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Abstract: The mechanism of the inchworm motor, which overcomes the intrinsic displacement and
force limitations of MEMS electrostatic actuators, has undergone constant development in the past
few decades. In this work, the electrostatic actuation unit cell (AUC) that is designed to cooperate
with many other counterparts in a novel concept of a modular-like cooperative actuator system is
examined. First, the cooperative system is briefly discussed. A simplified analytical model of the
AUC, which is a 2-Degree-of-Freedom (2-DoF) gap-closing actuator (GCA), is presented, taking into
account the major source of dissipation in the system, the squeeze-film damping (SQFD). Then, the
results of a series of coupled-field numerical simulation studies by the Finite Element Method (FEM)
on parameterized models of the AUC are shown, whereby sensible comparisons with available
analytical models from the literature are made. The numerical simulations that focused on the
dynamic behavior of the AUC highlighted the substantial influence of the SQFD on the pull-in and
pull-out times, and revealed how these performance characteristics are considerably determined by
the structure’s height. It was found that the pull-out time is the critical parameter for the dynamic
behavior of the AUC, and that a larger damping profile significantly shortens the actuator cycle time
as a consequence.

Keywords: cooperative actuators; inchworm motor; electrostatic actuator; MEMS; FEM; coupled-
field modeling; gap-closing actuator; pull-in time; pull-out time; squeeze-film damping

1. Introduction

Electrostatic actuation is widely commercially used in applications where only low
forces and displacements are needed, such as in MEMS-based gyros using the Coriolis
effect [1] and in the Digital Micro Mirror (DMD) device [2]. The growing interest in
electrostatic actuators observed in recent decades in commercial and research circles is
owed primarily to their ease of fabrication and integration due to the compatibility with
CMOS fabrication processes, as well as their outstanding force-to-volume ratio, which
favors them among other actuation means in the micrometer range. Additional advantages
of electrostatic actuators include their low energy consumption, relatively fast response and
high resonance frequencies, and low temperature dependence [3,4]. However, electrostatic
actuators in MEMS have intrinsic limitations in terms of force and linear displacement
capacities. To overcome these limitations, electrostatically driven actuation systems based
on the inchworm principle, which typically achieves extended linear displacements through
a scheme of repeated latch-drive operations on a common shuttle, have been proposed [5–8].
However, even when using the so-called gap-closing mechanism and cooperative action
of different actuators, the reported forces are rather small and typically measure less than
1 mN. Recently, inchworm motors have been integrated in more complex schemes, such
as a six-legged terrestrial robot [9], and this year, a robust electrostatic inchworm motor
has been presented, allowing 80 mm stroke and a force of 15 mN at 100 V driving voltage.
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Thus, the authors claimed a performance of their electrostatic inchworm motor similar to
piezoelectric-driven inchworm motors [10].

In principle, an electrostatic gap-closing actuator (GCA) can provide large forces.
However, a great influence on the dynamic behavior of this kind of actuator, which requires
a thorough consideration, arises from the pull-in phenomenon, also known as the pull-in
instability. The distance at which the pull-in takes place in a GCA, known as the pull-in
distance, is one-third of the nominal gap when a linear force flexure is used, but it can be
extended by using higher-order force flexures [11,12]. In 2007, Zhang et al. [3] surveyed the
pull-in phenomenon in addition to key issues concerning the stability, nonlinearity, and
reliability of electrostatic MEMS actuators. Then in 2014, Zhang et al. [13] contributed a
more extensive review on pull-in instability, in which they covered the theoretical back-
ground of the phenomenon, many of the aspects it influences and is influenced by, and its
various applications.

Moreover, depending on the application, achieving a decent grasp of the mechanical
dynamic behavior of a MEMS actuator, such that its design and operation goals are secured,
requires taking into account not only the relevant stiffness and inertia elements but also
the damping mechanisms of energy dissipation affecting the structure. These damping
mechanisms are usually classified into extrinsic and intrinsic mechanisms. In MEMS
applications where special measures are not taken to eliminate extrinsic losses, e.g., to
achieve very high quality factors in resonators, the intrinsic damping sources such as
thermoelastic damping, for instance, are almost negligible when compared to extrinsic
types of dissipation, especially in single-crystalline materials. Moreover, extrinsic losses,
which arise from the structure’s interaction with its environment, can be dominating and
greatly influence its dynamic behavior. Consequently, it has been commonly reported that
the most significant damping source in MEMS is viscous or air damping [14] (pp. 97–114).
Viscous damping can take up to three forms in MEMS: drag, shear-film, and squeeze-film
damping (SQFD). The first one relates to the friction experienced by a structure moving in
free space in air, whereas the other two relate to structures moving in close proximity to
each other. Shear-film damping happens when structures move parallel to one another and
their relative distance remains constant, whereas SQFD happens when they come closer to
one another during movement, i.e., when the gap between them diminishes and the fluid
therein is squeezed out. In MEMS structures featuring large flat surfaces that move across
a gap between them, which is much smaller than their lateral dimensions, and where a
thin film of fluid resides, the SQFD dominates, and in many cases it is the only source of
damping granted attention [14] (p. 118).

Taking into account the aspects discussed so far, it can be easily understood why the
modeling and simulation of MEMS devices is one of the most demanding tasks, especially
if the device is intended to have a certain dynamic performance. Although, from a struc-
tural point of view, a MEMS component can sometimes be relatively simple; however,
the complexity of its modeling and the difficulty of gaining a thorough understanding
and accurate prediction of its dynamic behavior stems from the fact that it usually entails
the inherent coupling of various energy domains and physical forces (mechanical, elec-
trical, fluidic, etc.). The interactions among these domains are in many cases intrinsically
nonlinear, especially for large-amplitude motions of microstructures that amplify their
geometric nonlinearities as well [15] (pp. 7–8). This reality makes FEM tools essential for
the design and development of novel MEMS applications [14] (pp. 4–11), such as the one
at hand. With FEM, small deviations from the ideal structures can also be considered, such
as not perfectly vertical sidewalls or small geometrical variations, which occur due to the
limitations of the microfabrication processes and can have a large impact on the system
behavior of such a complex cooperating system.

This paper presents the results of modeling an actuation unit cell (AUC), both analyti-
cally by a lumped-parameter model and numerically with FEM, and compares between the
two approaches where possible. The AUC constitutes the basic building block in a novel
concept of a cooperative electrostatic microactuator system that is intended for realizing
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large actuation displacements (tens of mm) and forces (tens of N) [16], which can meet the
requirements of implantable actuators for bone distraction in osteogenesis applications,
for example [17]. Therefore, the concept of the actuation system as a whole and the main
cooperative operations and mechanisms therein will be briefly discussed. Furthermore, a
simplified analytical model of the AUC is presented, followed by FEM simulations with
several types of studies carried out on a parameterized model to reveal different aspects
of the dynamic behavior of the actuator and its operational parameters of interest, e.g.,
the static study of the deflection-voltage curve that identifies the pull-in and pull-out
transitional points and the transient studies of the actuation and settling times, which make
up the major parts of the actuation cycle. Moreover, the parameters investigated by FEM
are compared with available analytical models found in the literature. The modeling of
viscous damping, namely the squeeze-film damping, and its influences on the dynamic
behavior are discussed as well.

2. System Concept, Materials, and Methods
2.1. The Cooperative Concept and Actuation Unit Cell

The works presented here are a stepping stone to implement a modular-like concept
of a cooperative electrostatic microactuator system. The cooperative system as a whole
is meant to provide scalable displacement in the millimeter range and force capacities
of several newtons. A sketch of the system concept is shown in Figure 1. As shown in
the figure, pairs of AUCs are integrated with another multistable actuator subsystem,
which consists of two sliding shafts that are mounted on central mechanical tracks. The
two shafts are initially interdigitated with a stationary holder via mechanical suspension
springs that pull them together. Mobility transmission electrodes placed parallel to the
sliding shafts provide electrostatic forces to pull out the shafts and release them from the
stationary holder such that the outer shafts’ teeth become clutched by those of the AUCs.
When the shaft is mobile, linear movement is realized by actuating the AUCs in a scheme
that is detailed below. However, it is worth noting that the system model is based upon
the cooperation of an AUC with many other counterparts to actively actuate the shaft
in a bidirectional manner. Therefore, the AUC itself is a two-degree-of-freedom (2-DoF)
actuator that is able to both clutch with the main shaft as well as actuate it in either one of
the two directions along the shaft.
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Figure 1. System concept of a multistage, multistable inchworm motor, illustrated by four pairs
of actuation unit cells (AUC) distributed at both sides of two connected sliding shafts (long blue
structures), which are pulled together by mechanical suspension springs and held at idle states by
a central stationary holder (yellow). The mobility transmission electrodes determine whether the
shafts are interlocked with the stationary holder or released from it.
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The proposed cooperative approach aims at combining the efforts of multiple AUCs to
overcome the intrinsic limitations of each one, namely, in terms of the delivered force and
displacement. Pushing the limit of the actuation force is achieved by actuating multiple
AUCs simultaneously (parallel operation; timewise), whereas exceeding the displacement
capability is realized by the inchworm mechanism, i.e., by activating multiple AUCs
sequentially and repeatedly to displace the shaft (serial operation; timewise). Moreover, on
the one hand, as it can be inferred from Figure 1, the shaft has multiple stable positions, the
distance between which will be determined by the technological manufacturing limitations
and design specifications of the interlocking teeth of the stationary holder and the sliding
shafts; on the other hand, the displacement of the AUC, i.e., the stroke it is capable of, must
be kept small to generate sufficiently large forces, as discussed later. As a result, it must be
taken into account that a step displacement of the shaft between two neighboring stable
positions (pitch of the interlocking teeth) might require multiple AUC strokes provided
by multiple groups of AUCs. Figure 2 illustrates an example of the proposed cooperative
scheme with a simple diagram in which each of the units, labelled A, B, and C, represents
a group of AUCs that are driven in parallel. Therefore, in this illustration, the AUCs are
driven in three groups to satisfy the presumed requirement that a shaft step requires three
AUC strokes.
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Figure 2. A diagram demonstrating the scheme of serial operations of the unit cells to actuate
the main shaft. Each of the units A, B, and C represents a parallel-driven group of AUCs. In this
illustration, a step displacement of the shaft (a full actuation cycle) requires three successive strokes
by three AUC groups. The diagram reflects the operation of a single group, A, and how it overlaps
with the other groups in a cycle. The small and large blue squares represent the anchor and moveable
electrode in an AUC, respectively. The purple or red strips represent the electrically charged or
grounded electrodes, respectively. It starts after the main shaft has been made mobile by disengaging
it from the stationary holder (yellow structure in Figure 1). Simultaneously, the shaft will be clutched
by group A, whose teeth are aligned to those of the shaft, whereas the other groups are already pulled
away (I). Group A then actuates the shaft (side actuation; rightward arrows) until reaching the stroke
limit (II). Afterwards, group B, which is now aligned to the shaft, returns to home position (upward
arrow) and clutches the shaft (III). Lastly, group A disengages from the shaft (diagonal arrow) to
allow group B to handle the shaft from this point onward (IV), then similarly hand it over to group C
(not shown), and the cycle repeats.
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The mechanical structure proposed for the AUC has a rigid, rectangular-shaped,
centrally anchored, and electrically grounded movable electrode (see Figure 3). The elastic
restoration force is realized by four serpentine flexures that are arranged symmetrically
about the centered anchor. The frame is actuated via electrostatic attraction towards either
one of three surrounding stationary electrodes. Electrode 3 determines whether the frame
is engaged with the shaft or not, whereas the two Electrodes 1 and 2 will move it in either of
the two opposite directions. The mechanical stoppers prevent the electrodes from coming
into contact. Table 1 lists the values for the dimensions corresponding to Figure 3.

2.2. The Analytical Model of the AUC

The AUC is basically a spring–mass–damper system that is driven by external elec-
trostatic force. As it can be inferred from Figure 3, the moveable electrode has a planar
movement in the xy-plane; however, if one considers its motion along the x-axis, an approx-
imation can be made by viewing it as a single-degree-of-freedom device that is confined
to the movement along that axis. Additionally, due to the geometrical and operational
similarity between the two primary axes of motion, investigating the behavior of the sys-
tem along one of them essentially covers both. Consequently, as shown in Figure 4, the
parallel-plate electrostatic actuator is adopted as an approximate lumped-parameter model,
which assumes the infinite rigidity of the moveable electrode wall and that its outer vertical
surfaces remain parallel to the opposite surfaces of the stationary electrodes during motion.

Figure 4 shows the four forcing elements that primarily govern the dynamic behavior
of the system: The first is the electrostatic force exerted on the grounded moveable electrode
(Moveable Plate) when a stationary electrode (Fixed Plate 1) is charged with an electric
potential V0. In line with the concept of operation discussed above, only one of the two
electrodes actuating the structure in the x-axis may be charged at any given time. The
second is the inertial element that consists of the mass of the moveable electrode wall and
a portion of the serpentine springs’ masses. It is represented by an equivalent mass for
the moveable plate, meq = mwall + r msprings, where r is the springs’ effective mass ratio.
The third element is the elastic force resulting from an equivalent spring constant keq that
reflects the overall stiffness of the serpentine flexures along the x-axis. The equivalent
spring constant was derived based on energy methods, as shown in Appendix A. The last
element is the viscous damping force represented solely by the dominant SQFD that affects
the moveable electrode on both sides as it moves along the x-axis. Modeling the latter is
explained in more detail below.

Accounting for the viscous damping of fluids in MEMS is fundamentally based on
the Navier–Stokes equation, which is a nonlinear three-dimensional partial differential
equation that is very challenging to solve numerically, let alone analytically [14] (p. 114).
Consequently, certain simplifications and assumptions were customarily made by re-
searchers, depending on specific aspects of the application under investigation, to allow
this problem to be tackled by a simpler nonlinear or even a linearized Reynolds equation.
Good reviews of some of these efforts in the MEMS field can be found in [14,18].

The fluidic thin films occupying the spaces between the vertical, parallel, and relatively
large side walls of the electrodes (the moveable electrode with respect to each of the
stationary electrodes) contribute to most of the damping in this application. Moreover, the
squeeze-film effect, which results from the moveable electrode’s gap-closing motion, may
exert a damping force or a spring force or both. The proportionality and extent of these
forces depends on several factors that are summarized in the nondimensional so-called
squeeze number, which serves as a measure of the compressibility of the thin film. For
two parallel plates with overlapping area A, separated by distance d, and with a harmonic
excitation of one plate at frequency ω, the squeeze number σ is obtained as follows:



Actuators 2021, 10, 276 6 of 23
Actuators 2021, 10, x FOR PEER REVIEW 6 of 24 
 

 

 

 

Figure 3. Three-dimensional schematic of the proposed AUC for the cooperative microactuator sys-

tem, taken from the FEM model in COMSOL. 

2.2. The Analytical Model of the AUC 

The AUC is basically a spring–mass–damper system that is driven by external elec-

trostatic force. As it can be inferred from Figure 3, the moveable electrode has a planar 

movement in the xy-plane; however, if one considers its motion along the x-axis, an ap-

proximation can be made by viewing it as a single-degree-of-freedom device that is con-

fined to the movement along that axis. Additionally, due to the geometrical and opera-

tional similarity between the two primary axes of motion, investigating the behavior of 

the system along one of them essentially covers both. Consequently, as shown in Figure 

4, the parallel-plate electrostatic actuator is adopted as an approximate lumped-parameter 

model, which assumes the infinite rigidity of the moveable electrode wall and that its 

outer vertical surfaces remain parallel to the opposite surfaces of the stationary electrodes 

during motion. 

 

Figure 4. Lumped-parameter modeling of the AUC as a parallel-plate capacitor with squeeze-film 

damping. meq is the moveable plate’s equivalent mass, keq is the serpentine flexures’ equivalent 

h 

ww 

cx cy 

ax 

ay 

wy wx 

lc,x 

ls,x 

le,x 

le,x 

le,y 

lc,y 
ls,y 

le,y 

le 

s 

ws 

d 

Vo 

Movable Electrode 

Anchor 

Mechanical stoppers 

Serpentine Flexures 

 

Wall 

Figure 3. Three-dimensional schematic of the proposed AUC for the cooperative microactuator system, taken from the FEM
model in COMSOL.

Table 1. Typical parameter values for the AUC in the FEM model.

Description Symbol Value Unit

Height of unit cell h 50 µm
Width of cell wall ww 15 µm

Size of cell wall along x-axis (inner dimension) cx 500 µm
Size of cell wall along y-axis (inner dimension) cy 500 µm

Size of anchor (x-axis) ax 100 µm
Size of anchor (y-axis) ay 100 µm

Width of x-axis spring (flexure width) wx 2 µm
Width of y-axis spring (flexure width) wy 2 µm

Length of connector beams of x-axis spring lc,x 50 µm
Length of span beam of x-axis spring ls,x 200 µm

Length of extension beams of x-axis spring le,x 53 µm
Length of connector beams of y-axis spring lc,y 50 µm

Length of span beam of y-axis spring ls,y 200 µm
Length of extension beams of y-axis spring le,y 53 µm

Length of stationary electrodes le 460 µm
Width of stopper (length of contact area) ws 25 µm

Nominal air gap between electrodes d 5 µm
Stroke (distance between mov. electrode at rest

and stopper) s 4 µm

Young’s modulus E 170 GPa
Poisson’s ratio ν 0.28 -
Density (c-Si) ρ 2329 kg/m3

Air viscosity µ 1.845 × 10−5 Pa.s
Actuation Voltage Vo variable V
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Figure 4. Lumped-parameter modeling of the AUC as a parallel-plate capacitor with squeeze-film
damping. meq is the moveable plate’s equivalent mass, keq is the serpentine flexures’ equivalent
spring constant, x is the position of the moveable plate, d is the initial (nominal) gap, s is the stroke
extending to the stoppers, and V0 is the actuation voltage.

σ =
12 Aωµ

Pad2 , (1)

where µ and Pa are the fluid viscosity and ambient pressure of the thin film, respectively [14]
(p. 128). A low squeeze number means that the gas does not undergo compression; hence,
the assumption of incompressible gas is more acceptable, and its damping force dominates
with a negligible spring effect. On the other hand, a high squeeze number means that the
fluid is trapped in the gap by its own viscosity and cannot escape easily; thus, it undergoes
compression and its spring effect becomes more significant to the extent that it acts as
a spring rather than a damper with much larger squeeze numbers [19]. The transition
point at which the damping and stiffness forces of the film become equal has been worked
out through the so-called cut-off squeeze number σc. Blech [20] derived an analytical
expression for it as follows:

σc = π2
(

1 + (w/l)2
)

, (2)

where w and l are the width and length of the thin film that correspond to h and le of
the AUC, respectively. The geometrical dimensions defined in Table 1 result in σc ≈ 9.97.
Under the assumptions of operation at atmospheric pressure, almost free air access to the
gap from its surroundings, and moderate driving frequencies, squeeze numbers much less
than unity are expected, i.e., σ � σc. Hence, the incompressible fluid assumption is made
in the analysis presented here, and the spring effect of the SQFD is neglected.

Furthermore, under assumptions satisfying the Reynolds equation [14] (p. 122) and the
incompressible-gas approximation, Starr [21], based on the assumptions of small deflection
and small pressure variation, used a linearized form of the Reynolds equation to derive the
damping factor for a rectangular plate, which can be expressed as follows:

c =
w3l µ

d3 · f (w/l), (3)

where f (w/l) is a factor that depends on the aspect ratio of the thin film, and it is obtained,
as reported in [22], by the following:

f (w/l) = 1 − 0.6 (w/l), f or 0 < w/l < 1. (4)

Contrary to Starr’s assumptions, the proposed AUC’s moveable electrode experiences
large deflections that give rise to large pressure variations. To this end, the approaches
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adopted in [5,22] showed that the nonlinear behavior of the SQFD can still be approximated
using Starr’s expression by replacing the nominal film thickness d with the actual, variable
thickness of the film instead. As a result, the viscous damping force exerted by the two thin
films in our model can be expressed using the parameter notation of Table 1 and Figure 4
as follows:

Fd = cSQFD
.
x =

(
1 − 0.6

h
le

)
h3leµ

(
1
x3 +

1

(2d − x)3

)
.
x. (5)

In summary, considering the four primary forces in the system discussed here, the
equation of motion of the system, with reference to Figure 4, is written as follows:

meq
..
x + cSQFD

.
x + keq(x − d) +

ε0 A
2x2 V0

2 = 0, f or d − s < x < d + s, (6)

where ε0 is the vacuum permittivity and A = hle is the overlapping electrode surface area.

2.3. FE Modeling and Simulation

The device investigated here is a pull-in type device, similar to a microswitch. Pull-
in devices undergo a sharp transition under deflection through a so-called pull-in point
until they land on the opposite electrode unless a mechanical stopper prevents this. As
such, the numerical modeling presented here aimed at establishing the device’s operation
around this transitional point, through the static deflection-voltage curve, to determine the
primary pull-in characteristics. Additionally, by performing transient analyses, the dynamic
behavior was examined in order to determine other important performance characteristics,
such as the pull-in and pull-out times, which help to define a stable operation frequency
range for the device.

To achieve these objectives, the AUC was modeled in the commercial FE modeling
software COMSOL Multiphysics. A 3D model with typical parameter values was used
as shown in Figure 3 and Table 1. The model was simulated through a predefined multi-
physics interface, the electromechanics, which is part of the structural mechanics module
in COMSOL, and combines the solid mechanics and electrostatics interfaces with a moving
mesh functionality. The latter was used to mesh the highly deformable air gap, which
only occupied the overlapping area between the surfaces of the moveable electrode and
Electrode 1. Thus, the fringing fields were neglected, similarly to the analytical model. The
actuating electric potential was applied directly across the gap by defining electric poten-
tials V0 and 0 V to the gap-bordering surface of Electrode 1 and to the bulk of the moveable
electrode, respectively. The electrostatics interface computed the electric field in the air
gap based on Gauss’s law and updated it continuously as the gap geometry changed. The
electrostatic force that acts on the moveable electrode was calculated in the multiphysics
interface by Maxwell’s stress tensor. The displacements, stresses, and strains were solved in
the solid mechanics interface based on Navier’s equations. Additionally, the fluid thin-film
damping could be calculated via an ad hoc boundary condition (BC) predefined in the solid
mechanics interface. A 2D model that is obtained by a cross-sectional cut along the z-axis of
the 3D model was primarily utilized, which lessened the computational load significantly
and made it easier to obtain converging solutions. For the different COMSOL simulations,
fully coupled solvers were utilized with relative tolerance values of no more than 0.001.

2.3.1. Static Analysis

The static deflection-voltage curve of the AUC is defined by the equilibrium points
at which the stiffness and electrostatic forces are equal. Figure 5 depicts this curve for the
device with the nominal dimensions listed in Table 1. The plot was generated by sweeping
the deflection of the center point at the movable electrode’s surface, which is opposite
to the actuating stationary electrode. The deflection sweep was made over the complete
possible range of motion of the center point from the undeflected position to the stationary
electrode, while the actuating voltage level required for any deflection point was calculated
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inversely. From the plot, it can be inferred that there are stable and unstable regions
depending on whether the device can in reality be driven at those points in a controllable
manner or not. Starting from the undeflected position (V0 = 0 V), as the actuation voltage
increases, the AUC may be driven in a stable manner up to the point where pull-in takes
place, and then it is pulled through the gap and lands on the stoppers (the second stable
region, above the stoppers’ mark). If the actuation voltage is increased beyond a certain
level, the movable electrode wall will collapse under the increasing electrostatic force
and come into contact with the stationary electrode. This is essentially a second pull-in
point, where the electrostatic force is acting additionally against the wall stiffness; however,
considering the operational point of view of the device as a whole, it is referred to as
the collapsing point. The amount of deflection above the stoppers line with respect to it
represents the static internal deflection, which the wall undergoes at pull-in. Contrariwise,
when at the pulled-in position, as the actuation voltage drops below a certain value, the
recovering elastic force of the flexures overcomes the electrostatic force and pulls the frame
out (pull-out). In this analysis, the 2D model was used.
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Figure 5. The static deflection-voltage curve for a 2D model of the AUC corresponding to Table 1
generated by simulation with COMSOL. It shows the stable and unstable regions of the curve as
well as the major transitional points, namely, the pull-in, pull-out, and collapse transitions. The
dot-dashed lines represent the positions of the stoppers and the stationary electrode.

2.3.2. Transient Analysis

The transient analysis is a time-dependent study that was used to investigate the
dynamic behavior of the movable electrode under the influence of an actuating electrostatic
force of a certain temporal shape or after releasing the structure from the influence of such
force. Therefore, it was primarily used to find out the pull-in and pull-out times of the AUC
and how these varied with the structures’ dimensions and the adopted viscous damping
approximations. Moreover, modeling the SQFD effect in the COMSOL environment
through the built-in BC available in the solid mechanics interface was only feasible in
a 3D model because the borders of the film in the out-of-plane direction could not be
properly defined in the 2D model through the available interface settings. As a result, the
derived analytical approximation for the SQFD (discussed in Section 2.2) was applied in
the 2D model, which is the main model used in transient analyses, as a boundary load
acting on the AUC’s surfaces of interest. A comparative analysis between the built-in BC
and the embedded analytical model in a 3D environment is presented at the end of the
discussion chapter.
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2.4. Solving the Analytical (Lumped-Parameter) Model by MATLAB/Simulink

To corroborate the findings of the transient analyses obtained by the FEM simulation,
the system equation of motion, Equation (6), was implemented in a MATLAB/Simulink
model (see Figure 6), which was set up with an ode8 Dormand-Prince solver and a fixed-
step of 1 ns. The model was solved with two different sets of initial conditions to demon-
strate the pull-in and pull-out behaviors. For the pull-in response, the initial position xo
was set to d, and Vo was set to the amplitude of the applied voltage of the corresponding
COMSOL simulation to be compared with. The pull-in time was noted when the position
x reached the stoppers (x = d − s). For the pull-out response, the initial conditions were
xo = d − s and Vo = 0 V. The parameters of the model, e.g., the electrode surface area and
equivalent mass, were calculated based on the geometry through a script; however, to
obtain results that are more comparable to the numerical model, the spring constants were
extracted from a 3D COMSOL model rather than the analytical formulations. Additionally,
it was assumed that the springs’ effective mass ratio r = 0.5.
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Figure 6. The MATLAB/Simulink model corresponding to the system equation of motion, Equation (6).

3. Results

In the following presentation of FEM simulation results and the parametric sweeps
therein, unless otherwise specified, the dimensions listed in Table 1 apply.

3.1. Pull-In Voltage

The pull-in voltage for parallel-plate electrostatic actuators with linear stiffness ele-
ments, as shown in Figure 4, is given in [14] (p. 78) as follows:

VPull-in =

√
8kd3

27εA
. (7)

With FEM, different static parametric studies for the AUC’s dimensions were simu-
lated. A primary example is the influence of the spring constant k, which was examined
through a sweep of the flexure width. Accordingly, Figure 7a plots the numerically and
analytically calculated pull-in voltage as a function of the flexure width. The analytical
solution determined the spring constant through the formulations given in Appendix A.
The difference between the two solutions ranges between 7% and 7.6%. Similarly, a para-
metric study sweeping the gap width d is presented in Figure 7b. The relative difference
between the numerical and analytical solutions here is between 7.7% and 9.3%. The curves
in Figure 7 represent a dependance of the pull-in voltage on the square root of the cube of
the respective parameter. For ideal structures considered in the scope of these analyses, the
reported differences between the FEM and analytical models in the investigated ranges
stem mainly from the underestimation of the spring constant by the approximate analytical
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formulations (see Appendix A). The FEM simulations showed that the pull-in distances,
as expected from linear stiffness elements, remained equal to one-third of the nominal
gap widths.
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Figure 7. The results of static parametric analyses of the pull-in voltage, where the latter is plotted as a function of the
following: (a) the flexure width (by sweeping both wx and wy); and (b) the nominal gap width d. In the plots, the FEM
results are compared with the analytical solutions that are based on Equation (7) and the stiffness formulations of the
serpentine flexures presented in Appendix A.

3.2. Pull-In Time

The pull-in time is a fundamental parameter for the dynamic behavior of a GCA.
Therefore, attempts to derive an analytical equation for it are found in the literature.
Naturally, the derivation depends on the proper assumptions and approximations that
can be made in the solution of the corresponding system equation of motion. To this
end, for a beam MEMS switch, with the assumption of an inertia-limited system and the
approximations of a small damping coefficient (c ∼= 0) and a constant electrostatic force, a
closed-form solution of pull-in time was derived in [23] (p. 68) as follows:

tPull-in
∼= 3.67

VPull-in
Voωo

, (8)

which shows the pull-in time dependence on the ratio of the pull-in voltage VPull-in relative
to the actuation voltage Vo as well as the stiffness and inertia of the structure (lumped in
the natural frequency, ωo =

√
keq/meq). From the surveyed literature, this formulation

was deemed the most suitable to the system at hand in terms of the assumptions made to
derive it, despite the fact that it lacks the consideration of damping, the influence of which
is examined below.

Accordingly, several parametric transient studies were carried out in a 2D model
in COMSOL in order to establish how relatable the behaviour of the system at hand is
to Equation (8) and how well the assumption of an inertia-limited system is fulfilled.
Each parametric study was carried out twice under two different boundary conditions:
(a) neglecting the damping of the thin film (undamped) and (b) with the SQFD force
exerted as defined in Equation (5) (damped). Moreover, unless otherwise specified, the
actuation voltage was applied in the form of a step function with 1 ns transition time and
an amplitude slightly (~0.5 V) larger than the numerically calculated pull-in voltage as per
the previously mentioned static analyses. Additionally, the pull-in time of the damped
lumped-parameter model was correspondingly calculated by the MATLAB/Simulink
model. Figure 8 plots the pull-in time as a function of the following: (a) the flexure width,
wx and wy (stiffness); (b) the wall width ww (mass); and (c) the normalized actuation voltage
Vo/VPull-in. It should be noted that the analytical solutions based on Equation (8) also
assumed r = 0.5 and calculated VPull-in as per Equation (7); therefore, the discrepancy due
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to the approximate solution of the latter, as reported in the previous section, propagated to
the plots of Figure 8.
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the following: (a) the flexure width (by sweeping both wx and wy with the corresponding actuation voltage amplitude
required for pull-in); (b) the wall width ww; and (c) the normalized actuation voltage V0/VPull-in (the analytically calculated
VPull-in

∼= 56.4 V). In the plots, the 2D FEM results of the damped and undamped regimes are compared with the
analytical solutions based on Equation (8). Additionally, the lumped-parameter model solutions by MATLAB/Simulink are
also plotted.

As observed in Figure 8a and Figure 8b, Equation (8) and the FEM results correspond
reasonably to one another. In the investigated ranges, the analytical solution consistently
underestimates the pull-in time with differences between it and the corresponding un-
damped FEM simulation ranging roughly between 3.6% and 10.1% for the stiffness sweep
(Figure 8a), generally decreasing with larger stiffnesses, and between 7.8% and 10.1% for
the mass sweep (Figure 8b). Additionally, it should be pointed out that Equation (8) sup-
posedly accounts for the time required to deflect the electrode along the full gap, whereas
the FEM simulations had stoppers placed at 80% of the gap. Therefore, ideally, the numeri-
cally derived undamped curves should have remained below the analytical curves, which
means that the error in the analytical account of the pull-in time is even larger than what
the figures show. On the other hand, the results of the parametric sweep of the actuation
voltage, shown in Figure 8c, reveal larger discrepancies with differences between 10.1%
and (-) 35.8%, consistently increasing (absolute value) with larger actuation voltages.

Furthermore, the comparison between the FEM-based curves in Figure 8 shows that
the effect of damping on the pull-in time is relatively small, and it becomes notably smaller
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when the applied actuation voltage is larger, regardless of the applicable pull-in voltage
(Figure 8a,c). Additionally, by observing the curves obtained from the MATLAB model we
find good quantitative agreements with the COMSOL curves, whereby absolute difference
values ranging between 0.5% and 4% are found in the plotted ranges. The observed slight
differences are expected as they result from the variations between the lumped parameters
in the MATLAB model and the corresponding distributed parameters in the COMSOL
model, given that the latter is naturally assumed to reflect the physical properties of the
AUC more accurately.

However, a deeper examination of Equation (8) leads to the conclusion that the pull-in
time is neutral to the stiffness element. This becomes evident by substituting Equation (7)
and ωo =

√
keq/meq in Equation (8) and further simplifying the variables by using their

basic constituents that correspond to the structure at hand, which provides the following:

tPull-in
∼=

2
Vo

√
ρd3 Axy

εle
, (9)

where Axy is the effective cross-sectional area of the movable electrode (excluding the
anchor) in the xy-plane, that is Axy = Axy,wall + r Axy,springs; ρ is the density of material;
and le is the length of the stationary electrode, as defined in Figure 3 and Table 1. Therefore,
it is inferred that the reduction in pull-in time with increased stiffness (flexure width), as
seen in Figure 8a, in fact resulted from increasing the actuation voltage, which was needed
to induce pull-in for larger flexure widths, rather than from increasing the stiffness.

On the other hand, contrary to the assumption made to derive Equation (8), the
system at hand features viscous damping, which depends on the cube of the cell height (see
Equation (5)). Accordingly, a parametric study was carried out with cell heights spreading
from 10 µm to 100 µm (see Figure 9a). As expected, the cell height has no influence on the
pull-in time of the undamped regime, since both the stiffness and mass of the structure,
present in Equation (8), scale equally with height. This can be inferred from Equation (9),
and it can also be observed by the identical undamped responses of the different cell
heights in Figure 9a (dashed lines appearing as one). However, increasing the height
showed a substantial change in pull-in time that increased more rapidly with larger heights,
as observed in Figure 9b, which plots the normalized pull-in time as a function of the
height. Here, the pull-in time is normalized relative to the pull-in time of the undamped
structure (55.75 µs). It can be observed that the damping has negligible effect on the 10 µm
high structure, with 0.4% increase in pull-in time (55.97 µs), but it has a substantial effect
on the 100 µm high structure, with 58.6% increased pull-in time (88.41 µs) compared to
the undamped regime. Moreover, solving the lumped-parameter model in MATLAB has
confirmed the same correlation between the pull-in time and the cell height. As a result, it
can be inferred that Equation (8) provides a good approximate evaluation of the pull-in
time of the AUC only for small cell heights. Especially for large heights needed to achieve
large forces for the cooperative system investigated here, the influence of damping has to
be considered.

3.3. Pull-Out Time

For a cooperative system in which a large number of physically independent actuators
have to be driven in a coordinated manner, it is not only the pull-in time of the individual
actuators that has to be considered, but the so-called pull-out time, which is defined as
the time needed to settle back from a pull-in situation to the unengaged starting position,
must also be considered (see Figure 2). In order to estimate the pull-out time in FEM,
first, a static study was carried out to bring the moveable electrode to the fully deflected
position (being landed at the stoppers); then, the static solution was used as an initial
condition for a transient study, which released the structure to oscillate freely under the
influence of the structure’s elasticity and the thin film’s viscosity. In the literature, the
pull-out time is usually defined as the time it takes the released electrode to first cross its
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undeflected position. This definition renders the stiffness and inertia components the major
influencers of pull-out time, as they determine the oscillation frequency and, consequently,
the recovering speed of the structure. However, the application at hand requires that the
actuator be realigned between successive operations; hence, the settling time is of major
consequence and regarding it as the measure of the pull-out time is more sensible.
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Figure 10a plots a parametric study with a sweep of the flexure width. It shows how
increasing the spring constant can substantially reduce the time required to first reach the
undeflected position (dot-dashed line in the middle); in the investigated range, this time
reduces from 46.4 µs (flexure width = 1.5 µm) down to 8.3 µs (flexure width = 4.0 µm).
However, consideration of the decay rates of the curves’ envelopes reveals equal settling
times regardless of the structure’s stiffness. On the other hand, a parametric study of the
dimensional parameter, which has the strongest influence on the SQFD, i.e., the cell height,
is shown in Figure 10b. The simulated cell heights, also ranging from 10 µm to 100 µm,
show increasing tangible influence on the settling time of the damped oscillation motion as
the cell height increases. The MATLAB/Simulink model also showed the same correlations
of pull-in time with the flexure width and cell height.

In order to draw a sensible comparison between the curves in Figure 10b, their decaying
rates were analyzed. Let us recall the well-known general solution for the response of an un-
derdamped spring–mass–damper system, which takes the form x(t) = ae−ζωnt sin(ωdt + ϕ),
where a and ϕ are the amplitude and phase of the response, and ζ, ωn, and ωd are the
damping ratio, the natural frequency, and the damped natural frequency of the system,
respectively. Accordingly, by fitting exponentially decaying envelopes of the form ae−ζωnt

to a certain point on these curves, with a = 4 µm and ωn = 73, 230 rad/s, “equivalent”
damping ratios were extracted for comparison. The point of reference selected for this anal-
ysis was the point of tangency on the upper curvature of a response curve after a complete
first oscillation, which experiences the highest dissipation rate compared to subsequent
oscillations. Figure 10c demonstrates the analysis in which the response of the AUC with a
cell height of 100 µm is plotted with the corresponding fitted decaying envelope, showing
an equivalent ζ ∼= 0.1466. It should be noted that the aforementioned general solution
corresponds to a constant damping coefficient that is linearly proportional to the velocity,
which is not the case with the SQFD that depends additionally on the inverse of the cube of
the changing thin film’s width, as shown in the analytical modeling part (see Equation (5)).
Therefore, it can be inferred that the decay rate in these oscillations is not constant but rather
reduces as the deflection amplitude decreases with the continued oscillations. Moreover,
Figure 10d shows the defined equivalent damping ratio as a function of the AUC’s height
where the resultant damping ratios are fitted with a line. Here, similarly to the response
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during pull-in, it can be inferred that the damping has a relatively negligible effect on the
10 µm high structure with ζ ∼= 0.0061. Additionally, the substantial influence of the cell
height can also be observed by the several-orders-of-magnitude difference in the SQFD
force as a consequence of changing this parameter, which is plotted in Figure 10e. Here, the
largest SQFD force per unit length of the thin film (corresponds to le in Figure 3) exerted on
the 10 µm high structure is about 1.0 (mN)/m in contrast to 348.6 (mN)/m experienced by
the 100 µm high structure.
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Additionally, by allowing a certain margin of deflection for the realignment of the
AUC after an actuation cycle, below which the AUC is considered settled, the effect of
the height on the dynamic response can be further assessed. For example, by setting a
realignment margin (δ) of ±1 µm from the undeflected position, the settling time is plotted
as a function of the height (see Figure 10f). It can be observed that the settling time drops
more than threefold from 440 µs with the 50 µm high structure to 117 µs for the 100 µm
high structure.

Furthermore, another possibility to increase SQFD that was explored here is by in-
creasing the number of thin films damping the structure. This can be realized by fabricating
additional damping walls adjacent to the frame of the moveable electrode from the inside,
thereby the damping thin films can be effectively doubled. The FEM simulation carried
out with a 50 µm high structure featuring additional inner damping thin films showed an
increased damping ratio of ζ ∼= 0.1027 and a reduced settling time of 230 µs compared to
ζ ∼= 0.0662 and 440 µs settling time without the additional films.

4. Discussion

By viewing the relatively brief history of inchworm motors, a number of characteristics
and performance measures can be identified that newly proposed designs aim to improve,
e.g., stability, position controllability, failure resistance (redundancy), delivered force,
and displacement speed and range. Conceptually, the proposed system of cooperative
actuators has good potential regarding all of the aforementioned aspects. For example,
as observed, the shaft in this system can be actively actuated in two directions, allowing
the exertion of force and the exact positioning control in both directions, which is not the
case in many other inchworm motor designs that actively push a shaft in one direction
and rely on a spring element to reset it to its initial position after some displacement.
Nevertheless, achieving stable operation at a decent displacement speed for a system with
many distributed cooperating actuators requires careful determination of the dynamic
behavior of the system’s basic actuator, the AUC.

4.1. Dynamic Behavior

By examining the pull-in time parametric analyses of the stiffness, inertia, and applied
voltage, it can be concluded that the AUC does fulfill the inertia-limited assumption. The
analyses demonstrated the dependencies described in Equation (8) with a decent qualitative
agreement, with the exception of the applied voltage dependence, which Equation (8)
reflected inaccurately as the difference percentages have shown. Additionally, with the
moderate cell height used in those simulations, the damping showed relatively small effects.
However, as revealed by the parametric analysis of the cell height, increasing this parameter
can amplify the damping influence and increase the pull-in time by a considerable amount.
On the other hand, compared with the pull-in time, the pull-out time analyses showed an
even greater dependence on the damping, rendering the influence of the cell height even
more critical. It is worth noting that, for instance, within the boundaries of the analyses
shown in Figures 9 and 10, increasing the cell height from 50 µm to 100 µm increased the
pull-in time by 26.6 µs (43%) but decreased the pull-out time by roughly 323 µs (73%).
Hence, the sum of these transition times, which primarily defines the cycle time of the
actuator, decreased from 501.8 µs to 205.4 µs, i.e., by 59%. Therefore, in contrast to the
usual consideration of the pull-in time as the limiting parameter for the actuation speed
of devices such as electrostatic cantilever microswitches [15] (p. 41), the pull-out time for
the actuator at hand, which necessarily includes the settling time, is much longer than
the pull-in time. Hence, reducing the pull-out time by larger damping at the expense of a
slightly longer pull-in time ultimately reduces the cycle time of the AUC, allowing higher
operating frequencies and faster displacement speeds for the cooperative system.
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4.2. Output Force

The delivered forces by inchworm motors reported in the literature varied significantly.
Yeh et al. [5] achieved 260 µN and Erismis et al. [7] achieved 110 µN at 33 V and 16 V driving
voltages, respectively. On the other hand, Penskiy and Bergbreiter [8], who proposed the
combination of the latching and driving mechanisms by a unidirectional movement of an
inclined flexible arm, reported a force of 1.88 mN at 110 V. Moreover, in a recent publication,
Teal et al. [10] claimed producing an impressive 15 mN of force at 100 V. In general, a
common aspect among these actuators is the use of a GCA mechanism in a comb-drive
arrangement that generally provides larger area for electrostatic force generation, whereas
the proposed AUC structure has a single parallel-plate setup for the GCA instead, which
requires some form of compensation in order to achieve the desired large force, e.g.,
higher structures or operating at smaller gaps between electrodes, which are limited by the
available fabrication processes and the feasible aspect ratios. Additionally, the possibility
of increasing the delivered force on the system level by implementing a larger number
of AUCs is an advantage that the proposed concept facilitates, but this feature naturally
has its own limits, e.g., overall size of the system and complexity of control and operation.
Therefore, the amount of force delivered by the AUC has to be optimized within the
limits of the available microfabrication technology, taking into account not only the design
specifications of the cooperative system as a whole but also other tradeoffs on the level of
the AUC itself.

For example, Figure 11 plots the electrostatic force exerted on the moveable electrode
of an AUC corresponding to Table 1 when a voltage potential of 100 V is applied at
Electrode 1 (see Figure 3). The figure also plots the corresponding counter elastic force
by the springs. The net force output by the AUC, neglecting the transient damping effect,
is the difference between the two curves. In the plot, three design parameters can be
identified: the gap (distance to stationary electrode, d = 5 µm), the stroke (distance to
stoppers, s = 4 µm), and the distance at which the interlocking teeth of the shaft is first
engaged by the corresponding teeth of the AUC, which equals 1 µm (see Figure 1). If
one defines the force of the AUC by the minimum force delivered to the shaft during its
displacement, which is the force at the first moment of engagement, then the selected
parameters result in a force of 0.046 mN. Note that the effective stroke that the AUC moves
the shaft by in this arrangement is 3 µm. On the other hand, if the AUC engages the shaft at
3 µm distance from the undeflected position, allowing an effective stroke of 1 µm, the force
output increases to 0.202 mN. From this example analysis, it is inferred that on the AUC’s
level, there is a clear tradeoff between the force and the effective stroke, which, in turn,
translates to another tradeoff on the system level between the number of AUCs required to
achieve a certain output force and the number of cycles required to achieve a certain shaft
displacement, which also affects the required frequency of operation to achieve a certain
displacement speed. Therefore, an optimization study for the force of the AUC considering
the aforementioned aspects as well as other important considerations, e.g., the stability of
operation, is planned for the future.

4.3. Fabrication Feasibility Analysis

As discussed, the dynamic behavior (defined mainly by the pull-in and pull-out
times) and the force provided by a single AUC strongly depend on geometrical parameters
and, thus, on the limitations of the fabrication process. A typical set of the most critical
parameters, which allow a reasonable compromise between large force, high speed, and
reliability of the system, is shown in Table 2. Obviously, such geometries belong to
High Aspect Ratio Microsystems (HARMS) and need appropriate processes providing the
anisotropy, e.g., of etching. Considering the system approach shown in Figure 1, a SOI
process is chosen for this feasibility study. With SOI, all structures shown in Figure 1 will
be made out of crystalline silicon. In this case, the critical structure height is defined by the
device layer thickness, the handle layer thickness, or the sum of both, and the critical lateral
dimensions (gap, interlocking teeth, stoppers, etc.) are defined by lithography and Deep
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Reactive Ion Etching (DRIE), e.g., by the Bosch process [24]. The required free-standing
structures (suspensions and movable electrodes) can be provided by a combination of
Surface Micromachining (SMM) using buried oxide (BOX) as the sacrificial layer and a
DRIE step from the front side or from the back side for the areas which should be released
on a large area.
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The feasibility of such processes was demonstrated by one of the authors in the
realization of a 3D-energy harvester [25] and an electrostatically driven bistable actuator for
large forces and large stroke using the toggle-level principle [26]. Whereby, in the former, a
thickness of a seismic mass of 411 µm was obtained by performing DRIE from both sides
of a SOI-wafer (handle layer thickness of 400 µm, BOX thickness of 1 µm, and device layer
thickness of 10 µm), and a minimum gap of 9.5 µm was defined by standard proximity
printing in combination with DRIE. In the latter, a device layer thickness of 10 µm and
suspensions width and length of 2 µm and 700 µm, respectively, were realized, similarly to
the serpentine springs proposed for the AUC. However, fabricating a much larger device
layer thickness and, accordingly, height of suspensions, electrodes, etc., is also possible,
as demonstrated in [27] where a symmetric SOI wafer with an equal thickness of 100 µm
for the device and handle layers and a BOX thickness of 2 µm in between was used, thus,
providing structural heights of 100 µm and 202 µm by performing DRIE either on the
device layer only or on both the device and handle layers.

With respect to the critical dimensions and the smallest gaps between electrodes
and neighboring structures, e.g., stoppers, the resolution and the overlay accuracy of
the used lithography process has to be considered for the feasibility study. Standard
Deep Ultraviolet (DUV) lithography is suitable for the presented geometries and meets
the accordingly needed overlay accuracy, e.g., for a typical DUV stepper a resolution of
0.25 µm and an overlay accuracy of <45 nm is specified [28]. A DUV stepper provides a
relatively small field size of about 20 mm2, which will limit the total system size and, thus,
the possible number of AUCs that can be integrated in the system to provide large forces,
if stitching several exposure fields for structuring the entire actuator system is avoided.
However, on an experimental basis, direct laser writing can be used. A system available
in our technology provides a resolution of about 0.6 µm with linewidth control of 80 nm
and alignment accuracy of 200 nm (both 3σ values) over a field size up to 200 × 200 mm2.
These values meet the lithography requirements for defining the geometries presented in
Table 2.
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Table 2. Examples of proposed AUC geometries for fabrication and their estimated performance
characteristics. Absent AUC parameters have the same values as those listed in Table 1.

Description Symbol Device 1 Device 2 Unit

Height of unit cell h 50 100 µm
Width of cell wall ww 25 35 µm

Size of cell wall (inner) cx and cy 500 600 µm
Size of anchor ax and ay 100 100 µm

Width of spring (flexure width) wx and wy 2.5 5 µm
Length of connector beams lc,x and lc,y 50 50 µm

Length of span beams ls,x and ls,y 200 300 µm
Length of extension beams le,x and le,y 53 82.5 µm

Length of stationary electrodes le 480 600 µm
Width of stopper ws 25 25 µm

Nominal air gap between electrodes d 5 4 µm
Stroke s 4 3 µm

Equivalent mass (assuming r = 0.5) meq 6.46 22.65 µg
Equivalent spring constant 1 keq 40.4 304.8 N/m

Pull-in voltage 1 Vpull-in 83.9 104.3 V
Collapse voltage (2nd pull-in) 1 Vcollapse 152.0 165.9 V

Actuation voltage Vo 110 130 V
Pull-in time (corresponding to Vo) 2 tpull-in 32.2 24.9 µs

Net force of AUC (at 1µm) 2,3 F 0.04 0.19 mN
Net force of AUC (at 2µm) 2,3 F 0.06 0.51 mN

Realignment margin δ ±2 ±1 µm
Pull-out time (corresponding to δ) 2 tpull-out 283 91 µs

1 Estimation based on static analysis in COMSOL 2D model. 2 Rough estimation based on MATLAB lumped-
parameter model. 3 Damping force is neglected; the distance is from the undeflected position to the shaft
(Figure 11).

However, to achieve large structure heights of 100 µm in combination with small
structure widths in the presence of very small gaps between structures (<5 µm), the DRIE
process conditions have to be optimized with respect to the specific layout (loading effect)
and the needed large anisotropy. The DRIE machine at our disposal is capable of producing
structures with aspect ratios of 1:20 with a minimum feature size of 2 µm. These limitations
were taken into consideration for the geometries shown in Table 2. It is worth pointing
out that the stoppers and stationary electrodes of the AUC will have larger dimensions in
the outward directions than what is shown in Figure 3 (the simulation model) such that
enough contact area with the BOX layer is realized to ensure stability, especially after the
latter is etched to free the moveable electrode. Additionally, slight deviations from vertical
slope angles of sidewalls have to be considered in modelling such systems. Therefore, the
presented COMSOL model has to be extended in the future to a full 3D model.

4.4. Error Estimation for the Used SQFD Modeling Approach in COMSOL

As previously mentioned, in order to obtain numerical models that more easily con-
verge and that consume less time for more rapid simulations, the primary FEM modeling
used in this paper was 2D. Moreover, as mentioned in Section 2.3.2., modeling the SQFD
via the COMSOL built-in BC in the 2D environment was not possible; hence, the derived
analytical solution, i.e., Equation (5), was embedded in the model as a boundary load. To
investigate the error introduced by these simplifications, comparisons between the two ap-
proaches were made. To this end, the deflection responses of the AUC under two actuation
voltage amplitudes were simulated in a 3D COMSOL model. Figure 12a plots the deflection
responses under an applied voltage that is enough for inducing pull-in for two structures
with different heights, along with the undamped response. The built-in BC “Thin-Film
Damping” is solved for with the modified Reynolds equation, where the default settings
for the fluid-film properties and border nodes are applied. For the 50 µm high structure, the
pull-in times calculated for the damped responses of the embedded analytical model and
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the built-in BC are 66.7 µs and 66.6 µs, respectively, whereas they are 90.0 µs and 88.7 µs in
the same order for the 100 µm high structure. These results show very good correlations
with less than 1.5% maximum discrepancy in the case of the higher structure. Moreover,
Figure 12b plots the damped deflection responses according to the two approaches under
an applied voltage of 55 V, which is less than the pull-in voltage (~61 V). The plot shows
near identical responses. As a result, we conclude that embedding the analytical model of
the SQFD described in Section 2.2. In the 2D FEM simulations is a decent substitute to the
appropriate COMSOL built-in BC; hence, the simulation results obtained by this approach,
as presented in chapter 3, describe the system behavior adequately.
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Figure 12. Comparison of the FEM simulations for the SQFD effect on a 3D model of the AUC in COMSOL. The SQFD
applied via the COMSOL built-in BC is shown in contrast to the embedded analytical solution presented in this paper,
which is implemented as a boundary load. (a) The damped deflection responses to an applied step voltage with V0 = 61.5 V
and a transition time of 1 ns for two structures with different heights, h = 50 µm and 100 µm, along with the undamped
response (essentially independent of h). (b) The damped deflection responses to an applied step voltage of V0 = 55 V and a
transition time of 50 µs for a cell height h = 50 µm. In these simulations, the wall thickness ww = 20 µm, whereas the other
dimensions of the AUC are as listed in Table 1. Here, the pull-in voltage is ≈61 V.

5. Conclusions

In this work, a concept for a modular-like cooperative actuator system that is inspired
by the inchworm motor is presented. Moreover, an analytical model for the AUC, which is
the proposed actuator for the cooperative system, is described. Furthermore, the results of
couple-field numerical modeling by COMSOL for the behavior of the AUC are presented,
and comparisons with analytical models from the literature are drawn where possible. The
results of the static FEM analyses carried out on the AUC showed excellent correlation
with the analytical model for the pull-in voltage found in the literature. On the other
hand, the transient analyses of the pull-in time showed decent qualitative correlations
with a model of an inertia-limited system found in the literature; however, significant
discrepancies were observed when the damping in the system is amplified by structures of
larger heights. Additionally, by comparison with the FEM results, it was concluded that
the dependence of the pull-in time on the applied voltage is not adequately represented by
the referenced model. The results of the transient numerical parametric analyses for the
pull-in and pull-out times were validated by solving the corresponding lumped-parameter
model in MATLAB/Simulink.

Moreover, the transient analyses of the pull-in and pull-out times, which constitute the
major parts of the AUC’s actuation cycle, revealed substantial dependence on the SQFD,
which, in turn, is greatly influenced by the cell height. It was found that the dynamic
behavior of the proposed system is most critically influenced by the pull-out time that is
relatively much longer than the pull-in time. An example analysis showed that by doubling
the cell height (from 50 µm to 100 µm), the damping profile in the actuator increased
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considerably, and the pull-out time decreased by more than tenfold the amount of time
the pull-in time increased. Additionally, a tradeoff between produced forces and speed of
the inchworm actuation system was found. Although a single AUC is expected to provide
forces in the range of 0.1 mN to 0.5 mN, for a cooperative system with many AUCs working
in parallel, forces of several tens of millinewtons can be expected when typical design rules
for SOI-technology using standard photolithography and DRIE are considered. As a result,
some guidelines for the design of the AUC can be drawn from the presented study such
that the major performance characteristics, e.g., cycle time, frequency of operation, and
force of the actuator, can be defined. In the future, the AUC is intended to be fabricated,
and experimental-based analyses of the parameters investigated here will be carried out to
establish the validity of the models and simulations presented in this paper.
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Appendix A

Similar to the approach by Fedder [29] (pp. 84–110), the analytical formulations for
the longitudinal and lateral spring constants of the serpentine flexures utilized in the
AUC were derived from free body diagrams by using Castigliano’s second theorem. The
derivations were made by considering only bending forces within the linear elastic regime
and the Euler–Bernoulli beam model [30] (pp. 14–23).

Accordingly, the longitudinal spring constant of a serpentine flexure, such as the one
shown in Figure A1a, equals the following:

klg =
EIz

λ
, (A1)

such that

Iz =
hw3

12
, (A2)

and
λ = 8

3 β2 (le3 + lc3)+ 1
6 ls3 + 2le2β2 (4lc + ls − 2ϕ)

+lc2β2
(

8le + ls
(

3 − 1
β

)
− 4ϕ

)
+ 1

2 ls2lc (1 − β)

+2ϕ2β2 (le + lc + ls) + 4β2 (lelcls − ϕ (2lelc + lels + lcls)) ,

(A3)

where

ϕ =
le2 + lc2 + 2lelc + lels + lcls

le + lc + ls
(A4)
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and
β = 6lc3ls+3lc ls3+9lc2ls2+6le lc2ls+3le lc ls2

(2le4+2lc4+8le3lc+2le3ls+8le lc3+5lc3ls+12le2lc2+6le2lc ls+9le lc2ls+3lc2ls2)
. (A5)

On the other hand, the lateral spring constant equals the following:

klt =
EIz

γ
, (A6)

such that
γ = 8

3
(
le3 + lc3)+ 1

6 ls3α2 + 2le2 (4lc + ls − 2ϕ)
+lc2 (8le + ls (3 − α)− 4ϕ) + 1

2 ls2lcα (α − 1)
+2ϕ2 (le + lc + ls) + 4 (lelcls − ϕ (2lelc + lels + lcls)),

(A7)

and

α =
6lc2 + 3lcls
2ls2 + 6lcls

, (A8)

where le, lc, and ls are the lengths of the extension, connector, and span beams, respectively;
and w is the serpentine flexure width (wx or wy) (see Table 1 and Figure 3).

Consequently, the four parallel-connected suspension springs that constitute the
stiffness element of the AUC, assuming the wall is rigid, possess an equivalent spring
constant along the x-axis that can be written as follows:

keq = 2 kx,lg + 2 ky,lt , (A9)

where the subscripts x and y denote the axis along which the serpentine flexure extends, and
the applicable longitudinal or lateral spring constants are denoted by lg or lt, respectively.
It follows that to obtain the equivalent spring constant in the y-axis, the axes’ subscripts on
the right-hand side are switched.

Moreover, in Figure A1b, an example of the validation of the analytically derived
formulations against a 3D FEM model is shown. Here, the length of the span beam of
the serpentine flexure is swept between 20 µm and 200 µm. It is worth noting that taking
the bending forces solely into account under the assumption of the Euler–Bernoulli beam
model is considered valid for long beams where the length is at least 5–7 times larger
than the largest of the other two dimensions. Therefore, the model becomes less accurate
with shorter beams (larger discrepancy between the blue curves in the left hand side of
Figure A1b) and higher serpentine structures, in which case it becomes more important to
take the shearing deformations into account according to Timoshenko’s beam model [30]
(p. 17).
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