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Abstract: In this paper, a robust nonsingular fast terminal sliding mode control scheme for the picking
manipulator under the condition of load change and nonlinear friction disturbance is presented.
Firstly, the dynamic equation of the picking manipulator under the condition of load change and
nonlinear friction disturbance is established. Then, in order to avoid the singularity problem existing
in the terminal sliding mode and improve the convergence time, a new nonsingular fast terminal
sliding mode control strategy is adopted to design the control law of the picking manipulator, which
can guarantee the finite time convergence. The adaptive law is used to estimate the uncertainties of
the system, and the finite time convergence of the system state is proved by the Lyapunov criterion.
In addition, the genetic algorithm is used to identify the friction parameters to realize the nonlinear
friction compensation control of the system. Finally, the simulation results of the picking manipulator
under different load conditions show that the controller designed in this paper realizes the fast and
accurate positioning of the picking manipulator under load change and nonlinear friction, and the
control strategy is reasonable and effective.

Keywords: picking manipulator; sliding mode control; adaptive control; friction compensation;
genetic algorithm

1. Introduction

An agricultural picking manipulator is a kind of mechatronics system with variable
parameters and strong nonlinearity [1,2]. Under the action of nonlinear uncertain factors
such as the weight change of the picking object and friction disturbance, the general
proportional integral derivative (PID) controller does not enable the picking manipulator
to obtain reliable control performance, so the mechanical holding brake has to be used
for positioning in engineering [3,4]. However, this mechanical positioning method will
cause greater impact wear, reduce the service life of the picking manipulator, and seriously
reduce its overall performance. Therefore, how to design a robust controller for the picking
manipulator is an urgent problem to be solved.

The sliding mode control is one of the control methods to deal with nonlinear sys-
tems with parameter perturbation and external disturbance [5–7]. This method has the
advantages of strong robustness and easy design, so it has been widely used in a variety
of fields [8–11]. With the sliding mode control of the linear switching function, the error
between the system state and the expected state converges exponentially, and the system
state can only approach the expected trajectory, but cannot reach the expected trajectory.
Therefore, Refs. [12–14] proposed the terminal sliding mode (TSM) control. By introducing
a nonlinear term into the construction of the sliding mode switching function, the tracking
error on the sliding mode surface can converge to zero in a finite time, which solves the
problem that the traditional sliding mode control can only converge asymptotically under
the action of the linear sliding mode surface. However, the control effect of terminal sliding
mode control in a singular control region will tend to infinity, which is not conducive to
practical application.
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The nonsingular terminal sliding mode (NTSM) control strategy is designed in [15–18],
which avoids the singular problem of control when constructing the sliding mode switch-
ing function, retains the finite time convergence characteristics, and can obtain higher
convergence accuracy. Because the NTSM control method has good control performance,
it has been widely used. The authors in [19] combine the advantages of the linear sliding
mode and NTSM. The hybrid NTSM control is designed to make the convergence of the
system faster. Compared with the proportional-integral (PI) controller, it enhances the
robustness of the permanent magnet synchronous motor.

Compared with the linear sliding mode, the NTSM has a higher convergence speed
when the system state is close to the equilibrium point, but when the system state is far
from the equilibrium point, its convergence time is longer and the dynamic characteris-
tics become worse. In order to avoid the control singularity problem and accelerate the
convergence speed when the system is far from the sliding mode surface, in this paper, a
new nonsingular fast terminal sliding mode (NFTSM) control strategy is used to design the
control law. In the actual process of realizing the sliding mode control, how to determine
the switching gain of the sliding mode control is a difficult problem. Usually, the upper
bound of the uncertainty in the system is unknown. In order to ensure the good robustness
of the control system, the switching gain needs to be large enough [20]. However, excessive
switching gain will cause control chattering. In order to reduce system chattering, this
paper uses an adaptive control strategy to estimate the uncertain upper bound of the
system, so there is no need to know the prior knowledge of the uncertain upper bound,
which is conducive to practical application.

Recently, a robust sliding mode-based learning control strategy for a class of nonlinear
discrete-time descriptor systems with time-varying delay and external disturbance was
developed in [21]. The authors in [22] discussed the control problem of nonlinear disturbed
polynomial systems using the formalism of output feedback linearization and a subsequent
sliding mode control design. The authors in [23] proposed a novel developed a photovoltaic
model based on an improved arithmetic optimization algorithm to extract the solar cell
parameters. A neuroadaptive learning algorithm for constrained nonlinear systems with
disturbance rejection is proposed in [24,25].

In this paper, an adaptive non-singular fast terminal sliding mode (ANFTSM) control
method for the picking manipulator is used to design the corresponding position controller,
which avoids the singularity problem of the traditional terminal sliding mode control and
the slow convergence of the traditional NTSM control. At the same time, the adaptive
estimation of the system uncertainty is used without the prior knowledge of the upper
bound of the uncertainty, which effectively reduces the chattering caused by the excessive
switching gain. Meanwhile, the genetic algorithm is used to identify the parameters of
the nonlinear friction torque in the motion process of the picking manipulator, and the
corresponding compensation control is designed. The main contributions of this paper are
highlighted as follows. (1) The disturbance existing in the manipulator system is estimated
adaptively, and the estimated value is used as a feedback signal to provide compensation
for the controller, so as to improve the tracking performance of the system and enhance
the robustness of the system. (2) A nonsingular fast terminal sliding surface is constructed
to solve the singularity problem of the controller and obtain a finite time stability result,
ensuring the convergence speed and transient response performance of the system control.
(3) A nonsingular fast terminal sliding mode controller based on friction compensation
is constructed. By introducing a saturation function instead of a symbolic function, the
chattering problem is further weakened and the desired tracking trajectory of each joint is
tracked quickly and accurately.

This paper is divided into five sections. The next section introduces the dynamic
model of the picking manipulator and the description of the problem to be solved in
this paper. The ANFTSM controller design method and stability analysis for the picking
manipulator are proposed in Section 3. According to the controller designed in Section 3,
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the corresponding simulation results are given in Section 4, followed by a brief conclusion
in Section 5.

2. Preliminaries
2.1. Dynamic Model of Picking Manipulator

The structure of the picking manipulator is shown in Figure 1. The DC motor drives
the manipulator arm to rotate around the trunnion through the reducer, and the equilibrator
is used to balance the load torque to reduce the working load of the driving motor.
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The picking manipulator is regarded as a single-degree-of-freedom manipulator, and
its dynamic equation is [26]

J
..
θ = T (1)

where J is the equivalent rotational inertia of the system. θ and
..
θ are the rotation angle and

angular acceleration of the picking manipulator, respectively. T is the equivalent rotation
torque acting on the manipulator.

T = i1η1kT I − TR + TG − Tf + D (2)

where i1 is the total transmission ratio of the system, η1 is the transmission efficiency
of the reducer, kT is the motor torque constant, I is the control current of the motor, TR
is the torque of the equilibrator to the manipulator, and TG is the gravity torque of the
manipulator, which depends on the rotation angle of the manipulator. Tf is the friction
torque to be identified, and D is an uncertainty term caused by parameter changes, un-
modeled dynamics, and external disturbances.

The equilibrator is composed of an oil cylinder and accumulator, in which the oil
cylinder pressure is

p = p0S
(

V0

V0 − ∆V

)n
(3)

where p0 is the initial pressure of the accumulator, S is the piston area of the cylinder, V0 is
the initial volume of gas, ∆V is the volume of gas change, and n is the polytropic index of
the gas. Then, the torque of the equilibrator to the manipulator can be written as

TR = lp0S
(

V0

V0 − ∆LS

)n
(4)

where l is the distance from the center of rotation to the balancer, and ∆L is the distance of
the piston movement.
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2.2. Problem Description

Design an adaptive non-singular fast terminal sliding mode (ANFTSM) controller for
the above picking manipulator to ensure that the joint position of the picking manipulator
tracks the desired trajectory, and the tracking error can converge to a neighborhood near
zero in a finite time.

3. Controller Design of the Picking Manipulator
3.1. ANFTSM Controller

By defining θ = x1,
..
θ = x2, the dynamic equation of the picking manipulator can be

simplified into the following second-order nonlinear uncertain system.
.
x1 = x2
.
x2 = kT i1η1

J u + 1
J

(
TG − TR − Tf

)
+ d

y = x1

(5)

where d = D/J is an uncertainty term, and |d| ≤ U, U is a constant. u is the control input,
and y is the system output. The following assumptions are assumed to befulfilled henceforth.

Assumption 1: The states of the picking manipulator system are uniformly bounded.

Assumption 2: The uncertainty of the system is continuously differentiable and bounded at all
times.

The angular displacement error of the picking manipulator is defined as
e = x1 − xd.
e =

.
x1 −

.
xd..

e =
..
x1 −

..
xd

where xd is a given expected value.
For equation (5), the traditional TSM switching function is generally designed as

s =
.
e + αeq/p (6)

where s is sliding mode switching function, α > 0 is a constant, p and q are positive odd
number, and p > q.

Then, the traditional TSM controller is designed as

u =
J

kTi1η1
(

..
xd −

1
J
(TG − TR − Tf )− α

q
p

eq/p−1 .
e− (U + η)sgn(s)) (7)

where η > 0 is the design constant, sgn(·) is a symbol function.
It can be seen from (7) that the control quantity contains a α

q
p eq/p−1 .

e term, which
contains a negative exponential term, that is, the index q/p− 1 < 0. Therefore, when e = 0,
.
e 6= 0, the control quantity tends to infinity, which results in singular problems.

To avoid the singularity problem of traditional TSM control, the NTSM switching
function can be designed as

s =
.
e +

1
α

.
ep/q (8)

where 1 < p/q < 2.
It can be proved that the control action obtained by the sliding mode surface designed

by Equation (8) does not contain a negative exponential term, and the control quantity does
not have an infinite term, thus solving the singularity problem of traditional TSM control.

However, if s = 0, the error convergence rate

.
e = (−αe)q/p
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and 0.5 < q/p < 1. Therefore, when the system state is far away from the equilibrium
point, the error convergence rate becomes slower.

In order to further improve the convergence speed of the NTSM switching function,
the following NFTSM switching function is used

s = e +
.
ea1 +

1
α

.
ea2 (9)

where a1 and a2 are design constants, and 1 < a2 < 2, a2 < a1.
Let s = 0, we have

.
e = (−αe− αea1)1/a2

That is, when the system state is far away from the equilibrium point, the error
convergence rate is mainly affected by the high-order term of e, and the convergence rate
of NFTSM is faster than NTSM. When the system state is close to the equilibrium point,
the convergence rate of NFTSM is similar to NTSM. Therefore, during the whole sliding
stage, compared with NTSM, NFTSM control can achieve global fast convergence, and
the exponential term in Equation (9) is greater than one, which eliminates the singularity
problem of the control quantity.

Furthermore, in order to avoid the complex solution of the switching function of
Equation (9) when e < 0 and

.
e < 0, the sliding mode switching function can be improved

as
s = e + k1|e|a1sgn(e) + k2

∣∣ .
e
∣∣a2sgn

( .
e
)

(10)

where k1 > 0 and k2 > 0 are design constants.
Taking the derivative of s and substituting it into Equation (5) yields

.
s =

.
e + k1a1|e|a1−1 .

e + k2a2
∣∣ .
e
∣∣a2−1..

e
=

.
e + k1a1|e|a1−1 .

e + k2a2
∣∣ .
e
∣∣a2−1( ..

x2 −
..
xd
)

=
.
e + k1a1|e|a1−1 .

e + k2a2
∣∣ .
e
∣∣a2−1

( kT i1η1
J u + 1

J (TG − TR − Tf ) + d− ..
xd)

(11)

In order to further accelerate the convergence speed of the system and weaken the chat-
tering, the exponential approximation law is used to design the controller. The expression
is as follows

.
s = k2a2

∣∣ .
e
∣∣a2−1

(−ks− (U + η)sgn(s)) (12)

where k > 0 is the exponential approach coefficient.
Combining Equations (11) and (12), the control law of the picking manipulator can be

designed as

u =
J

kTi1η1
(− 1

k2a2

∣∣ .
e
∣∣2−a2sgn(

.
e)− k1a1

k2a2
|e|a1−1∣∣ .

e
∣∣2−a2sgn(

.
e)− ks− (U + η)sgn(s)− 1

J
(TG − TR − Tf ) +

..
xd) (13)

It can be seen that there is a positive term in Equation (13), and the control input will
not produce an infinite quantity, which avoids the singular problem of traditional TSM.
However, Equation (13) contains an unknown upper bound U of uncertainty, which makes
it impossible to apply the control law directly. Therefore, an adaptive law is proposed in
this paper to estimate the upper bound U of uncertainty, which is expressed as

.
Û = γk2a2

∣∣ .
e
∣∣a2−1|s| (14)

where γ > 0 is adaptive gain.
To sum up, the adaptive nonsingular fast terminal sliding mode control law (ANFTSM)

of the picking manipulator in this paper can be designed as
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u =
J

kTi1η1
(− 1

k2a2

∣∣ .
e
∣∣2−a2sgn(

.
e)− k1a1

k2a2
|e|a1−1∣∣ .

e
∣∣2−a2sgn(

.
e)− ks− (Û + η)sgn(s)− 1

J
(TG − TR − Tf ) +

..
xd) (15)

3.2. Stability Analysis

The following lemma is used to prove the stability of the controller designed in
this paper.

Lemma 1 [27]. For nonlinear system

.
x = f (x, t), x ∈ Rn (16)

Suppose that there exists a continuously differentiable positive definite function V(x)
such that the following equation holds

.
V(x) ≤ −µV(x)− λVm(x) (17)

where µ, λ, and m are positive numbers, and 0 < m < 1. The initial state of the Equation (16)
is denoted as x0 = x(t0), and t0 is the initial time of the Equation (16).

Then the system state converges to the equilibrium point in finite time. The conver-
gence time is T, and

T ≤ 1
µ(1−m)

ln
µV1−m(x0) + λ

λ

Theorem 1. For the picking manipulator Equation (5), if the sliding mode switching function (10)
and the approximation law (12) are selected, under the action of the adaptive law (14) and the
control law (15) designed in this paper, the sliding mode switching function converges to zero in
finite time, and the system position error e and speed error

.
e converge to zero in finite time.

Proof. The estimation error of the adaptive law is defined as Ũ = Û −U, then
.

Ũ =
.

Û.
Firstly, the estimation error of uncertainty is bounded is proved as follows.
Select the Lyapunov function

V1 =
1
2

s2 +
1

2γ
Ũ2 (18)

Taking the derivative of V1 and substitute into Equation (11) yields

.
V1 = s

.
s + 1

γ Ũ
.

Ũ

= s(
.
e + k1a1|e|a1−1 .

e + k2a2|e|a2−1( kT i1η1
J u + 1

J (TG − TR − Tf ) + d− ..
xd)) +

1
γ Ũ

.
Ũ

(19)

Then, substitute Equation (19) into Equation (14) and Equation (15), and we can obtain

.
V1 = sk2a2

∣∣ .
e
∣∣a2−1

(−ks + d− (Û + η)sgn(s)) + 1
γ Ũγk2a2

∣∣ .
e
∣∣a2−1|s|

= k2a2
∣∣ .
e
∣∣a2−1

(−ks2 + ds− (Û + η)|s|+ (Û −U)|s|)
≤ −k2a2

∣∣ .
e
∣∣a2−1

(ks2 + η|s|)
≤ 0

(20)

It can be seen from the above Equation (20) that V1 is bounded, so s and Ũ are bounded,
respectively. Then, let

∣∣∣Ũ∣∣∣ ≤ ε, ε is the upper bound of the estimation error Ũ.



Actuators 2022, 11, 347 7 of 15

Furthermore, the following will prove that the sliding mode switching function can
converge in finite time.

Reselect the Lyapunov function

V2 =
1
2

s2 (21)

Taking the derivative of V2 and substitute into Equation (11) yields

.
V2 = s

.
s

=
.
e + k1a1|e|a1−1 .

e + k2a2|e|a2−1( kT i1η1
J u + 1

J (TG − TR − Tf ) + d− ..
xd)

(22)

Substitute Equation (22) into Equations (14) and (15), we have

.
V2 = sk2a2

∣∣ .
e
∣∣a2−1

(−ks + d− (Û + η)sgn(s))
≤ k2a2

∣∣ .
e
∣∣a2−1

(−ks2 + U|s| − (Û + η)|s|)
= k2a2

∣∣ .
e
∣∣a2−1

(−ks2 − Ũ|s| − η|s|)
≤ k2a2

∣∣ .
e
∣∣a2−1

(−ks2 + (ε− η)|s|)
= −k2a2

∣∣ .
e
∣∣a2−1

(ks2 + (η − ε)|s|)
= −λ1V2 − λ2V2

1/2

(23)

where
λ1 = 2kk2a2

∣∣ .
e
∣∣a2−1

λ2 =
√

2(η − ε)k2a2
∣∣ .
e
∣∣a2−1

When
.
e 6= 0, there is

∣∣ .
e
∣∣a2−1

> 0, by selecting parameter η > ε, we can obtain

λ1 > 0, λ2 > 0,
.

V2 ≤ −λ1V2 − λ2V1/2
2

By Lemma 1, it can be seen that the system will converge to s = 0 in finite time, and
the convergence time satisfies

tr ≤
2

λ1
ln

λ1V1/2
2 (x0) + λ2

λ2

where V2(x0) is the initial value of V2(x).
When

.
e = 0, during the system state sliding to the system equilibrium point stage,

there is s 6= 0. Substitute Equation (15) into Equation (5), we can obtain

..
e = −ks + d− (Û + η)sgn(s) 6= 0

which derives a contradiction. This means that the system state will not remain at this
point, and the system state will converge to s = 0 in finite time.

When the system state reaches the sliding surface s = 0, it can be known from
Equation (10) that the system state is determined by the following nonlinear equation

e + k1|e|a1sgn(e) + k2
∣∣ .
e
∣∣a2sgn

( .
e
)
= 0 (24)

According to [28], e and
.
e converge to zero in finite time. The convergence time ts is

ts =
a2|e(tr)|1−1/a2

k1(a2 − 1)
· F( 1

a2
,

a2 − 1
(a1 − 1)a2

; 1 +
a2 − 1

(a1 − 1)a2
;−k1|e(tr)|a1−1)

where F(·) is a Gaussian hypergeometric function. �
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3.3. Friction Parameter Identification

Nonlinear friction appears in large quantities in electromechanical servo systems. Its
nonlinear time-varying characteristic is one of the important factors affecting the control
effect of the system. In order to improve the control performance, effective compensation
strategies should be adopted to reduce the influence of friction on the system.

In this paper, the Stribeck friction model is used to identify the friction force during
the movement of the picking manipulator. The Stribeck friction model expression can be
written as

Tf =

 F+
c + (F+

s − F+
c )e

−(
.
θ

v+s
)

2

sgn(
.
θ) + σ+

.
θ,

.
θ > 0

F−c + (F−s − F−c )e
−(

.
θ

v−s
)

2

sgn(
.
θ) + σ−

.
θ,

.
θ < 0

(25)

where Fc and Fs are Coulomb friction torque and maximum static friction torque, respec-
tively. vs is the Stribeck speed, σ is the viscous friction coefficient.

In this paper, the genetic algorithm [24] is used to identify these parameters such as
F+

c , F−c , F+
s , F−s , F+

c , F−c , vs and σ in (25). The specific identification process is as follows.
Firstly, disconnect the connection between the picking manipulator and the equilibra-

tor, and the system dynamics equation is transformed into

J
..
θ = i1η1kT I − Tf (26)

where I is the control current of the system. Let the motor move with a set of constant

speed (
.
θ)

N
i=1 and record the average current value (I)N

i=1 at different speeds.
It can be seen from Equation (26) that if

..
θ = 0, then we have Tf = i1η1kT I, such

that the relationship between current and speed is determined by the sequence (I)N
i=1 and

(
.
θ)

N
i=1.

Let the identification vector be

xs =
[
F+

c F+
s v+s σ+ F−c F−s v−s σ−

]
(27)

and denote the identification error as

eI

(
xs,

.
θ
)
= i1η1kT I − Tf

(
xs,

.
θ
)

(28)

Take the objective function as

Je =
1
2

N

∑
i=1

e2
I

(
xs,

.
θ
)

(29)

Then, the problem of solving the friction parameter in (27) is transformed into solving
the minimum value problem of the objective function Je. The parameter identification
process using the genetic algorithm is as follows.

Step 1. Initializing the population P(0) randomly, and Xi(i = 1, 2, · · · , M) is the
individual in the population, t is the evolution algebra, let the maximum evolution algebra
is T = 10, 000, the population size is M = 300.

Step 2. Calculating the Individual Fitness Function

f (Xi) =
1

Je(Xi)
(30)

Step 3. Determine whether t is equal to T, if t = T, output the results of the identifica-
tion parameters, otherwise turn to the next step.

Step 4. Saving the random sampling of the best individual for selection operation, and
forming the next generation population P(t).



Actuators 2022, 11, 347 9 of 15

Step 5. Perform the crossover operation with the uniform crossover operator pc = 0.9.
Step 6. Set the adaptive mutation operator pc = 0.1− 0.099t/T for mutation operation.
Step 7. Set t = t + 1, repeat step (2)–(6), and output the final optimal solution, which

is the identification result.

4. Simulation

In this section, a simulation example of a single joint picking manipulator is provided
to illustrate the theoretical result. In order to simplify the experimental device, the gas
spring is used instead of the balancer. The parameter of Equation (5) is shown in Table 1.

Table 1. Parameters of the picking manipulator.

Parameters Value

p0 0.35/MPa
S 6.8 × 10−5/m2

V0 7.654 × 10−5/m3

n 1.2
i1 630

α1, α2 0

The structure diagram of the control system is shown in Figure 2.
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Firstly, in order to realize the compensation control of friction, the genetic algorithm in
Section 3 is used to identify the friction parameters of the picking manipulator prototype.
The comparison of experimental results and identification results is shown in Figure 3, and
the identification results of model parameters are shown in Table 2. It can be seen from
Figure 3 that the identification curve is consistent with the experimental curve, indicating
that the identified parameters are accurate and reasonable. The identification results can be
substituted into the control law for compensation design.
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Table 2. Friction parameter identification results.

Parameters Identification Results

F+
c 7.2401/Nm

F+
s 6.0127/Nm

F−c 0.3102/Nm
F−s 6.2149/Nm
v+s 0.3660 rad/s
v−s 1.2681 rad/s
σ+ 0.9460 Nms/rad
σ− 1.7982 Nms/rad

In order to suppress the chattering problem in sliding mode control effectively, the
saturation function sat(s) is used instead of sgn(s).

sat(s) =


1, s > ∆
s/∆, |s| ≤ ∆
−1, s < −∆

where ∆ = 0.05 is the boundary layer thickness constant.
Other control parameters in this paper are selected as kT = 35 mN·m/A, η1 = 0.9,

a1 = 2, a2 = 1.5, k1 = 200, k2 = 10, and η = 0.1.
In this section, two different simulations are carried out, and the load of the picking

manipulator is set to 0.5 kg and 1.5 kg, respectively. The control objective is to control the
picking manipulator to track the desired trajectory xd = 0.1 sin(t), and the initial state of
the system is x(0) = 0,

.
x(0) = 0.

In the first case, when the load of the manipulator is 0.5 kg, the simulation results are
shown in Figures 4–6.
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In the second case, when the load of the manipulator is 1.5 kg, the simulation results
are shown in Figures 7–9.
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It can be seen from Figures 4 and 7 that the joint trajectory can track the desired
trajectory at 1.101 s and 1.502 s, respectively. The tracking error can also converge to the
equilibrium position rapidly under the controller designed in this paper. It shows that the
ANFTSM control algorithm designed in this paper has strong robustness to load parameter
changes and nonlinear friction. It also can be seen from Figures 5 and 8 that the control
input does not produce singular problems under different loads. Figures 6 and 9 show the
convergence of the adaptive estimation of the uncertainty, which avoids the problem of
control chattering caused by taking a too large uncertainty upper bound in the absence of
uncertainty prior knowledge, and is more conducive to practical engineering applications.

In order to assess the control strategy synthesized in this paper, a comparative analysis
is established to examine the performance of the ANFTSM control algorithm across the
traditional sliding mode control scheme. The load of the manipulator is set as 1 kg. The
simulation results are depicted in Figures 10 and 11, which represent the system’s trajectory
tracking curves and the resultant control inputs, respectively.
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It can be seen from Figures 10 and 11 that compared with the traditional sliding
mode control method, the proposed method in this paper has great advantages in tracking
accuracy and convergence time.
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5. Conclusions

In this paper, the dynamic model of the picking manipulator is analyzed, and a new
NFTSM control algorithm is used to design the corresponding position controller, which
avoids the singularity problem of the traditional terminal sliding mode control and the slow
convergence of the traditional NTSM control. At the same time, the adaptive estimation
of the system uncertainty is used without the prior knowledge of the upper bound of the
uncertainty, which effectively reduces the chattering caused by the excessive switching
gain. Aiming at the nonlinear friction disturbance in the motion process of the picking
manipulator system, the genetic algorithm is used to identify the friction parameters, and
the obtained parameters are used for the compensation control of the picking manipulator.
The simulation results show that the controller can achieve fast and accurate positioning of
the picking manipulator under different load conditions. The designed controller has good
robustness and is easy to apply in engineering practice.

Future development work will focus on applying new algorithms to approximate
system uncertainties, such as meta heuristic algorithms. In addition, how to use the
optimization algorithm to obtain the optimal adjustment parameters of the controller can
be considered.
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