that this model is different from the double-difference model of the RTK
positioning method commonly used in GNSS. In the RTK positioning method, two receivers
called base and rover are needed. The A-OTF model uses only one receiver, uses the
difference between base stations to eliminate clock drift effects, and then uses the re-
differentiation between the duration epochs to eliminate ambiguity. Subtracting the single
difference between the two epochs:

φ
ij
k,k+1 − wij

k,k+1 = λ−1
(∥∥∥si − uk

∥∥∥− ∥∥∥sj − uk

∥∥∥− ∥∥∥si − uk+1

∥∥∥+ ∥∥∥sj − uk+1

∥∥∥)
= λ−1

(
∆rij

k − ∆rij
k+1

) (23)
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φ
ij
k,k+1 is the difference of the selected single differential carrier phase from Equation (4). k

and k + 1 denote the two epochs selected for the AR solution.
For each additional epoch, the number of unknowns increases by 3 (x, y, z), and the

number of equations increases by M (M + 1 is the total number of base stations). Due to the
initial position, the equation can be solved when the epoch satisfies the following relation:
M ∗ (n− 1) > 3 ∗ n (n denotes the number of epochs). If ith base station is the reference
base station. Then, the system of equations can be listed as:

φ
ij
k,k+1 − wij

k,k+1 = λ−1
(

∆rij
k − ∆rij

k+1

)
φie

k,k+1 − wie
k,k+1 = λ−1

(
∆rie

k − ∆rie
k+1

)
. . . . . .

φiM
k,k+1 − wiM

k,k+1 = λ−1
(

∆riM
k − ∆riM

k+1

)
...

...
φ

ij
k,k+n − wij

k,k+n = λ−1
(

∆rij
k − ∆rij

k+n

)
φie

k,k+n − wie
k,k+n = λ−1

(
∆rie

k − ∆rie
k+n

)
φiM

k,k+n − wiM
k,k+n = λ−1

(
∆riM

k − ∆riM
k+n

)

(24)

There are no ambiguity and clock difference values in Equation (24). Only the positions
of the coordinate are unknowns. Since the localization range is known, the search space
can be restricted according to the localization range, and the approximate solution could be
searched by using the intelligent swarm algorithm.

3.2. The Initial Solution Using Adaptive Particle Swarm Algorithm

A term in the Equation (24) can be simplified as follows:

loss = [φ
ij
k,k+l − λ−1

(
∆rij

k − ∆rij
k+l

)
]2 (25)

The search objective of the nonlinear intelligence algorithm is to find the coordinate
points u1, u2, un to minimize the value of F.

f itness = argmin
u1,u2,...

n

∑
l=1

M

∑
j=2

[φ
R

ij

k,k+l
− λ−1

(
∆rij

k − ∆rij
k+l

)
]2 (26)

where R = E[wwT] represents the noise covariance matrix. The adaptive PSO algorithm is
used for finding the optimal solution that represents the fitness of the loss function. It is a
stochastic algorithm of optimization based on swarm intelligence. The search space of the
problem is compared with the flight space of a bird. It simulates the foraging behavior of
birds and denotes the candidates for problem solving by abstracting each bird as a particle.
The method is applicable to nonlinear optimization problems of ground-based navigation
systems. The PSO algorithm requires a given range of search spaces. Based on this, a set of
parameter values is searched in the loop iteration to minimize the fitness value.

The particle population consists of D particles forming the population:

X = (X1, X2 · · ·XD) (27)

Each particle is a set of candidate solutions:

Xi =
(

x1
u, y1

u, z1
u . . . , xn

u, xn
u, xn

u

)>
(28)

The speed is:

Vi =
(

v1
x, v1

y, v1
z , · · · , vn

z

)T
(29)
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In the t + 1 iteration, the speed is updated as:

Vk+1
i = Vk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
Pk

g − Xk
i

)
(30)

where Pk
i and Pk

g denote the extreme individual value and the global optimum, respectively.
c1, c2, and r1, r2 are parameters that need to be set in advance. r1, r2 are random numbers
between [0,1]. c1 and c2 are called learning factors. The location is updated as:

Xk+1
i = Xk

i + Vk+1
i (31)

The update of the position can be limited according to the positioning area of the re-
ceiver. Ground-based positioning is a highly nonlinear optimization problem, and the PSO
algorithm has good optimization capabilities. Through iterative optimization calculations,
approximate solutions can be found quickly. However, the basic PSO algorithm can easily
fall into a local optimum, which leads to significant errors. It can be seen from the position
update model in Equation (30), The degree of particle velocity update determines how
fast the global convergence of the algorithm is achieved. When the speed is very high,
the optimal solution is easily crossed due to ineffective control. When the speed is low,
the global search capability of the algorithm decreases. In this paper, we adopt the PSO
algorithm with adaptive weights adjustment. The speed is updated as:

Vk+1
i = ωVk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
Pk

g − Xk
i

)
(32)

where ω is denoted as the nonlinear dynamic inertia weight coefficient, and the update
process is:

ω =


ωmin −

(ωmax−ωmin)∗( fitness−fitnessmin)
fitnessavg −fitnessmin

, fitness 6 fitnessavg

ωmax, fitness > fitnessavg

(33)

Among them, ωmax and ωmin are the initial values set in advance, which are 0.8 and
0.5 in this paper, respectively. fitnessavg and fitnessmin are the average target value and
minimum value of the particles.

When the current particle value obtained by calculation is better than the average
value, Equation (34) can be used to reduce its weighting factor to retain the particle. On the
contrary, the weight factor is increased to allow the particles to have a higher speed and
move closer to the area with a smaller fitness value.

The process of finding the initial solution of the ground-based Robotic system by the
adaptive PSO is shown in Algorithm 1.

3.3. Refined Solution and the Flow of the Algorithm

When the initial approximate solution of the position is obtained, it can be used to
solve the high-precision value of the ambiguity.

ẑB = argmin
xinitial

‖HAxA + HBZB − ρ‖R (34)

After obtaining the ambiguity value, the high-precision positioning position can be
found according to the carrier phase values. The flow chart of the robot positioning
procedure is presented in Figure 3.
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Algorithm 1 Adaptive Particle Swarm Algorithm.
Require: Each particle’s optimal global position of the particle population is set as pb and
the current historical optimal position is set as curb.
Ensure: The velocity and position of each individual in the group are initialized according
to the number of selected coordinate points (n). The search space dimensions are 3 ∗ n. Set
the scope of the space according to the positioning area.

1: Set the loop termination condition. When the average particle distance from the actual
position is less than 0.2 m, stop the optimization. The maximum amount of iteration
is 100.

2: The fitness value for each individual particle is evaluated according to Equation (26).
Store the curb and fitness values and select the optimal value from the population.

3: The velocity and position of the particles are updated based on Equations (31) and (32).
4: Calculate the updated fitness value and compare it with curb. If it is lower than curb,

then update c. Similarly, compare the value with pb.
5: If the value of pb meets the termination condition or the iteration loop has reached the

upper limit, terminate the loop, otherwise continue to step 2.
6: return f itness and the pb;

Figure 3. The high-precision positioning process of A-OTF method.

It is worth noting that the value of ambiguity does not change if no signal loss lock or
cycle slips occurs. The cycle slips have a great influence on the positioning result, even if it
occurs one cycle, there would be an error of nearly 20 cm. Fortunately, cycle slips can be
detected with high sensitivity using the model proposed in this paper. Related content is
introduced in the actual system verification section.

4. Simulation Tests

In this section, simulations with different trajectories are carried out to find the effect
of different trajectories on the accuracy of the solution. The signal carrier frequency is set
to 1575.42 MHz, and the carrier wavelength is approximately 19.08 cm. It is assumed that
the standard deviation (STD) of the measured noise is 0.01 to 0.05 cycles based on several
previous studies [21,25].

4.1. Simulation Scenario Setting

As shown in Figure 4, six base stations are used in the simulation scenario to be
arranged in different positions in a 20 m × 20 m × 8 m space.
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Figure 4. The high-precision positioning process of GDD model

The coordinates of the transmitting antenna are shown in Table 1.

Table 1. Coordinates of transmitter antennae.

Station X (m) Y (m) Z (m)

BS1 −20 −20 0
BS2 20 −20 0
BS3 20 20 0
BS4 −20 20 0
BS5 20 20 7
BS6 −20 0 3

There are different geometric accuracy factors at various locations in the simulation
scene due to the change in angle corresponding to the stations. The calculation of the
horizontal dilution of precision (HDOP) is as follows [26,27]:

HDOP =

√
h̃11 + h̃22 (35)

The accuracy factor for the vertical dilution of precision (VDOP) is calculated as:

VDOP =

√
h̃33 (36)

h̃ represents the diagonal elements of the weight coefficient matrix.
The distribution of the dilution of precision in the scenario is shown in Figures 5 and 6.

Since more attention is focused on horizontal accuracy in real-world positioning, and the
altitude direction is almost constant. The geometric factors in the horizontal direction are
evenly distributed, and the difference between the distribution values is slight, between
1 and 1.3. While in vertical height, the value of VDOP varies drastically due to the slight
variation in relative height between the base stations.
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Figure 5. HDOP distribution in the simulation scenario.

Figure 6. VDOP distribution in the simulation scenario.

4.2. Simulation Results of Different Trajectory Scale

In order to verify the effect of sizing on positioning accuracy, simulations of different
scales of square and straight lines are performed experimentally.

As shown in Figures 7 and 8, the number of points taken is four, and the accuracy of
the AR solution is improved when the moving distance increases. In this scenario, the AR
accuracy is better than 0.3 cycles for different standard deviations when solving with four
vertices of a square with a side length of 4 m.

4.3. Simulation Results of Different Points of the Trajectory

In this section, a circular trajectory with a radius of 6 m was used. Four, six, and eight
points were selected at equal intervals for simulation experiments. The result is shown in
Figure 9.

As the number of points increases, the accuracy of the solution increases accordingly, as
shown in Figure 9. However, the amount of calculation will increase. Therefore, the number
of selected points should be treated differently according to different application scenarios.
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Figure 7. RMSE values of AR for squares with different trajectory sizes.
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Figure 8. RMSE values of AR for line with different trajectory sizes.

Figure 9. RMSE values of AR by using a different number of points.
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5. Real-World Experiments in Robot Systems

In this section, we conducted a real-world experiment in robot system to verify the
accuracy of the positioning results and the AR in practice.

5.1. Experimental Equipment and Scenario

A multi-sensor fusion wheeled cart is used for the experiment. It mainly contains the
radar, power and control modules and the receiver module for experimental verification,
as shown in Figure 10.

Figure 10. Multi-sensor fusion vehicle.

The receiver contains the receiving antenna and the data processing module. The
positions of the sensors have been calibrated. The sampling frequency of the receiver is
5 Hz.

The transmitting antennas representing the base stations are connected by wires to
maintain frequency synchronization. The control host computer and the transmitting
channels are shown in Figure 11. The signal carrier frequency is 1575.42 MHz. Eight base
stations are evenly distributed on the same horizontal plane, as shown in Figure 12.

Figure 11. The main controller and transmitting channels.
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Figure 12. The base stations.

The base station is deployed on the roof, and the coordinates are shown in Table 2.

Table 2. Antenna Array Coordinates.

Base Stations X (m) Y (m) Z (m)

BS1 1.412 2.809 11.344
BS2 1.980 4.376 11.341
BS3 1.191 5.839 11.337
BS4 −0.148 6.229 11.360
BS5 −1.420 5.664 11.335
BS6 −1.988 4.130 11.493
BS7 −1.239 2.660 11.343
BS8 0.113 2.242 11.365

5.2. Cycle Slip Detection Analysis

Cycle slip detection belongs to the part of data preprocessing, which ensures the
correctness of observations. Similar to GNSS, cycle slips can occur in GBPS and cause
interference to carrier phase positioning. Fortunately, our model can detect and correct the
cycle slips in time to provide the correct carrier phase data for high-precision positioning,
which is also an advantage of the model. We used the real collected linear motion data and
added simulated cycle slips for illustration, as shown in Figure 13.
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Figure 13. Carrier phase data after differencing from base station one (a: no cycle slips, b: a cycle slip
occurred at the 600 epoch of station 2).
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The straight line indicates that the receiver is static, while the oblique line indicates
that the receiver is moving in Figure 13a. We add cycle slip at around 600 epochs, with
a size of 2 cycles, as shown in Figure 13b. It can be seen from Figure 14 that the station
(blue line) where the cycle slip occurs has apparent bumps. We find the slope between the
epochs of the received data, as shown in Figure 14.
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Figure 14. Slope values between epochs.

The slope of the cycle slip about 10 (frequency is 5 Hz, sometimes 10 Hz is used), and
the other positions are below 1.5. We can set a threshold equal to 4, to determine whether
a cycle slip has occurred. After that, we can repair or discard the data of the station for
position solving.

The accuracy of the carrier phase should be guaranteed after a distance movement.
When several cycle slips occur, Doppler information can assist in detection and repair:

∆ΦLi1 = ΦLi(t)−ΦLi(t− 1)

∆ΦLi2 = −[DLi(t) + DLi(t− 1)]dt/2

CS = (∆ΦLi1 − ∆ΦLi2)

(37)

where CS is the number of cycle slips, CS is close to 0 when there is no cycle slip. Φ denotes
the carrier phase data, and D denotes Doppler information. dt denotes the sampling
interval. We added four different numbers of circumferential hops in the S3 carrier phase
of the moving receiver, and the results of cycle slip detection and repair are shown in
Figure 15.
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Figure 15. Cycle slip detection (a) and repair (b).
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5.3. Moving Trajectory and Positioning Accuracy

First, we analyzed the noise situation of the carrier phase of the base station. The
receiver is stationary for a period of time in the localization area, and the data of 300 epochs
are used to analyze the standard deviation of the noise.

The double-differential results for base station three, four, and five at stationary state
are shown in Figure 16 (the reference differential station is station one). The average value
of the standard deviation of all base stations is 0.0037 cycle, which indicates that the system
has centimeter-level positioning capability.
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Figure 16. Base station carrier phase noise condition.

The test area was a 12.5 m × 12.5 m indoor environment of constant height. The path
of the multi-sensor cart moved as a circular trajectory in the center of the field.

As the vehicle moves, the resultant value of the double difference of each base station
gradually changes from 0.

Six points were evenly selected for the AR as shown in Figure 17. The initial position
was found using the particle swarm algorithm (Equation (26)), and the average value of
the initial deviation for the six points was calculated to be 0.56 m. Afterward, the optimal
solution of AR is performed by using Equation (34). Once the AR is obtained, the location
of all epochs can be determined by using the least-squares method. The position of ground
truth was determined using a high precision total station. The results of the resolved
position are shown in Figure 17.
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Figure 17. Moving trajectory path solution results ((a) Test scenarios, (b) Test results). The Chinese
characters are ground marks.
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The vehicle moved in a circle at a smooth speed with a radius of 3 m. The RMSE of
the refined solution was about 4.3 cm. This experiment showed that the proposed method
can achieve centimeter-level accurate positioning.

6. Discussion

This study shows that A-OTF can achieve high precision positioning with robust-
ness under the condition that system noise statistics involve uncertainty. The proposed
double-difference model can provide the search range of solutions for nonlinear intelligent
algorithms. It dramatically simplifies the algorithm’s complexity and provides new ways
of solving AR for high precision ground-based navigation. It also provides ideas for other
strongly nonlinear problems.

Adaptive PSO provides an approximate initial solution for the AR. A-OTF does not
use pseudo-range data and can be applied in indoor environments with severe multipath.
Unlike the method using known points for initialization, A-OTF does not depent on a
priori information. Compared with DDS-OTF (double difference square on the fly), it does
not require fitting the receiver’s crystal residuals, which can cause inconveniences. On
the other hand, the residual fitting error would cause a significant positioning error when
a low stability crystal oscillator is used. Different from DDS-OTF, which requires matrix
calculations for dozens of points simultaneously. Only a few points need to be calculated
by using A-OTF, which improves the calculation efficiency. In addition, we demonstrated
the high sensitivity of the A-OTF method for cycle slip detection by actual measurement
data. It ensures the accuracy of the data used for high-precision positioning. However, like
the previous methods, the requirement of geometric diversity leads to some limitations of
the algorithm.

From the results in the simulation, points with a certain interval distance should be
selected to improve the accuracy of AR. The carrier phase double difference results can
describe the change in the position of the receiver. These selected points are kept distant
from each other in Equation (24) to make a geometric change for the receiver. The increase
in precision reduces the real-time performance of the algorithm.

The real-time performance of the algorithm can be improved if other positioning
sensors are available. During the AR solution, sensors such as inertial navigation can
be used to assist in meeting the continuity of real-time positioning, which is also our
future work.

We proved that path scale and diversity have an important influence on AR solutions
through theoretical calculations and simulations. The increase of the geometric scale and
the path change help improve the AR accuracy. This finding brings guidance to AR solving
in GBPS.

7. Conclusions

This paper proposes a novel adaptive AR method to address the classical solutions that
rely on initial points or high precision measurement instruments. This paper’s innovation
is to establish a double-difference model to remove the base station clock difference and
carrier phase ambiguity to obtain the coordinate position approximation initial solution.
These points ensure that the initial nonlinear error is within the controllable range during
the iteration of the refined stage. The PSO method for finding the initial solution uses
an adaptive technology, which can quickly iteratively converge in different noises and
paths. This is also the first work in GBPS that considers cycle slip and high-precision AR
simultaneously. This method is suitable for scenarios where reliable code measurements
are lacking or multipath is severe, allowing base station synchronization inaccuracies and
thus making system deployment easier. It can also effectively control the computational
load involved in OTF, leading to a significant improvement of computational performance
for real-time applications in ground-based systems. In addition, the paper explores the
impact of path changes on AR solutions. Real-world experiments verified the reliability of
the method.
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Future research efforts will focus on the improvement of the proposed A-OTF. It is
expected to be combined with artificial intelligence techniques such as neural networks
and advanced expert systems to estimate system noise’s statistical properties automatically.
In addition, we will verify the system’s reliability using different test scenarios.
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