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1. Derivation of the Control Allocation Strategy

The inverse direction of the control allocation strategy was presented in [1] and
proven in [2]. In this section, we provide a compact derivation for completeness including
a visualization to provide more intuition. Formally, we show the inverse direction of the
control allocation strategy from virtual control inputs to actuator pressures,

(∆pα, ∆pβ, p̄)→ (pA, pB, pC), (1)

and thereby show that the following equations hold,

pA = max{ p̄, p̄ + ∆pAB, p̄ + ∆pAB + ∆pBC}
pB = max{ p̄, p̄ + ∆pBC, p̄− ∆pAB}
pC = max{ p̄, p̄− ∆pBC, p̄− ∆pAB − ∆pBC},

(2)

with ∆pAB = pA − pB and ∆pBC = pB − pC and the virtual control inputs ∆pα and ∆pβ as
defined by[
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Proof. First, a visualization of the virtual control inputs in the absolute pressure space is
provided in Fig. S1.

A point expressed by the actuator pressure constrained to the red plane, where pA = p̄
holds, is given as a function of ∆pAB, ∆pBC as,

pA = p̄

∆pAB = p̄− pB ⇒ pB = p̄− ∆pAB (4)

∆pBC = pB − pC ⇒ pC = p̄− ∆pAB − ∆pBC.

Similarly for the green plane (pB = p̄), we have

pA = p̄ + ∆pAB

pB = p̄

pC = p̄− ∆pBC,

(5)

and for the blue plane (pC = p̄), we have

pA = p̄ + ∆pAB + ∆pBC

pB = p̄ + ∆pBC

pC = p̄.

(6)

The sets introduced in Fig. S1 are defined as,

SA := {(∆pAB, ∆pBC) ∈ R2 | ∆pAB ≤ −∆pBC, ∆pAB ≤ 0},
SB := {(∆pAB, ∆pBC) ∈ R2 | ∆pAB ≥ 0, ∆pBC ≤ 0},
SC := {(∆pAB, ∆pBC) ∈ R2 | ∆pAB ≥ −∆pBC, ∆pBC ≥ 0}.

(7)
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Considering a point (∆pAB, ∆pBC) that lies in SA, we can conclude that pA = p̄ (see Fig.
S1) and pB and pC follow from (4). Applying the same reasoning for a point (∆pAB, ∆pBC)
that lies in SB or SC, and combining the cases for pA, we conclude that,

pA =


p̄ (∆pAB, ∆pBC) ∈ SA,
p̄ + ∆pAB (∆pAB, ∆pBC) ∈ SB,
p̄ + ∆pAB + ∆pBC (∆pAB, ∆pBC) ∈ SC.

(8)

Similarly for pB it holds,

pB =


p̄− ∆pAB (∆pAB, ∆pBC) ∈ SA,
p̄ (∆pAB, ∆pBC) ∈ SB,
p̄ + ∆pBC (∆pAB, ∆pBC) ∈ SC,

(9)

and for pC,

pC =


p̄− ∆pAB − ∆pBC (∆pAB, ∆pBC) ∈ SA,
p̄− ∆pBC (∆pAB, ∆pBC) ∈ SB,
p̄ (∆pAB, ∆pBC) ∈ SC.

(10)

The three cases for each actuator pressure can be combined by the maximum function as,

pA = max{ p̄, p̄ + ∆pAB, p̄ + ∆pAB + ∆pBC}
pB = max{ p̄, p̄ + ∆pBC, p̄− ∆pAB}
pC = max{ p̄, p̄− ∆pBC, p̄− ∆pAB − ∆pBC}.

(11)

It remains to shows that this is indeed true. We execute the proof for pA.
For (∆pAB, ∆pBC) ∈ SA it holds that:

∆pAB ≤ 0 and ∆pAB + ∆pBC ≤ 0, (12)

hence
p̄ ≥ p̄ + ∆pAB and p̄ ≥ p̄ + ∆pAB + ∆pBC. (13)

For (∆pAB, ∆pBC) ∈ SB it holds that:

∆pAB ≥ 0 and ∆pBC ≤ 0, (14)

hence
p̄ + ∆pAB ≥ p̄ and p̄ + ∆pAB ≥ p̄ + ∆pAB + ∆pBC. (15)

For (∆pAB, ∆pBC) ∈ SC it holds that:

∆pAB + ∆pBC ≥ 0 and ∆pBC ≥ 0, (16)

hence
p̄ + ∆pAB + ∆pBC ≥ p̄ and p̄ + ∆pAB + ∆pBC ≥ p̄ + ∆pAB. (17)

The same reasoning can be applied for pB and pC completing the proof.
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Figure S1. The left plot shows the (positive octant of the) absolute pressure space with pA, pB and
pC forming the standard basis. The three planes in red, green and blue correspond to the points
where either pA, pB or pC is equal to a certain value of p̄. Consequently, the three planes indicate the
points where min{pA, pB, pC} = p̄ is fulfilled. The plane in white is spanned by ∆pAB and ∆pBC (or
equivalently by ∆pα and ∆pβ) with the normal direction indicated by n. The intersection of the white
plane with the three colored planes forms an equilateral triangle with its top view shown in the right
plot. The black dot indicates a certain value of (∆pAB, ∆pBC). Note that the point does not lie on
the boundary of the triangle in the right plot and correspondingly does not lie on one of the colored
planes in the left plot. Projecting the black dot in the normal direction, n, onto the planes defined by
the constraint, min{pA, pB, pC} = p̄, results in the orange dot that lies on the boundary of a smaller
equilateral triangle (indicated by the gray triangle in the right plot). Therefore, the point is uniquely
defined in the absolute pressure space. The triangle in the ∆pα-∆pβ-plane is split by its median lines
into three sets SA, SB and SC, where SA and SC are split by the line where −∆pAB = ∆pBC holds. If
a point (∆pAB, ∆pBC) lies in SB, it is projected onto the green plane that satisfies pB = p̄. The same
holds for a point in SA and the red plane satisfying pA = p̄ and a point in SC and the blue plane
satisfying pC = p̄.
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