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Abstract: This paper presents the design and implementation of a flexible manipulator formed
of connected continuum kinematic modules (CKMs) to ease the fabrication of a continuum robot
with multiple degrees of freedom. The CKM consists of five sequentially arranged circular plates,
four universal joints intermediately connecting five circular plates, three individual actuated tension
cables, and compression springs surrounding the tension cables. The base and movable circular plates
are used to connect the robot platform or the neighboring CKM. All tension cables are controlled via
linear actuators at a distal site. To demonstrate the function and feasibility of the proposed CKM, the
kinematics of the continuum manipulator were verified through a kinematic simulation at different
end velocities. The correctness of the manipulator posture was confirmed through the kinematic
simulation. Then, a continuum robot formed with three CKMs is fabricated to perform Jacobian-based
image servo tracking tasks. For the eye-to-hand (ETH) experiment, a heart shape trajectory was
tracked to verify the precision of the kinematics, which achieved an endpoint error of 4.03 in Root
Mean Square Error (RMSE). For the eye-in-hand (EIH) plugging-in/unplugging experiment, the
accuracy of the image servo tracking system was demonstrated in extensive tolerance conditions,
with processing times as low as 58± 2.12 s and 83± 6.87 s at the 90% confidence level in unplugging
and plugging-in tasks, respectively. Finally, quantitative tracking error analyses are provided to
evaluate the overall performance.

Keywords: continuum robot; image servo tracking; image jacobian; autonomous manipulation

1. Introduction
1.1. Motivation

Recently, automation-related equipment, especially robotic manipulators, has been
successfully used widely in industrial applications [1,2], medical services [3], and disaster-
based narrow-space exploration [4]. In addition to the conventional articulated manipula-
tors, soft and flexible manipulators are becoming more attractive to robotics researchers [5,6].
Continuum robots are typical examples of flexible manipulators, which have better agility
than conventional articulated manipulators. In general, a continuum robot is practical for
performing soft grasping and manipulating tasks, in the same vein as the manipulations of
the octopus tentacle or the elephant trunk. Hence, continuum robots are often operated in
narrow spaces because of their hyper degrees of freedom (DOF) motions [7,8]. Although
providing flexibility and agility in manipulating tasks, the deployment of multi-segment
continuum manipulators that exhibit non-constant curvature is still a formidable challenge
because of the complexity of deriving continuum kinematics.

1.2. Related Works

Continuum robots are typical examples of flexible manipulators capable of performing
with better agility than conventional articulated manipulators. The designs of continuum
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robots can be divided into two types: tension cable-driven and pneumatic-driven. For
tension cable-driven robots, Hannan et al. [9] designed a continuum robot formed by
32 coupled joints and a total of eight actuatable cables, making it capable of performing a
motion similar to that of an elephant trunk. Jones et al. [10] further proposed synthesizing
the kinematic relationship between a general continuum skeleton and a continuum robot.
The coordinates are related to the input of the controller (e.g., air pressure and tendon
length) to realize real-time tasks and shape control of a continuum robot. As Yoon et al. [11]
proposed, springs are also used as the backbone of the plate connection. Such a mechanism
design is mainly used to enhance the elasticity and flexibility of the overall continuum
structure to ensure the safety of the continuum robot when it collides with the human
body. Another design proposed by Tokunaga et al. [12] used an elastic center column and
springs, where the springs are installed outside the center column to avoid unexpected
shapes such as twisting, which is beneficial for handling weights and loads on the end
effector. For pneumatic-driven robots, the use of pneumatic artificial muscles is available for
developing continuum robots. Liu et al. [13] presented a light soft manipulator, where thin
McKibben pneumatic artificial muscles were utilized for continuously controllable stiffness
actuation. Their study successfully overcomes problems such as that most continuum
robots cannot continuously change their stiffness at a fixed end position. Dalvand et al. [14]
proposed an analytical loading model by considering the number of tendons and the load
distribution of the tendons to avoid the tendon relaxation problem that leads to inaccurate
motion control. Pneumatic-type continuum robots need a pneumatic source, and, therefore,
they are not convenient for installation, mobility, and maintenance. However, the tension
cable-driven type usually uses motors or linear actuators as the source of kinematic motion
control. Consequently, tension cable-driven continuum robots have advantages in terms of
installation, mobility, and maintenance. However, the kinematics of the tension cable-driven
continuum robot is much more complicated than those of conventional articulated robots.

In addition, bioinspired continuum robot designs have been studied. For example,
Hassan et al. [15] developed an active-braid design to fabricate a bioinspired continuum
manipulator. Their study adopted flexible cross-linked spiral array structures to form the
continuum structure. Inspired by the biological structure of snakes, Zhang et al. [16] pro-
posed a compound continuum robot combining concentric tubes and a notched continuum
robot to achieve a smaller diameter and a larger central cavity.

Because continuum robots can navigate and manipulate in a narrow space, they
have attracted considerable attention in designing surgical robots. Safety is an essential
aspect of robotic surgery. Comin et al. [17] presented a solution of combining a pneumatic
soft continuum robot and a rigid robot arm in terms of series connection. The rigid
part maintains a safe tool contact force, while the soft part follows the required cutting
path. Their solution can demonstrate teleoperated diathermic tissue-cutting tasks from
a safety consideration; although, the proposed system still was not friendly-using and
only worked on designed scenarios. In addition, Zhao et al. [18] proposed a variable
stiffness design for a continuum manipulator. Such a redundant continuum structure is
formed with an elastic backbone that exhibits a continuously constrained bending curvature.
Agility and miniaturization are design considerations in minimally invasive surgery (MIS)
operations. Qu et al. [19] presented a continuum manipulator design for MIS operation,
with a bioinspired wire-driven multi-backbone structure design being applied in this study.
A super-elastic backbone was utilized to connect a series of thin disks to form a continuum
structure with a 12 mm outer diameter and a total length of 180 mm. Another study
was proposed for flexible endoscopic surgery purposes. Hwang et al. [20] designed a
novel constrained continuum manipulator that used several auxiliary links attached to
the primary continuum for payload capability improvement. Similar to the design of
three 6-DOF continuum robots formed with cable-driven concentric tube mechanisms [21],
the design of a snake-like surgical continuum robot [22] and a continuum manipulator
with parallel and shifted-routing cable-driven control mechanisms for robotic surgeries
of endometrial regeneration [23], provide the design paradigms for novel continuum
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manipulators. Although making some achievements, these methods had to consider
finding a balance between the manipulator’s workspace and stiffness without increasing
the system’s complexity.

Furthermore, to survey the structural designs of continuum manipulators, the control
designs of continuum manipulators are also discussed. Shen et al. [24] presented a study on
a flexible backbone cable-driven continuum manipulator to improve accuracy to overcome
such factors as gravity or mechanism effects. The authors proposed a method consisting
of a kinematic model and data-driven Gaussian process regression (GPR) based on exper-
iments applied to hardware platforms to reduce the position and orientation errors by
68.72% and 51.74%, respectively. Other control systems applied to continuum robots also
provide helpful information in designing continuum robot control systems, such as pose
planning of a multi-section continuum manipulator in terms of an imitation learning-based
approach [25] and absolute positioning accuracy improvement of a continuum surgical
manipulator by utilizing the closed-loop control approach [26].

Images-based visual servoing (IBVS) studies are also discussed to demonstrate path
tracking and autonomous manipulation abilities. Lai et al. [27] proposed a vision-based
adaptive control scheme based on a soft continuum manipulator with a bidirectional two-
segment configuration. The proposed controller was realized with the IBVS approach. The
key point positioning error could reach within 6.5% based on the manipulator length, and
the robot will find the best fit to the desired shape if the goal positions are not reachable.
Yang et al. [28] presented the stereo tracking of a continuum surgical manipulator. A wrist
marker was designed to realize the closed-loop image-based servoing control scheme. The
feature points extracted from the stereoscopic images were evaluated to align with the
actual pose, including the position and direction of the target. Although the tip positioning
error was reduced to 25.23% during trajectory tracking, the control cycle is longer than the
preferred, making the manipulator overshoot when it changed motion direction. Finally,
many studies were proposed to realize the visual servoing ability of continuum robots
for a wide variety of applications, such as visual servoing and compliant control [29],
image-based laser beam steering control [30], model-free visual servoing combined with
singularity avoidance to enhance safety [31], and optical coherence tomography (OCT)-
guided visual servoing for micromotion manipulations [32,33], vision-based shape control
for cable-driven manipulator [34], hybrid EIH and ETH for visual servoing [35], and OCT
path scanning [36].

1.3. Contribution

This paper proposes an ideal constant curvature assumption to overcome the problem
of deriving continuum kinematics. With the well-defined continuum kinematics in [9]
and [10], this paper presents the kinematics of a continuum kinematic module (CKM) via
the parameters κ, ϕ, and l (the arc length, curvature, and rotation angle in the x-y plane of
CKM, respectively). Therefore, a complete continuum robot formed of connected CKMs
can be accumulated. It is noted that three CKMs are utilized to produce a continuum
robot for image-based servo tracking practices. Moreover, image-based path tracking and
autonomous manipulation are typical demonstrations for investigating the applicability of
hyper DOF continuum manipulators for possible deployment of service robots to provide
manipulation compliance and ensure safety in operation when performing human-robot
interaction (HRI). The main contribution of this study is summarized as follows:

• This paper presents a three-segment CKM-based continuum robot design that is
convenient for the fabrication of a continuum robot and efficient at obtaining the
overall kinematic model for control purposes.

• For the proposed design and control validation, experiments of image-based servoing
path tracking and autonomous manipulation are established, utilizing Jacobian images
to track the desired image targets by controlling the continuum robot. In the eye-to-
hand (ETH) experiment, a heart shape trajectory was tracked to verify the precision
of the kinematics with acceptably low endpoint errors. In the eye-in-hand (EIH)
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experiment, a stereo vision-based object detection algorithm was developed for the
power socket grasping task with high accuracy and efficient operation in real-time.

1.4. Limitation

Although addressing the problem of deriving continuum kinematics, the wire-driven
CKM causes posture deviation of the proposed three-segment continuum robot due to the
influence of gravity. Therefore, the mentioned limit may lead to the performance of the
visual servoing system in the EIH plugging/unplugging experiment being imperfect under
low-tolerance conditions.

The remainder of this study is organized as follows: In Section 2, the detail of the
multi-segment CKM-based continuum robot design, the architecture of a single CKM, and
the implementation of the image-based servo tracking systems are carefully described.
Next, Section 3 presents the experimental materials and methods, followed by the results
and corresponding subsequent analyses. Finally, the conclusions and future work are
summarized in Section 4.

2. Proposed Method

In this study, the proposed flexible manipulator with visual servoing, as shown in
Figure 1, comprises three continuum kinematic modules (CKMs). Each CKM includes
five circular plates, four universal joints connecting the circular plate, three independent
tension cables, and compression springs surrounding the tension cables. The architecture
of a single CKM is extended to the proposed flexible manipulator (i.e., continuum robot)
composed of three CKMs.
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Figure 1. The proposed flexible manipulator with three connected CKMs.

The visual servo control element deals with image-related information, identification
and selection of tracking points, Image Jacobian, and velocity kinematics calculations. For
the visual servo control to be able to achieve real-time processing effects, this system uses a
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Win10 computer, based around an i7-9750H CPU and NVIDIA GTX1660 GPU, and an Intel
Realsense D435i camera.

The continuum-manipulator platform is controlled based on the microcontroller
Teensy 4.0, which is mainly responsible for calculating forward and inverse kinemat-
ics. The control of the sliding table motor and air pressure-related components, the signal
processing of the sensor, and sending of the control signal to each sliding table, allow the
obtaining of the status of each sliding table. Finally, serial communication is used as the
communication protocol between the two systems. Figure 2 presents the overall structure
of the whole proposed system.
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Figure 2. The overall architecture of the proposed visual servo continuum manipulator.

The detailed CKM architecture, the design and kinematics of the continuum robot,
and image servo tracking will be introduced in the following subsections.

2.1. Design and Kinematics of A Continuum Kinematic Module (CKM)

Each CKM is composed of five circular plates and three tension cables, as shown
in Figure 3. The backbone of the CKM is formed with universal joints and compressive
springs. Tension cables are then used to control the curvature of the CKM. The compressive
springs and tension cables are intermediately arranged at the outer ring of the circular
plates to stabilize CKM backbone deformation. Three tension cables are then symmetrically
located at L1, L2, and L3, and three compressive springs are symmetrically located at L4,
L5, and L6.
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The forward kinematics of the proposed CKM is obtained by referring to [9]. First,
assume that the CKM bends as an ideal curvature shape. Then, for the convenience of
calculation, assume the arc centerline length is l, the arc radius is r, the angle of the arc is θ,
the arc curvature is κ, the center of the arc is o, and the angle that the CKM rotates on the
x-y plane is ϕ. The illustration of the arc parameter (ϕ, κ, l) is shown in Figure 4.
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Figure 4. Illustration of the CKM kinematics parameters.

As in [37], the rotation of the arm in space is divided into five groups of Denavit–
Hartenburg parameters. As illustrated in Figure 4, in the first turn, θ rotates to an angle of
ϕ along the z-axis and α rotates to an angle of π/2 along the x-axis in space. In the second
turn, θ is rotated to an angle of κl/2 along the z-axis while α is rotated to an angle of −π/2
along the x-axis, which means that the z-axis is aligned with the endpoint. In the third turn,
the linear distance between the bottom and the end d3 is extended along the z-axis, and
α is rotated at an angle of π/2 along the x-axis. In the fourth turn, θ is rotated along the
z-axis and α is rotated at an angle of −π/2 along the x-axis so that the coordinate axis is
positioned in the positive direction toward the endpoint of the CKM. Finally, θ is rotated
at an angle of −ϕ to offset the first set of rotations in the last turn. In summary, the D–H
matrix of a single CKM can be obtained through the abovementioned rotation relationship,
as in Table 1.

Table 1. Single CKM D–H matrix.

Transform Turn θ d a α

1 ϕ 0 0 π/2
2 κl/2 0 0 −π/2
3 0 2/κ × sin(κl/2) 0 π/2
4 κl/2 0 0 −π/2
5 −ϕ 0 0 0

Through the D–H matrix in Table 1, and by substituting it into the calculation, the
transformation matrix from the center coordinates of the circular bottom plate to the center
coordinates of the end circular plate can be obtained:

T5
1 =


cos2 Φ(cos(kl)− 1) + 1 sin Φ cos Φ(cos(kl)− 1) cos Φ sin(kl) cos Φ(1−sin(kl))

k

sin Φ cos Φ(cos(kl)− 1) cos2 Φ(1− cos(kl)) + cos(kl) sin Φ sin(kl) sin Φ(1−cos(kl))
k

− cos Φ sin(kl) − sin Φ sin(kl) cos(kl) sin(kl)
k

0 0 0 1

 (1)

The points (x, y, z) in the working plane must be converted into arc parameters
(ϕ, κ, l) with inverse kinematics using the inverse kinematics in [2]. The conversion shows
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its bending geometric relationship, as illustrated in Figure 5. The target point can be
projected from three-dimensional space to two-dimensional space:

ϕ = tan−1 y
x

(2)
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A single CKM bends in an ideal arc shape, so the intersection of the end circular
plate and the bottom circular plate extension line is the arc center of the CKM centerline.
Therefore, the connecting line from the circular bottom plate to the center of arc o passes
through the projected point to the x-y plane (x, y). Through geometric relations, the arc
angle θ and arc radius r can be obtained:

r =
x2 + y2 + z2

2
√

x2 + y2
(3)

θ = cos−1

(
r−

√
x2 + y2

r

)
(4)

The arc curvature κ is the reciprocal of the arc radius r. Then, the arc length l can be
expressed as:

l = rθ =
cos−1(1− κ

√
x2 + y2)

κ
; κ =

1
r

(5)

The arc parameters (ϕ, κ, l) are used in kinematics. However, linear actuators mainly
control tension cables to manipulate the CKM. Therefore, the arc parameters (ϕ, κ, l) need
to be converted into the length of each tension cable, which controls the CKM. The position
of the tension cable is the three vertices of the equilateral triangle, so the arc length l is the
average length of the three control cables (i.e., lC1, lC2, lC3), as.

l =
lC1 + lC2 + lC3

3
(6)

Figure 6a explains the relation between the tension cables and the arc parameters
in space. From Figure 6b, it is determined that ϕC1 = 90◦ − ϕ, and ϕC2 and ϕC3 can be
deduced through a geometric relation:{

ϕC2 = 210o − ϕ

ϕC3 = 330o − ϕ
(7)
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Then, the arc radius of the tension cable rC1 and the central arc radius r are two parallel
lines; the relation between rC1 and r is expressed through the trigonometric function:

r = rC1 + dC ∗ cos ϕC1 (8)

where dC is the distance between each cable and the center of the circular plate. Then, each
arc radius of the tension cables rCi can be derived from the relation with the central arc
radius r:

lCi = l − θdC cos ϕi; i = {1, 2, 3} (9)

The arc length of each tension cable lCi can be deduced as:

rCi = r− dC cos ϕi; i = {1, 2, 3} (10)

2.2. Design and Kinematics of the Flexible Manipulator Formed with Three CKMs

In this paper, the flexible manipulator consists of three CKMs. As Figure 7a shows, the
tendon cables of each segment are controlled via linear actuators. The first circular plate
segment passes through nine tendon cables, the second through six segments, and the third
through three. Therefore, the design of each CKM circular plate is slightly different, as
shown in Figure 7b.

The forward kinematics of the continuum robot is calculated. According to the mecha-
nism configuration, the relationship of each coordinate system is shown in Figure 8.

The coordinate system of the first and third CKMs is the same, while the coordinate
system of the second CKM is 180◦ inversed from the others. Because each segment is
calculated independently, the CKM transformation matrix is obtained from the forward
kinematic Equation (1). Therefore, each segment and fixed-segment transformation matrix,
Tsi and Tdi are stated as the following:

Tsi =


cos2 ϕi(cos κili − 1) + 1 sin ϕi cos ϕi(cos κili − 1) cos ϕi sin κili

cos ϕi(1−cos κi li)
κi

sin ϕi cos ϕi(cos κili − 1) cos2 ϕi(1− cos κili) + cos κili sin ϕi sin κili
sin ϕi(1−cos κi li)

κi

− cos ϕi sin κili − sin ϕi sin κili cos κili
sin κi li

κi

0 0 0 1

 (11)

Tdi
=


−1 0 0 0
0 −1 0 0
0 0 1 di
0 0 0 1

 (12)
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Finally, the transformation matrix of the continuum robot can be obtained by multi-
plying Tsi and Tdi:

Tm = Ts1 Td1 Ts2 Td2 Ts3 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (13)Actuators 2022, 11, x FOR PEER REVIEW 9 of 23 
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According to [1], the velocity kinematics vjacobian can be written as Equation (14), with
x as a vector in the task space, including the position or both the position and direction;

.
x

implies the x differential with time or velocity,
.
q is the change of the arm arc parameters of

each axis as Equation (15), and J is the Jacobian matrix:

vjacobian =
[
vx vy vz ωx ωy ωz

]T
=

.
x = J

.
q (14)

q =
[
ϕ1 k1 l1 ϕ2 k2 l2 ϕ3 k3 l3

]
(15)

Finally, the transformation matrix of the continuum robot can be differentiated by the
chain rule:

.
T

s3
s1
=

.
Ts1 Ts3

d1
+ Ts1

.
Td1 Ts3

s2 + Td1
s1

.
Ts2 Ts3

d2
+ Ts2

s1

.
Td2 Ts3 + Td2

s1

.
Ts3 =


α11 α12 α13 α14
α21 α22 α23 α24
α31 α32 α33 α34
α41 α42 α43 α44

 (16)

J
.
q =

[
α14 α24 α34

]T (17)

As shown in (14), vjacobian includes a linear and angular velocity, so x =
[
x y z

]T

will be rewritten as x =
[
x y z θx θy

]T . Because of the structure limitation, it cannot
rotate on the z-axis, so θz is removed. The tangent vector t =

[
tx ty tz

]
that can be

defined by
[
α13 α23 α33

]
from Equation (16), and θt can be defined as Equation (18), with

its differentiation version as Equation (19).

θt =

[
arctan ty

tz

arctan tx
tz

]
(18)

.
θt =


.

tytz−ty
.

tz

t2
z+t2

y
.

txtz−tx
.

tz
t2
z+t2

x

 (19)

The time derivative of the tangent vector t and derived angular Jacobian vector can be
written as: .

t = Jt
.
q =

[
α13 α23 α33

]T , Jt =
[

Jt1 Jt2 Jt3
]T (20)

Jθ =

[
Jθ1
Jθ2

]
=

 1
t2
z+t2

y

(
tz Jt2 − ty Jt3

)
1

t2
z+t2

x
(tz Jt1 − tx Jt3

 (21)

The velocity kinematics is rewritten as Equation (22), and the Jacobian matrix can be
factored out from it

vjacobian =
[
vx vy vz ωx ωy

]T
= J

.
q =

[
α14 α24 α34 Jθ1

.
q Jθ2

.
q

]
(22)

The Jacobian matrix combined with forward kinematics can control the posture of the
manipulator through the velocity and direction of the end. When W is the identity matrix,
the solution obtained by J(q)+

.
x is the least square solution, with J(q)+ is the pseudoinverse

of the Jacobian matrix and I − J(q)+ J(q) is the zero-space projection matrix:

.
q = J(q)+

.
x +

{
I − J(q)+ J(q)

}
ε (23)

J+ = W−1 J′
(

JW−1 J′
)−1

(24)
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Next, the arc parameters of each segment are calculated through Equation (23) and
the end-effector velocity. Finally, the length of the tension cables of each segment can be
calculated through Equations (7)–(10). Then, control of the manipulator posture is achieved.

Finally, the proposed continuum robot’s working space and limitations are elaborated,
as shown in Table 2 and Figure 9. The manipulator’s current end-effector position can
be obtained by substituting arc parameters (ϕ, κ, l) into the forward kinematics. Then
the operating range of the flexible manipulator is in an ideal situation. However, the
actual length of the compression springs is limited by ±20 mm, so after the restriction is
substituted in and recalculated, the actual working range of the arm is spherical.

Table 2. Limitations of the arc parameters.

θ1,θ2,θ3 ϕ1,ϕ2,ϕ3 κ1,κ2,κ3

0o ∼ 90o 0o ∼ 360o ∈ R+
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2.3. Implementation of the Image Servo Tracking Systems

In image-based servo tracking, it is necessary to convert the velocities of the camera
and the feature point. The transformation matrix of this conversion is called an Image
Jacobian and represents the velocity conversion relation between the feature point and
the camera. The camera’s location defines the camera’s location coordinates, the feature
points are the pixel coordinates in the image plane, and the conversion of the two points is
considered the projection model of the pinhole camera. In the perspective projection model,
the relation between the coordinates of the feature point (x f , y f , z f ) in the working space
and the projection point (u, v) on the image plane can be written as:

[
u v

]T
=

λ

z f

[
x f y f

]T ; λ is the focal length (25)

If the camera is placed in a static environment and the camera moves at a translation
velocity V =

[
Vx Vy Vz

]T and a rotation velocityω =
[
ωx ωy ωz

]T , then the velocity
of the feature point P in the camera coordinates can be expressed as:

dP
dt

= −ω× P−V (26)


.

x f = −z f ωy + z f vωz/λ−Vx
.
y f = −z f uωz/λ + z f ωx −Vy
.
z f = −z f vωx/λ− z f uωy/λ−Vz

(27)

Finally, after differentiating Equation (25) to time and substituting Equation (27),
Equation (28) can be factored out where Jimage is the Image Jacobian, and Vcamera is the
camera’s velocity in the camera coordinate system:
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[ .
u
.
v

]
= JimageVcamera =

[
− λ

z 0 u
z

uv
λ − λ2+u2

λ v
0 − λ

z
v
z

λ2+v2

λ − uv
λ −u

]


vx
vy
vz
ωx
ωy
ωz

 (28)

where (u, v) is in length units, but the image obtained in the camera is a series of pixels, so
the current (u, v) unit needs to be converted into a pixel unit:

[
u v

]T
=

λ

z

[
x

Sx

y
Sy

]T
; λx =

λ

Sx
, λy =

λ

Sy
(29)

where Sx, Sy and λ are the scale and focal length camera intrinsic parameters. Therefore,
Equation (28) can be converted as:

Jimage =

− λx
z 0 u

z
uv
λy

− λx
2+u2

λx
λx
λy

v

0 − λy
z

v
z

λy
2+v2

λy
− uv

λx
− λy

λx
u

 (30)

2.3.1. Eye-To-Hand (ETH) Visual Servoing Configuration

In the ETH configuration, the camera is in a fixed position, so the depth is fixed in
the calculation. The camera is obtained as the pixel coordinate system in the image plane,
and the manipulator is the robot coordinate system, so it is necessary to multiply the
transformation matrix to convert the pixel coordinate system to the spatial coordinate
system. The relation can then be formulated as follows:[

xrobot
yrobot

]
= [R]

[
u
v

]
+ [T] (31)

Through the conversion relation, the points in the image plane can be transferred to
the robot coordinate system, and through kinematics Equations (14)–(24), the manipulator
can perform tasks.

2.3.2. Eye-In-Hand (EIH) Visual Servoing Configuration

The velocity of the camera in the camera coordinate system vcamera and the velocity of
the camera in the robot coordinate system vjacobian are in different references. Therefore, to
combine the two values, a coordinate conversion is required. Thus, Hutchinson et al. [37]
proposed the conversion as follows:

vjacobian =

[
Rmvtcamera − Rmvωcamera × rm

Rmvωcamera

]
=

[
Rmvtcamera + rm × Rmvωcamera

Rmvωcamera

]
=

[
Rm sk(rm)Rm

0 Rm

][
vtcamera

vωcamera

]
(32)

Rm =

Tm11 Tm12 Tm13

Tm21 Tm22 Tm23

Tm31 Tm32 Tm33

, rm =

Tm14
Tm24
Tm34

 (33)

vjacobian =

[
Rm sk(rm)Rm

0 Rm

]
Vcamera (34)

Because the camera is installed at the tail of the manipulator, the rotation vector Rm and
the translation vector rm of the camera coordinate system’s origin in the robot coordinate
system can be obtained as Equation (33). After the calculation, the conversion relationship
between the velocity in the camera coordinate system and the camera’s velocity in the robot
coordinate system can be obtained as in Equation (34).
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With the dramatic development of deep learning, deep learning-based computer vision
techniques are emerging in various engineering fields. For object detection tasks, the YOLO
algorithm [38] and its variants [39,40] provide a reliable detection tool to detect objects
in real-time. Furthermore, by integrating with the robot system, some deep vision-based
methods were proposed to do the picking task with high accuracy [41,42]. In this study, for
plugging and unplugging tasks, we applied the well-known object detection open-source
framework, YOLOv4 [40], to detect the plugging area before extracting the target tracking
point for action accomplishment.

3. Experimental Results
3.1. CKM-Based Continuum Robot Implementation

In the proposed three-segment CKM continuum robot, the three CKMs are indepen-
dent, each controlled separately by three independently actuated tension cables. Therefore,
the first CKM circular plates need to pass nine steel cables, the second CKM has six cables,
and the third CKM has three cables. In each CKM, non-control tension cables are covered
with a tension spring layer, allowing the non-control tension cables to change their length
without affecting the posture of the current CKM.

When a tension cable is pulled to the tension-cable control module, it needs to bend
because of the different directions, so using a brake housing helps to change direction.
Controlling the cable through the brake housing can change the direction but will not affect
the force of the cable. Due to the proposed continuum manipulator with three CKMs and
nine tension cables, control requires a total of nine sliding tables. Therefore, the nine linear
sliding tables are integrated into a rectangular tension-cable control module to facilitate
construction. To reduce the total manipulator height, the tension-cable control module
is localized horizontally in 3 × 3 square layers with three sliding tables in each layer
controlling a CKM. After all the control cables pass through the outer brake housings fixed
on the aluminum plate, they will be fixed on the slider. Finally, each CKM can be controlled
by a group of sliders. The break housings and the sliding tables are illustrated in Figure 10.
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3.2. Kinematic Simulations

Simulation of each kinematics is performed in MATLAB to verify the correctness
of the kinematics and posture of the manipulator. First, the arc parameters (κ, ϕ, l) are
substituted in the kinematics of a single CKM, κ is set to 0.003, and l is set to 170. Then,
as shown in Figure 11, the simulation of the rotation angle of a single CKM is achieved.
Finally, the arc parameters (ϕ, κ, l) of each segment are substituted in the kinematics of the
flexible manipulator.



Actuators 2022, 11, 360 14 of 23

Actuators 2022, 11, x FOR PEER REVIEW 14 of 23 
 

 

controlled by a group of sliders. The break housings and the sliding tables are illustrated 
in Figure 10. 

 
Figure 10. The brake housings (left) and a single sliding table (right). 

3.2. Kinematic Simulations 
Simulation of each kinematics is performed in MATLAB to verify the correctness of 

the kinematics and posture of the manipulator. First, the arc parameters (𝜅, 𝜑, 𝑙) are sub-
stituted in the kinematics of a single CKM, 𝜅 is set to 0.003, and 𝑙 is set to 170. Then, as 
shown in Figure 11, the simulation of the rotation angle of a single CKM is achieved. Fi-
nally, the arc parameters (𝜑, 𝜅, 𝑙) of each segment are substituted in the kinematics of the 
flexible manipulator. 

 
Figure 11. Simulation of the rotation angle 𝜑 of single CKM kinematic: 1. 𝜑 = 0; 2. 𝜑 = 𝜋/2; 3. 𝜑 = 𝜋/4; 4. 𝜑 = 𝜋/3. 

In Figure 12a, substituting the same rotation angle 𝜑 in the three segments, the ro-
tation angle 𝜑 is (0 − 2𝜋, scale of 𝜋 ⁄ 4), and the curvatures of the three segments 𝜅 are 
set as 0.003, 0.002, and 0.001, respectively. In Figure 12b, the rotation angle 𝜑 is substi-
tuted in the first and third segments, the rotation angle 𝜑 + 𝜋 is substituted in the second 
segment, and the rotation angle 𝜑 is (0 − 2𝜋, scale of 𝜋 ⁄ 4), where the curvatures 𝜅 of 
three segments are 0.003, 0.002, and 0.001, respectively. 

Figure 11. Simulation of the rotation angle ϕ of single CKM kinematic: 1. ϕ = 0; 2. ϕ = π/2; 3.
ϕ = π/4; 4. ϕ = π/3.

In Figure 12a, substituting the same rotation angle ϕ in the three segments, the rotation
angle ϕ is (0− 2π, scale of π/4), and the curvatures of the three segments κ are set as 0.003,
0.002, and 0.001, respectively. In Figure 12b, the rotation angle ϕ is substituted in the first
and third segments, the rotation angle ϕ + π is substituted in the second segment, and the
rotation angle ϕ is (0− 2π, scale of π/4), where the curvatures κ of three segments are
0.003, 0.002, and 0.001, respectively.
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in the second segment (blue).

Next, the change in the curvature κ is simulated. The rotation angles ϕ for the three
segments are fixed, and the order is π/3, 4π/3, and π/3. Figure 13a shows that the arc
curvature κ of the second segment changes from 0.002 to 0.007, each time increasing by
0.001, and the curvature κ of the first and third segments are fixed sequentially to 0.003 and
0.001. Figure 13b shows that the arc curvature κ of the third segment changes from 0.001 to
0.021, each time increasing by 0.005, and the curvature κ of the first and third segments are
fixed sequentially to 0.003 and 0.002, respectively.
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second segment, (b) change in the arc curvature κ of the third segment.

The last is the simulation of velocity kinematics, as shown in Figure 14. Given
an initial posture of the flexible manipulator, the first segment arc parameter (κ, ϕ, l)
is (0.003, 0, 170), the second segment arc parameter (κ, ϕ, l) is (0.002, π/2, 170), and the
third segment arc parameter (κ, ϕ, l) is (0.001, π/2, 170). The kinematics are simulated by
substituting different end velocities and directions in the kinematics. Finally, the kinematics
have been verified for feasibility.
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[0 20 0 0 0 0] (b) change in the end velocity [20 0 0 0 0 0].

The posture of the arm movement over 4 s is simulated, as shown in Figure 14. The
endpoint records of the two simulation results of each second are shown in Table 3. The end
velocity vector (0, 20, 0, 0, 0, 0), which means that it moves 20 mm per second along the
positive y-axis during the end velocity vector ( 20, 0, 0, 0, 0, 0), which means that it moves
20 mm per second in the positive x-axis. Table 3 shows that the error was within 10 mm,
and the maximum error in the z-axis was within 50 mm. The feasibility of kinematics can
be verified through the above simulations, whether using single CKM kinematics, flexible
manipulator kinematics, or velocity kinematics.



Actuators 2022, 11, 360 16 of 23

Table 3. Velocity kinematics simulations-Endpoint error of the manipulator posture.

Speed Variation (0, 20, 0, 0, 0, 0)

X Y Z X_error Y_error Z_error
Start point 279.6 −101.5 586.8 - - -

1 281.6 −79.38 591.0 −1.8 −2.12 −4.2
2 282.7 −57.43 594.4 −3.1 −4.07 −7.6
3 283.5 −36.03 596.8 −3.9 −5.47 −10.0
4 283.6 −16.42 598.4 −4.0 −5.08 −11.5

Speed variation (20, 0, 0, 0, 0, 0)

X Y Z X_error Y_error Z_error
Start point 279.6 −101.5 586.8 - - -

1 298.4 −103.5 575.5 1.2 −2.0 11.3
2 316.7 −105.3 563.3 2.9 −3.8 23.5
3 334.3 −106.7 551.2 5.3 −1.4 35.6
4 351.2 −107.7 538.4 8.4 −2.4 48.4

3.3. Heart Shape Trajectory Tracking

In this experiment, the trajectory tracking task of eye-to-hand (ETH) is used to verify
the effectiveness of the Jacobian control method. The experimental environment is shown
in Figure 15. The camera position was fixed in the experiment, and the distance from the
laser point imaging screen was 0.23 m. The exact size heart shape with different numbers of
tracking points is generated in the image plane. Finally, the manipulator achieves trajectory
tracking through velocity kinematics. The reference trajectory is the heart shape trajectory
point defined in the image plane, with the generated heart shape trajectory point calculated
using the following formula: y(x) = 60−

√(
1600− (x− 40)2

)
y(x) = 60− 20(arcos(1− (x/40))− π)

(35)
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According to the number of different heart shape trajectory points, five experiments
were performed, and the results were averaged to verify the stability and error of the
tracking. As a result, the tracking trajectory is shown in Figure 16. The error is the distance
between the current laser and target points.
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The experimental results are shown in Table 4. The experiment shows that the pro-
posed control method can achieve accurate path tracking.

3.4. Image-based Servo Tracking Experiment

The effectiveness and feasibility of image-based servo tracking are verified by the
plugging/unplugging task of eye-in-hand (EIH), with a stereo camera and pneumatic
grippers installed at the manipulator’s end. The experimental environment and the pro-
cesses of autonomous “plug-in” and “unplug” of electric power sockets are shown in
Figures 17 and 18, respectively.



Actuators 2022, 11, 360 18 of 23

Table 4. Velocity kinematics simulations-Endpoint error of the manipulator posture.

Number of Points Test
Max Error (pixel) Min Error (pixel) Average Error (pixel)

RMSE
X Y X Y X Y

42

1 14.43 27.00 0.10 0.04 3.70 5.21 7.80
2 15.23 32.30 0.02 0.41 3.89 5.34 7.67
3 16.34 35.05 0.04 0.10 3.64 5.17 7.63
4 15.69 28.31 0.03 0.39 3.77 5.26 7.74
5 16.89 33.41 0.21 0.19 3.98 5.31 7.87

Average 15.72 31.21 0.08 0.22 3.80 5.26 7.74

82

1 40.00 19.24 0.00 0.33 2.82 4.08 6.05
2 38.20 20.45 0.00 0.33 2.79 3.99 6.08
3 42.32 18.78 0.08 0.07 2.67 4.12 6.13
4 39.64 19.67 0.02 0.09 2.37 4.05 6.09
5 37.25 20.26 0.07 0.05 2.88 3.98 6.03

Average 39.50 19.68 0.03 0.17 2.71 4.04 6.08

162

1 36.00 14.42 0.00 0.06 1.81 3.09 4.26
2 37.23 14.36 0.02 0.02 1.86 3.07 4.32
3 34.05 13.96 0.00 0.03 1.82 3.08 4.23
4 32.35 14.85 0.00 0.04 1.83 3.02 4.36
5 35.87 13.56 0.02 0.01 1.79 3.08 4.33

Average 35.10 14.23 0.01 0.03 1.82 3.07 4.30

322

1 6.02 11.09 0.02 0.00 1.79 3.10 3.97
2 6.04 11.05 0.01 0.02 1.80 2.97 4.07
3 5.98 11.09 0.00 0.03 1.73 2.99 4.05
4 6.06 11.12 0.00 0.01 1.75 3.12 4.01
5 6.03 10.99 0.00 0.01 1.76 3.08 4.03

Average 6.03 11.07 0.01 0.02 1.77 3.05 4.03
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Figure 18. The algorithm flowchart of the Plugging/Unplugging task.

The experiment has two main parts: plugging and pulling the plug. In both experi-
ments, the socket and plug specifications are in Figure 19. A widely used object detection
open-source framework, YOLOv4 [39], was used to identify the target area first, and then
the target tracking point was analyzed through image processing. Figure 20 shows the
results of the detected electric socket and plug.

After the target tracking point is obtained, the error can be calculated between the
current position and the tracking point. The arc parameters (ϕ, κ, l) of each segment of the
manipulator can be obtained by substituting the error into the Image Jacobian and velocity
kinematics. Then, the manipulator can perform the task of plugging/unplugging through
arc parameters (ϕ, κ, l).
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Figure 20. Object detection results using YOLO for the electric power socket (left-hand-side) and
the electric power plug (right-hand-side). It is noted that the detected object areas are indicated as
rectangle boxes.

Finally, Figures 21 and 22 show the results of the plugging and unplugging experi-
ments, respectively. Both parts of the experiment (plugging-in and plugging-out) were
performed five times, and the experimental results are shown in Table 5. We set the start
points for each experimental trial as the final points, around 50 cm in front of the target.
For five trials of unplugging, the success rate is 100%. However, the plugging-in exper-
iments show a success rate of only 60%. The visual servo system could achieve lows of
58± 2.12 s and 83± 6.87 s in processing time at the 90% confidence level in the unplugging
and plugging-in tasks, respectively. The main reason is that the power plugging-in into
the socket needs a higher accuracy because of the small holes in the socket. Therefore, the
control accuracy and rigidity of the continuum manipulator should be further improved in
the future.
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Figure 21. Plugging-in experiment: (a) trajectory of the feature points, (b) end-effector linear velocity
vx, vy and vz.
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Figure 22. Unplugging experiment: (a) trajectory of the feature points, (b) end-effector linear velocity
vx, vy and vz.
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Table 5. Plugging/unplugging experimental results for each test.

Unplugging Task Plugging Task

Time (s) Mission Completion Time (s) Mission Completion

1 61 Success 88 success
2 55 Success 80 success
3 62 Success - fail
4 58 Success 75 success
5 57 Success - fail

4. Conclusions

In this paper, a continuum kinematic module (CKM) was proposed. The function
and feasibility of the CKM were demonstrated using a continuum manipulator composed
of three CKMs. First, the continuum manipulator’s kinematics were verified through a
kinematic simulation and analysis, and the correctness of the manipulator posture was
confirmed through the simulation. Then, an ETH heart shape tracking experiment was
established to verify the correctness of the kinematics and the accuracy of control of the
continuum manipulator in practical applications. Finally, the accuracy and feasibility of
image servo tracking in an EIH plugging-in/unplugging experiment were demonstrated in
extensive tolerance conditions. At the same time, the results show that the accuracy needs
to be improved in low-tolerance conditions. Furthermore, the wire-driven CKM easily
causes posture deviation due to the influence of gravity.

In future work, an inertial measurement unit (IMU) could be installed to correct
posture deviation through feedback. To increase the accuracy of the image-based servo
tracking, the current IBVS can be changed to PBVS because the IBVS method does not
involve manipulator posture considerations. The PBVS will instead estimate the current
pose of the target relative to the camera. Because the continuum manipulator has a greater
degree of freedom, the wire-driven manipulator is susceptible to the influence of gravity,
which causes posture deviation. Therefore, if PBVS-based image-based servo tracking is
used, the accuracy of the image-based servo tracking may be improved. In addition, the
continuum manipulator is limited in movement. Therefore, it is proposed that the mounting
of the robot on an AGV can remove the restriction in the movement of the manipulator, and
indoor positioning will allow the manipulator to perform more diversified tasks. Finally,
the continuum manipulator can be applied to collaborative or service robots.
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