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Abstract: In order to understand the impingement flow field and cooling characteristics of vectoring
dual synthetic jets (DSJ), an experimental investigation was performed to analyze the parameter
effects. With the variation of the slot location, the vectoring angle of DSJ can be adjusted from 34.5◦

toward the left to 29.5◦ toward the right. The vectoring function can greatly extend the length of
impingement region. There are three local peaks both for the local cooling performance (Nu) and the
whole cooling performance (Nuavg). Although the peak Nu at a certain location of the slider is higher
than that at the center, the corresponding Nuavg is lower. As for different driving frequencies, the
vectoring angle reaches its minimum of 9.7◦ at 350 Hz, but the Nu is obviously improved. There is
one local peak of Nuavg values at 350 Hz rather than three local peaks at 250 Hz and 450 Hz. The slot
locations where the Nuavg of 250 Hz and 450 Hz reach maximum are different. With the increase in
driving voltage from ±100 V to ±200 V, the vectoring angle drops from 46.9◦ to 22.2◦, but both Nu
and Nuavg are improved. The maximum Nuavg of each driving voltage occurs at the center location of
the slider. The choking effect and the cross flow have dominated the vectoring angle and the cooling
performance of impingement DSJ. Vectoring DSJ will give impetus to the thermal management of
large-area electric devices in spaced-constrained cooling and removing dynamic hotspots.

Keywords: dual synthetic jets; impingement flow field; vectoring angle; impingement cooling;
thermal management

1. Introduction

Due to the unique capability of additional momentum injecting into ambient fluid
without complex plumbing, synthetic jet technology shows a significant potential for
active flow control. Synthetic jets have been engaged in applications of aerodynamic force
control [1–5], flow separation control [6–9], mixing enhancement [10–12], jet vectoring
control [13–15], heat transfer enhancement [16–19], etc. With the development of integrated
electrical systems in miniaturization and high power, the cooling problem becomes a greater
challenge. Traditional cooling techniques such as fans and heat pipes cannot satisfy the
demands of compact cooling systems. Thus, there is an urgent need to seek a simple and
high-efficiency cooling method.

Impinging jets have been widely used in electronic cooling due to the high heat
transfer coefficient [20]. However, there are some obvious disadvantages for impinging
jets, such as high energy consumptions and needs of external fluid plumbing. Thus, the
development of an impinging synthetic jet which needs no fluid supply system has drawn
researchers’ attention. Because of the interactions of coherent structures with thermal
boundaries [21,22], the impingement cooling performance of a synthetic jet is much better
than a continuous jet [23]. Luis and Alfonso [24] revealed the mechanism of the heat
transfer enhancement of an impinging synthetic jet by analyzing the vortex dynamics. They
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discovered that a secondary vortex with an opposite circulation was generated after the
vortex pair arrived at the heated wall. Greco et al. [25] investigated the combined effect
of impingement distance and stroke length on the cooling performance of an impinging
synthetic jet. Both inner and outer ring-shaped regions occurred at a short impingement
distance under the highest dimensionless stroke length. As the impingement spacing
increased, the outer ring-shaped regions disappeared owing to the weakening of secondary
vortex rings. Qiu et al. [26] analyzed the effect of the interactions between a circular
synthetic jet and a cross flow in a microchannel on the heat transfer process. They pointed
out that the heat transfer enhancement could be divided into two parts of an impinging
region and an entraining region. Lyu et al. [27] investigated the heat transfer characteristics
of a single synthetic jet with two planar-lobed orifices impinging on flat and concave
surfaces. It was demonstrated that the N = 6 petal-shaped orifice was a most promising
orifice configuration. For the baseline round orifice, the spatially-averaged Nu was reduced
up to 25% on the concave surface with respect to the flat surface. Lau et al. [28] analyzed
the effects of nanoparticle types and volume concentrations on the heat transfer in a three-
dimensional microchannel with a synthetic jet based on a Eulerian approach. With the
increase in the volume concentration, the viscosity became higher, resulting in a poorer
cooling performance. The overall cooling performance of Al2O3-water nanofluid was the
best at the volume concentration of 5%. Wang et al. [29] investigated the flow characteristics
and unsteady heat transfer of noncircular synthetic jets impinging on a heated plate.
Compared with the circular orifice, the jet penetration from the square orifice into the wall
shear layer was deeper, and the maximum stagnation cooling coefficient increased 42%.
The axis-switching phenomenon of elliptic and rectangular orifices enhanced the near-wall
mixing and the turbulent kinetic energy. The heat transfer was improved compared with
the circular orifice. The flow and thermal behavior of impingement synthetic jet driven
by sinusoidal and square signals were analyzed by Singh et al. [30]. It was found that the
cooling performance in the stagnation region with square signal is 18.94% higher than
that with sinusoidal signal, but the averaged Nusselt number with the sinusoidal signal is
20.86% higher.

As above mentioned, the impingement cooling based on a traditional synthetic jet
cannot vary the jet direction, and thus the cooling area is certain and limited. It is not
applicable to the large-area cooling and the removal of dynamic hotspots. Considering this,
vectoring dual synthetic jets (DSJ) was developed realized by controlling the movement of a
slider based on a synthetic jet [31–34]. It has been found that DSJ has exhibited an excellent
performance in impingement cooling and spray cooling [35–38]. Moreover, vectoring DSJ
has been proven to be a useful cooling technology in space-constrained and large-area
electronic cooling [39].

The vectoring function and the doubled energy utilization efficiency of vectoring DSJ
make it potentially useful for cooling applications. The aim of the present work is to investi-
gate the effects of slider location, driving voltage and driving frequency on the impingement
flow field and cooling characteristics of vectoring DSJ. A compact thermal management
strategy is provided for space-restricted electronic cooling based on a vectoring DSJ.

2. Experimental Device and Methods
2.1. Experimental Device

The experiment set up, as sketched in Figure 1, included a vectoring DSJ actuator,
an impinged plate, a particle image velocimetry (PIV) system, and an infrared camera.
The vectoring DSJ actuator driven by a sine signal was installed under the plate with a
constant distance of 40 mm. The configurations of two slots are shown in Figure 1a, and
each width of two slots could be adjusted by changing the slider location through a step
motor (seeing Figure 1b). A stainless-steel foil (196 mm × 100 mm × 0.08 mm) was selected
as the impinged plate.
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Figure 1. Experimental device.

A 2D PIV system of MicroVec Corp. was used to measure the impingement flow field
of vectoring DSJ. A sheet light with a thickness of 1 mm was generated from a twin-cavity
Nd: YAG laser with a separation of 12 µs. The output energy of each laser pulse was about
200 mJ with a duration of 7 ns. The impingement model of vectoring DSJ was covered in
a Plexiglas® container. The xoz plane was brightened by a laser sheet of 1 mm thickness
at a frequency of 10 Hz. The particle images with a resolution of 0.035 mm/pixel were
recorded by a charge-coupled device (CCD) through an optical filter. The cross-frame time
was set according to the DSJ velocity. Phase-locked and phase-shifting technologies were
used to capture the images at 16 equal-divided phases of the DSJ period. A velocity field
has been processed using the MicroVec 3.0 software package based on a two-frame cross-
correlation algorithm with an interrogation window of 32 × 16 pixels and 50% overlap. A
phase-averaged flow field was calculated according to 24 pairs of velocity fields at each
phase point. Then the period-averaged flow field of impingement DSJ was achieved by
averaging the 16 phase-averaged flow fields.

A FLIR infrared camera was installed above to measure the temperature distribution
on the top surface of the impinged plate. The measurement range was from 5 ◦C to 2500 ◦C
with an accuracy of ±1 ◦C. The impinged plate was steadily and uniformly heated by a
direct-current source. Since the maximum Biot number was 0.0013, which was much less
than the critical value of 0.1 along the thickness direction, the temperature of the top surface
and impinged surface at the same location could be deemed to be consistent. To improve
the radiation feature and the measurement accuracy, a thin and uniform layer of a black
matted paint with an emissivity of 0.95 was painted on both sides of the plate. When the
plate reached its thermal equilibrium, fifty thermal images were recorded with a sampling
frequency of 20 Hz. The steady-status temperature distribution was obtained by averaging
the fifty thermal images.

2.2. Vectoring Evaluation Method of Impinging DSJ

In order to explicitly quantify the vectoring angle of DSJ, an evaluation method was
proposed based on the potential core. Firstly, a potential core was selected to cover the
vast bulk of jet momentum in an evaluated flow field. Secondly, we considered a line and
projected the velocity vectors in the potential core onto the line. An objective function
was defined as the sum of the projection values of the velocity vectors in the potential
core. Thus, the objective function could be deemed as the impinging strength of the jet
momentum in the potential core along the line. Finally, the maximum of the objective
function could be achieved for a specific projected line. The inclination angle of the specific
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line was prescribed as the vectoring angle of flow field. The detailed algorithm is explained
as follows.

In this paper, the critical velocity Vc is defined as half of the maximum velocity
magnitude in the period-averaged flow field of the vectoring DSJ. The region with velocity
magnitude beyond the critical velocity is regarded as the potential core.

Vc =
Vmax

2
=

max(|Vi|)
2

=
max(

√
u2

i + w2
i )

2
(1)

where V i denotes the velocity vectors with components of ui and wi along x-axis and
z-axis, respectively.

According to the definition above, the objective function So is expressed as

So =
n

∑
i=1

(Vi·eθ)

∣∣∣∣∣
|Vi |≥Vc

(2)

where eθ is the unit vector along an assuming line with an inclination angle θ with respect
to z-axis, depicted as

eθ = (
tan θ√

1 + tan2 θ
,

1√
1 + tan2 θ

) (3)

Then, the objective function can be written as

So =
n
∑

i=1
(Vi·eθ)

∣∣∣∣
|Vi |≥Vc

=

(
n
∑

i=1

ui tan θ√
1 + tan2 θ

+
n
∑

i=1

wi√
1 + tan2 θ

)∣∣∣∣
|Vi |≥Vc

=
tan θ

n
∑

i=1
ui+

n
∑

i=1
wi

√
1 + tan2 θ

∣∣∣∣∣∣
|Vi |≥Vc

(4)

It can be concluded that there must be a specific angle θ0, at which the objective
function reaches its maximum. The mathematical relation is given by

(So)max = lim
θ→θ0

So (5)

As mentioned above, θ0 represents the direction of the jet momentum in the potential
core, and also the vectoring angle of flow field.

2.3. Cooling Performance Evaluation Method of Impinging DSJ

The local cooling performance of impingement DSJ, namely the Nusselt number (Nu),
is evaluated by

Nu =
hde

λ
(6)

where λ is the thermal conductivity of air at the average temperature of the impinged
surface. The slider width of 5 mm is chosen as the characteristic length de. h is the local
heat transfer coefficient of impingement DSJ expressed as

h =
qnet

Ts − Tj
(7)

where qnet is the net heat flux removed by impingement jet, Ts and Tj are the local tempera-
ture of impingement surface and jet temperature, respectively.
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The net heat flux is estimated as follows

qnet =
Qele −Qloss

A
(8)

where Qele is the heating power, Qloss is the total heat loss, A is the effective heating area of
impinged surface.

The area-averaged Nusselt number (Nuavg) of the whole impingement surface is
calculated by:

Nuavg =

∫
Ω Nudxdy

AΩ
(9)

where AΩ is the image area recorded by the infrared camera.
In the experiments, the heating power is kept a constant of 40 W with a measurement

error less than 1.4%. The total loss heat resulted from the radiation and the lateral is
estimated to be within 6.4% of the heating power. The uncertainty of Nu is less than 8%
through the evaluation method [40].

3. Results and Discussion
3.1. Effect of Slider Location

The slider location determines the area ratio of two slots which influences the momen-
tum ratio of two synthetic jets and the strength of the low-pressure region. Thus, different
momentums of two synthetic jets result in the deflection of DSJ. Comparing to a traditional
synthetic jet, vectoring DSJ can greatly extend the impingement area. The PIV results with
different dimensionless slider location d*, defined as d/de, are exhibited in Figure 2. The
driving voltage and driving frequency are set to ±150 V and 450 Hz, respectively.
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Figure 2. Velocity vector maps, contours, and vectoring angles at different slider locations.

As demonstrated in Figure 2, the DSJ deflects toward the side of the slot with a greater
cross section. The reason is that the jet momentum from a smaller width slot is higher,
which can be deemed as a primary jet. Conversely, the other jet with a lower momentum is
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regarded as a disturbing jet. As the primary jet issues from the slot, the other jet is in the
suction phase. A low-pressure region is generated near the slot, which causes the primary
jet deflects. As the disturbing jet is formed in the blowing phase, the primary jet has moved
downstream. The entrainment of vortex structures in the disturbing jet accelerates the
deflection of the downstream primary jet. So, the DSJ deflects toward the slot with a larger
cross section. With d* varying from −0.2 to 0.2, the vectoring DSJ can deflect from 34.5◦

toward the left to 29.5◦ toward the right. Since the momentums of two synthetic jets are
equal at d* = 0, there is no deflection. The vectoring angle of 1.3◦ at d* = 0 (in Figure 2c)
may be attributed to the asymmetry of two slots resulting from machining errors. It is
observed that the stagnation region length is about 8de (from −4de to 4de) for the normal
DSJ (seeing Figure 2c), while for the vectoring DSJ it increases to 15de (from more than −8de
in Figure 2a to 7de in Figure 2e). Additionally, the jet velocity becomes a little higher at an
off-center slider location. It has been proved that the heat transfer coefficient decreases
with the increase in the inclination angle of synthetic jet, and reaches the maximum for the
normal impingement [41]. Considering the vectoring characteristic, the vectoring DSJ can
be obliquely installed to make its impingement normal. This feature will be greatly useful
in spaced-constrained cooling applications.

Figure 3 shows the Nu distributions on the impinged surface at different slider lo-
cations. The driving voltage and the driving frequency are kept at ±150 V and 500 Hz,
respectively. It is indicated that the Nu distribution at d* = 0 is self-symmetrical and two
Nu distributions at a same |d*| are symmetrical about the line x/de = 0. The high Nu area
gradually moves away from the center with the increase in |d*|. The reason is that with
the increase in |d*|, the vectoring angle of DSJ becomes larger which causes the stagnation
region moving away from the center.
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Figure 4a draws the Nu on the centerline y/de = 0 along the x-axis. The solid dot
represents the peak Nu on the curves. It can be seen that the curves at the same |d*| are
symmetrical with the line x/de = 0. With the increase in |d*|, the curves and peak point of
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Nu gradually move away from the center, which is consistent with the variation trend of the
vectoring angle (shown in Figure 2). The peak Nu reaches its maximum at |d*| = 0.08 rather
than at the center location. The reason is that the DSJ velocity increases with the increase in
|d*|, which improves the local cooling performance. As |d*| continues to increase, the
thickness of the viscous layer in the slot neck gradually grows and eventually fills the entire
neck. As a result, the choking effect occurs in the slot neck and the DSJ velocity reduces.
Moreover, the vectoring angle increases with the increase in |d*| (shown in Figure 2) and
the impingement DSJ will gradually transform to a cross flow, resulting in the weakness of
the cooling performance. There are three local peaks of Nuavg at d* = 0 and ±0.28 (shown in
Figure 4b). The reason is that at the beginning of |d*| increase, the DSJ velocity increases,
which improves the whole cooling performance. As |d*| continues to increase, the choking
effect impairs the DSJ velocity, and meanwhile the increase in vectoring angle enhances
the cross-flow effect of the DSJ. Thus, the whole cooling performance reduces rapidly.
Although the maximum values of Nu at d* = ±0.08 and ±0.16 are larger than that at d* = 0
(shown in Figure 4a), the values of Nuavg are smaller (shown in Figure 4b). Since the DSJ
velocity d* = ±0.08 and ±0.16 are higher than that at d* = 0 owing to the smaller cross
sections, and the local cooling performance. However, the vectoring angles at d* = ±0.08
and ±0.16 enhance the cross-flow effect and reduce the impingement stagnation region of
the DSJ, which causes the decrease in overall cooling performance.

Actuators 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

Figure 4a draws the Nu on the centerline y/de = 0 along the x-axis. The solid dot rep-
resents the peak Nu on the curves. It can be seen that the curves at the same |d*| are 
symmetrical with the line x/de = 0. With the increase in |d*|, the curves and peak point of 
Nu gradually move away from the center, which is consistent with the variation trend of 
the vectoring angle (shown in Figure 2). The peak Nu reaches its maximum at |d*| = 0.08 
rather than at the center location. The reason is that the DSJ velocity increases with the 
increase in |d*|, which improves the local cooling performance. As |d*| continues to in-
crease, the thickness of the viscous layer in the slot neck gradually grows and eventually 
fills the entire neck. As a result, the choking effect occurs in the slot neck and the DSJ 
velocity reduces. Moreover, the vectoring angle increases with the increase in |d*| (shown 
in Figure 2) and the impingement DSJ will gradually transform to a cross flow, resulting 
in the weakness of the cooling performance. There are three local peaks of Nuavg at d* = 0 
and ±0.28 (shown in Figure 4b). The reason is that at the beginning of |d*| increase, the 
DSJ velocity increases, which improves the whole cooling performance. As |d*| continues 
to increase, the choking effect impairs the DSJ velocity, and meanwhile the increase in 
vectoring angle enhances the cross-flow effect of the DSJ. Thus, the whole cooling perfor-
mance reduces rapidly. Although the maximum values of Nu at d* = ±0.08 and ±0.16 are 
larger than that at d* = 0 (shown in Figure 4a), the values of Nuavg are smaller (shown in 
Figure 4b). Since the DSJ velocity d* = ±0.08 and ±0.16 are higher than that at d* = 0 owing 
to the smaller cross sections, and the local cooling performance. However, the vectoring 
angles at d* = ±0.08 and ±0.16 enhance the cross-flow effect and reduce the impingement 
stagnation region of the DSJ, which causes the decrease in overall cooling performance. 

 
Figure 4. Variations of Nu and Nuavg. 

3.2. Effect of Driving Frequency 
Previous work [42] has shown that the frequency response of a piezoelectric-driven 

synthetic jet actuator is consistent with that of a damped fourth order system governed 
by two key resonance frequencies—the natural frequency of the vibrating diaphragm and 
the Helmholtz resonance frequency. There are two local peaks of jet velocity and energy 
efficiency at the two resonance frequencies. In this section, experiments on the effect of 
driving frequency are carried out at a constant driving voltage of ±150 V and d* = 0.2. The 
PIV results are illustrated in Figure 5. 

It is observed from Figure 5 that the vectoring angle shows a non-monotonic varia-
tion trend with the increase in driving frequency. The minimum vectoring angle is 9.7° at 
the driving frequency of 350 Hz. The natural frequency of vibrating diaphragm is about 
360 Hz. Since the amplitude of the vibrating diaphragm will increases significantly near 

(a) Nu on the centerline of y/de=0 (b) Nuavg variations with slider location 

− − − −−−−

−
−
−

Figure 4. Variations of Nu and Nuavg.

3.2. Effect of Driving Frequency

Previous work [42] has shown that the frequency response of a piezoelectric-driven
synthetic jet actuator is consistent with that of a damped fourth order system governed
by two key resonance frequencies—the natural frequency of the vibrating diaphragm and
the Helmholtz resonance frequency. There are two local peaks of jet velocity and energy
efficiency at the two resonance frequencies. In this section, experiments on the effect of
driving frequency are carried out at a constant driving voltage of ±150 V and d* = 0.2. The
PIV results are illustrated in Figure 5.

It is observed from Figure 5 that the vectoring angle shows a non-monotonic variation
trend with the increase in driving frequency. The minimum vectoring angle is 9.7◦ at the
driving frequency of 350 Hz. The natural frequency of vibrating diaphragm is about 360 Hz.
Since the amplitude of the vibrating diaphragm will increases significantly near the natural
frequency, the DSJ velocity at 350 Hz is much higher than that at the other two frequencies.
A higher DSJ velocity requires a greater force to deflect. Thus, the vectoring angle and
the impingement stagnation region become small. To prevent electrical and mechanical
failure of the vibrating diaphragm, the driving frequency should not be set at the resonant
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frequency. The driving frequency should be chosen by balancing the cooling performance
and the service life of the DSJ actuator.
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Figure 5. Velocity vector maps, contours and vectoring angles at different driving frequencies.

Nu contours on the impinged surface at different driving frequencies and slider
locations are displayed in Figure 6. It can be seen that the peak Nu and the high Nu area of
350 Hz are obviously larger than those of 250 Hz and 450 Hz for each slider location. It is
attributed to the frequency of 350 Hz close to the resonant frequency where the jet velocity
is very higher (shown in Figure 5). As a result, the local heat transfer coefficients are higher
than those of other two frequencies which are far away from the resonant frequency. For
the driving frequency of 350 Hz, the peak Nu at d* = 0 is greater than those at d* = ±0.24.
The tendencies are contrary at driving frequency of 250 Hz and 450 Hz. The reason is that
the DSJ velocity of 350 Hz is high enough at d* = 0, and the choking effect occurs in the
narrow slot neck during the slider moving away from the center. It means although the
cross section of the slot becomes smaller, the jet velocity may decrease, such as the slider
locations of d* = ±0.24. For the driving frequency of 250 Hz and 450 Hz, the DSJ velocities
are low at d* = 0 and increase with the decrease in the slot cross section at d* = ±0.24. A
higher DSJ velocity produces a better local cooling performance and a higher local Nu.
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Figure 6. Nu contours at different driving frequencies and slider locations.

Nuavg with different drive frequencies and slider locations are shown in Figure 7.
Results in Figure 7 indicate that there are three local peaks at d* = 0 and d* = ±0.24 both
for 250 Hz and 450 Hz, which is similar to Figure 4b. The distinction is that the maximum
Nuavg of 450 Hz occurs at d* = 0 rather than that of 250 Hz at d* =±0.24. The reason is that at
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d* = 0 the DSJ velocity of 250 Hz is smaller than that of 450 Hz and increases more obviously
at d* = ±0.24. In addition, the impingement area is larger at d* = ±0.24 than that at d* = 0.
As a result, the cooling performance at d* = ±0.24 is better than that at d* = 0. There is
only one local peak with the drive frequency of 350 Hz, which is different from the drive
frequency of 250 Hz and 450 Hz. It is attributed to that the DSJ velocity at 350 Hz becomes
small owing to the choking effect in the slot neck when the slider moves away from the
center. The decrease in DSJ velocity is more remarkable than the increase in impingement
stagnation region, and thus the whole cooling performance gradually becomes weak. For
the driving frequency of 250 Hz, although the DSJ velocity at d* = ±0.08 is a little higher
than that at d* = 0, the cross-flow effect is more obvious due to the vectoring deflection.
Overall, the whole cooling performance decreases a bit. As the slider location moves to
d* = ±0.24, the increase in the DSJ velocity is more remarkable than the enhancement of
the cross-flow effect. Thus, the whole cooling performance gradually improves. As |d*|
continues to increase, the choking effect occurs and impairs the DSJ velocity. The whole
cooling performance reduces. The explanation for the variation trend of Nuavg at 350 Hz
is similar to the above mentioned about 250 Hz. The differences are that the maximum
Nuavg of 450 Hz occurs at d* = 0 rather than that of 250 Hz at d* = ±0.24. The reason is that
the DSJ velocity of 250 Hz can be obviously enhanced with the increase in |d*|, which
improves the whole cooling performance.
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3.3. Effect of Driving Voltage

The driving voltage influences the input power imposed on the vibrating diaphragm,
and then regulates the velocities of the primary jet and the disturbing jet. To investigate the
effect of driving voltage experiments under three different driving voltages are executed.
The corresponding velocity vector maps and contours at the driving frequency of 450 Hz
and d* = 0.2 are shown in Figure 8.

It can be seen that the velocity becomes high with the increase in the driving voltage,
but the vectoring angle of DSJ decreases from 46.9◦ to 22.2◦. It is attributed to that a high
driving voltage can improve the amplitude of vibrating diaphragm, as well as the jet
velocity. As the driving voltage increases, both of the primary jet and the disturbing jet are
enhanced. Thus, the primary jet requires more force to deflect. However, the deflection
force generated by the suction phase of the disturbing jet increases a little. The reason is
that the fluid away from the primary jet is easily inhaled due to the three-dimensional
effect of the suction process. Thus, the vectoring angle of DSJ becomes small. It is also
observed that in view of the deflection symmetry, the impingement region of vectoring DSJ
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can be obviously extended. This feature is useful for improving the impingement cooling
uniformity and removing dynamic hotspots.
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Figure 8. Velocity vector maps, contours and vectoring angles at different driving voltages.

Figure 9 shows Nu distributions on impinged surface at different driving voltages and
slider locations. It is indicated that for each slider location, the peak Nu and the high Nu
region gradually increase with the increase in the driving voltage. The reason is that the
primary jet velocity becomes high with the increase in the driving voltage, and thus the
local heat transfer coefficient increases. The core of the high Nu region can move toward
the center location, which is agreement with the variation trend of the vectoring angle with
the increase in the driving voltage.
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Figure 9. Nu contours at different driving voltages and slider locations.

Nuavg at different driving voltages and slider locations are plotted in Figure 10. The
curves indicate that Nuavg improves with the increase in the driving voltage at each slider
location. It is attributed to the obvious increases in the peak Nu and the high Nu region
(shown in Figure 9). For each driving voltage, there is one peak of Nuavg at the center
location of the slider and decreases when the slider moves away from the center. The
reason is that the primary jet velocity is so high at the center location of the slider that
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the choking effect occurs when the slider moves away from the center. As a result, the
DSJ velocity reduces, as well as the heat transfer coefficient. Moreover, the impingement
DSJ can transform to a cross flow owing to the vectoring deflection. Above two reasons
make the whole cooling performance weak. Although a high driving can improve the
cooling performance, the energy consumption also increases. The driving voltage should
be selected by considering the energy utilization efficiency in the cooling applications.
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4. Conclusions

The effects of slot location, driving voltage, and driving frequency on impingement
flow field and cooling characteristics of vectoring DSJ are experimentally investigated.
Conclusions are summarized as follows:

(1) The DSJ deflects toward the side of the slot with a greater cross section. The
vectoring angle can be adjusted from 34.5◦ toward left to 29.5◦ toward right. The length
of the impingement region is over two times as large as that of the normal DSJ. With the
increase in |d*|, the maximum Nu increases first and then decreases. There are three local
peaks of Nuavg at d* = 0 and ±0.28. Although maximum Nu at d* = ±0.08 and ±0.16 are
larger than that at d* = 0, the Nuavg are smaller.

(2) The vectoring angle is lowest of 9.7◦ at the driving frequency of 350 Hz, but the
peak Nu and high Nu area are obviously augmented. There is one local peak of Nuavg at
350Hz rather than three local peaks of Nuavg at 250 Hz and 450 Hz. The difference is that
the maximum Nuavg of 250 Hz and 450 Hz, respectively, occurs at d* = 0 and at d* = ±0.24.

(3) With the increase in the driving voltage, the vectoring angle decreases from 46.9◦

to 22.2◦, but the length of the impingement area is extended. There is one local peak of
Nuavg at d* = 0 for each driving voltage.

Author Contributions: Conceptualization, X.D. and Z.L.; methodology, X.D. and W.H.; formal analy-
sis, X.D. and Z.D.; investigation, X.D. and Q.L.; writing—original draft, X.D.; writing—review and
editing, C.P. and Z.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 11972369, 11872374) and the Science and Technology Innovation Program of Hunan
Province (2021RC3075).

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.



Actuators 2022, 11, 376 12 of 14

Nomenclature

A effectively heated area (mm2)
AΩ integration area (mm2)
d slot location (mm)
d1, d2 width of two slots (mm)
de characteristic length (mm)
d* slot dimensionless location
eθ unit vector along the projected line
h convective heat transfer W/(m2K)
I current through the foil (A)
Ma Mach number
Nu local Nusselt number
Nuavg area-averaged Nusselt number
Qele, Qloss input power and heat loss (W)
qnet net removed heat flux (W/m2)
So objection function (m/s)
ui, wi velocity components along x, z axis
Ts, Tj impingement surface and jet

temperature (◦C)
V voltage across the foil (V)
Vc critical velocity (m/s)
Greek symbols
θ oblique angle of projected line (◦)
θ0 vectoring angle (◦)
λ thermal conductivity (W/(m·K))
Subscripts
avg spatially-averaged
net net
elc electric
j jet
loss heat radiation loss
max maximum value
s surface
Ω integral domain
Acronyms
CCD charge-coupled device
DSJ dual synthetic jet
PIV particle image velocimetry
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