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1t This paper is an extended version of the conference paper by Seigo Kimura; Ryuji Suzuki; Masashi Kashima;
Manabu Okui; Rie Nishihama; and Taro Nakamura. Assistive method that controls joint stiffness and
antagonized angle based on human joint stiffness characteristics and its application to an exoskeleton.

In Proceedings of the 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil,
2-6 December 2019.

Abstract: In this paper, the prototype of the assistive suit for lower limbs was developed. The
prototype was based on an assist method with joint stiffness and antagonized angle control. The
assist method comprises a system consisting of a pneumatic artificial muscle and a pull spring, which
changes the joint stiffness and the antagonized angle to correspond to the movement phase and
aims at coordinated motion assistance with the wearer. First, the characteristics of the developed
prototype were tested. It was confirmed that the measured value of the prototype followed the target
value in the relationship between torque and angle. In addition, there was hysteresis in the measured
value, but it did not affect the assist. Next, the evaluation of standing-up and gait assist by measuring
electromyography (EMG) of the knee extensor muscle was conducted using the prototype. In all
subjects, a decrease in EMG due to the assist was confirmed. In one subject, the maximum decrease
rate at the peak of the EMG was about 50% for standing-up motion and about 75% for gait motion.
From the results of these assist evaluations, the effectiveness of the assist method based on the joint
stiffness and antagonistic angle control using the prototype was confirmed.

Keywords: assist suit; variable stiffness; artificial muscle; exoskeleton-type; walking assist; standing-
up assist

1. Introduction

Elderly people experience muscle weakness as they age [1]. The degree of decline in
the lower limbs is particularly high, and muscle weakness in the lower limbs interferes
with daily activities, such as standing up and walking [2,3]. This leads to limitations in
daily life activities, and a decrease in the quality of life [4,5]. Therefore, support for elderly
independence and rehabilitation is required.

One of the solutions to these problems in muscle weakness is the usage of exoskeleton-
type assist suits. These assist suits are used for various purposes, including power assis-
tance, rehabilitation, and independence support [6-10]. Most of the existing assist suits
are driven by a motor and a reducer to provide angle control [6,10,11]. These devices
require soft movements to coordinate with the wearer. Therefore, the motor is controlled
to reproduce the flexibility. However, that flexibility is limited by the performance of the
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actuator and the controller. Therefore, it has insufficient flexibility in situations that require
a fast response, such as collisions with a disturbed environment or misalignment between
the suit and the wearer during the assist.

Some assist suits use pneumatic artificial muscles [7-9]. Due to high power density, ar-
tificial muscles must have a lightweight and flexible structure while achieving high assisting
power. However, providing smooth assistance in accordance with the wearer’s movements
is difficult because the pressure applied to the artificial muscles is always constant.

We focus herein on the principle of human joint drive. Human beings operate with
elastic muscles, and have structural flexibility in their joints. Furthermore, the antago-
nistic arrangement of the muscles across joints allows the control of angle, torque, and
stiffness [12,13]. These structurally variable stiffness characteristics of human beings allow
them to move with respect to disturbances caused by their structural flexibility. Therefore,
we developed a variable elastic assist suit, called “Airsist I”, using a pneumatic artificial
muscle, which is a variable elastic element [9,14]. In a previous study, we proposed a
control law that simulates human stiffness changes and confirmed the effectiveness of the
assist by electromyography (EMG) and assisted torque.

In contrast, humans, as hardware, can take advantage of the variable stiffness property
to simplify and increase the motion control performance [15,16]. For example, in the knee
joint during steady walking, the joint torque is not finely controlled, and the joint stiffness is
switched and driven during the stance and swing phase [17]. This is a control based on the
human structure, structural flexibility of joints, and variable stiffness characteristics, which
can simplify the control compared to building the same system with motor angle control,
etc. Previous studies [9,14] focused only on structural flexibility and did not address control
simplification.

In this study, we propose an assist method by controlling the joint stiffness ([N m/deg],
in this paper, “deg” means the abbreviation of degree and is used as the unit of angle.) and
the antagonized angle (angle when torque is 0 N m, [deg]) as variable elastic elements. The
proposed system consists of a pneumatic artificial muscle and a pulling spring, and aims
at coordinated motion assistance with the wearer by changing the joint stiffness and the
antagonized angle to correspond to the phase of the motion.

In our previous research [18], a joint structure in which a pneumatic artificial muscle
and a pull spring are antagonistically arranged (hereinafter referred to as a one-sided
spring antagonized joint) and its mathematical model were proposed to realize this assist
method, and the characteristics of the one-sided spring antagonized joint were investigated.
It was found that the angle and torque of the one-sided spring antagonized joint are
directly proportional to each other, and that the joint stiffness and the antagonized angle
switch with the applied pressure. In order to investigate the changes in joint stiffness and
antagonized angle during human motion, we analyzed the standing-up and gait motion.
In the knee joint, standing-up and gait consisted of two motions, and the joint stiffness
and antagonized angle were switched in each motion. The absolute values of the joint
angle and the joint torque were directly proportional to each other in both the standing-up
and gait motions, showing the same tendency as that of the one-sided spring antagonized
joint. Therefore, it is considered that the one-sided spring antagonized joint can assist in
standing-up and gait motion.

In this paper, an assist device is developed and evaluated based on the findings of the
previous study [18]. The main contributions of this paper are as follows.

1. A prototype of an assistive suit for lower limbs based on the one-sided spring antag-
onized joint is developed. The prototype is tested to confirm that its behaviors are
similar to the theoretical one-sided spring antagonized joint.

2. The effectiveness of the assist by controlling the stiffness and antagonized angle of
the one-sided spring antagonized joint is confirmed. For this purpose, we perform
evaluation experiments using the prototype to measure EMG in assisting standing-up
and gait motions.
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This paper is organized as follows: Section 2 describes the structure and characteristics
of the one-sided spring antagonized joint and the assist method; Section 3 describes the
prototype of the assistive suit for lower limbs and its characteristics; Section 4 describes the
assist evaluation experiments for the standing-up and gait motion; and Section 5 concludes.
The experiments on the human subjects described in this paper were approved by the
Ethics Review Committee of Chuo University (No. 2017-27).

2. One-Sided Spring Antagonized Joint
2.1. Structure

We propose a joint structure, in which artificial muscles and elastic elements are antag-
onistic to each other as a configuration with structurally variable stiffness and antagonistic
angle (Figure 1 [18-20]). The elastic element herein is a pull spring with a weight similar
to that of the artificial muscle and does not require a new power source. This configura-
tion allows for structure simplification and a much smaller and lighter pneumatic system
compared to the use of two artificial muscles in a previous study [9].

Control device

=—{ O

Artificial muscle Electro valve  Air compressor

Figure 1. Schematic of one side spring antagonized joint [18-20].

2.2. Straight Fiber-Type Artificial Muscle

The shape of the artificial muscle used in this method is shown in Figure 2 [9]. This
artificial muscle consisted of a cylindrical natural rubber tube and a carbon fiber enclosure.
The carbon fibers were arranged in the axial direction of the rubber tube; hence, the rubber
tube did not extend in the axial direction. When air pressure is applied, it expands only
in the radial direction and contracts in the axial direction. As a result, the maximum
contraction rate for this artificial muscle during no-load was as high as 38%, while that
for the conventional McKibben-type artificial muscle was only 25% [21]. The contractile
force at an applied pressure of 0.50 MPa was also high (2000 N) compared to 500 N for the
McKibben-type artificial muscle [22]. A ring was placed between the artificial muscles. The
ends of the rubber tube were secured with terminals. The ring was used to adjust the force
and amount of contraction. The elastic modulus of this artificial muscle was structurally
altered by applying air pressure. Variable elasticity was achieved [9].

L
Iy
| |
] Latex j Ring — Terminal
rubber ’
Ulmt | Contract x

Micro carbon
fiber Layer
Expand

Figure 2. Straight-fiber-type artificial muscle [9].
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2.3. Modeling

The model diagram of the one-sided spring antagonized joint is shown in Figure 3a [18-20].
Suffix 1 denotes a spring, while suffix 2 represents an artificial muscle. The displacements
of the spring (x1) and the artificial muscle (xp) were determined by the pulley diameter 7,
target angle 6, and initial angle 6, when the spring is of a natural length, and the artificial
muscle is fully extended, as expressed in Equation (1).

x1 =X =7(0q — 6a) ¢y
k2, Fy, %2, Py _ Pulley
! Equation P
04— q(4) Device |—— Output8
Arm
ki i .| Equation )
G Estimate Kot
T R S e +
0 deg
(a) Model (b) Feed-forward controller

Figure 3. Model and block diagram of the one-sided spring antagonized joint [18-20].

The restoring force F; of the spring was determined by the displacement of the artificial
muscle x, and the spring constant k. The contractile force F; of the artificial muscle was
determined by the displacement x; of the artificial muscle and the applied pressure P,
from a previous study, which is expressed by Equation (2) [23].

Fy(xp, Pp) = (coxp + d2)Py + (fox2 + §2) ()

Note that ¢y, dy, 2, and g, are the coefficients obtained from a previous study [23].
Solving the balance of the moment around the center of the pulley gives the torque T
expressed by Equation (3).

T = (Pky — 1*caPy — 1*f2)(0g — 6a) — 1daPy — 192 3)

Solving for the applied pressure P, from Equation (3) gives Equation (4). The esti-
mated joint stiffness K, is the amount of change in torque with respect to the angular
displacement; hence, it is expressed by Equation (5) from Equation (2).

Py ={= T+ 7*(ki — f2)(6a — 6a) — 182} /{ Pc2(6a — 0a) + rd) (4)

Kest = AT/A8 = — 1?coPy + 17ky — 17f; (5)

A feed-forward controller for torque T = 0 was constructed from Equations (4) and (5). Its
outline is shown in Figure 3b [18-20]. First, the target angle 6; was input into Equation (4)
to obtain the required applied pressure P,. The angle was then output by putting the
calculated applied pressure P, into the one-sided spring antagonized joint. The joint
stiffness can be calculated using Equation (5). The angle and the stiffness cannot be
controlled independently, but can be designed to arbitrary values.

2.4. Characteristic

The relationship between the joint angle and the joint torque of a one-sided spring
antagonized joint was calculated. The change in the joint stiffness and antagonized angle
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was then investigated. The joint stiffness is a derivative of the joint torque by the joint
angle. The antagonized angle is the joint angle when the joint torque is 0 N m.

Each parameter value of the one-sided spring antagonized joint when the knee joint
was assumed to be assisted is presented in Table 1 [18-20]. How to determine the parameter
values is discussed below. Coefficients ¢y, d», f, and g, for determining the contractile
force of the artificial muscles from a previous study were used [23]. The upper limit of the
pressure P, applied to the artificial muscle was 0.39 MPa, because the artificial muscles
worked stably up to 0.40 MPa empirically. The pulley diameter was 22.0 x 1073 m, in
accordance with the pulley diameter of the assist suit in the previous study [9]. Next, we
considered the spring constant k;. The joint range of motion for standing up and walking
was approximately 0-90 deg. Therefore, when the torque T = 0 N m and the initial angle
0, = 0 deg, the driving range of the joint was assumed to be from 0 to 90 deg. According to
Equation (3), to achieve a joint angle 6; = 90 deg at the applied pressure P, = 0.3 MPa, the
spring constant k; should be less than 5000 N/m. Therefore, the spring constant k; was
determined as 4900 N /m herein.

Table 1. Parameter values of the one-sided spring antagonized joint [18-20].

co —67.5 x 1073 r 22.0 x 1073 [m]
dy 3.60 x 1073 64 0 [deg]

f2 1.81 x 10° P, 0 ~ 0.39 [MPa]
0 273 K 4900 [N/m]

The relationship between the calculated joint angle and the joint torque of the one-
sided spring antagonized joint is shown in Figure 4 [18-20]. The joint stiffness and an-
tagonized angle values for each applied pressure are presented in Table 2 [18-20]. The
joint torque T/ of the vertical axis was set to T/ = —7. The joint angle 6’ of the horizontal
axis was set to 0 = 90 — (6; — 6,) to match the joint angle definition in the later motion
analysis. Figure 4 shows that the angle and the absolute value of the torque were positively
proportional. When the applied pressure changed, the antagonized angle changed along
with the joint stiffness (slope of the graph). This result indicates that the antagonized
angle and the joint stiffness of the one-sided spring antagonistic joint can be controlled by
controlling the applied pressure.

10

Joint is antagonized

o

Joint torque 7' [N m]

-10
0.10 MPa-=-0.15 MPa ~0.20 MPa veel
-15 [|=025MPa - 030 MPa [Tttt g
_20 | 1 1 | |
0 20 40 60 80

Joint angle ' [deg]

Figure 4. Relationship between the joint torque and the joint angle of the one-sided spring antago-
nized joint [18-20].
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Table 2. Stiffness and antagonized angle of the one-sided spring antagonized joint [18-20].

Applied Pressure Stiffness Antagonized Angle
[MPal] [N m/deg] [degl
0.10 0.0831 67.0
0.15 0.112 374
0.20 0.140 19.8
0.25 0.169 8.2
0.30 0.197 0.0

2.5. Assistive Method

The active assist image of the one-sided spring antagonized joint is shown in Figure 5 [18].
Air pressure was applied such that the antagonized angle 6, of the one-sided spring antag-
onized joint was larger than the human joint angle 8;. The one-sided spring antagonized
joint generated torque Tgevice, Which is the product of the stiffness Kgeyice and the angle
presented by the one-sided spring antagonized joint, in the range of the human joint angle
61 and the antagonized angle 6; of the one-sided spring antagonized joint. The torque was
in the same direction as the human movement. The one-sided spring antagonized joint
had an active assist to the human joint.

=)

Human motion

&

(2] 1 ed
Apply pressure to Generate torque The one-sided spring
artificial muscle antagonized joint antagonizes

Change stiffness 10 Ky,yice
antagonized angle to 8,

Figure 5. Activity assisted by the one-sided spring antagonized joint [18]. © IEEE 2019.

Figure 6 [18] shows the image of a passive assist. Air pressure was applied such that
the antagonized angle 6, of the one-sided spring antagonized joint and the human joint
angle 8, were the same. The one-sided spring antagonized joint generated torque T4evice,
which was the product of the stiffness Kgeyice and the angle presented by the one-sided
spring antagonized joint, in the range of the human joint angle 63 and the antagonized
angle 6; of the one-sided spring antagonized joint. Its torque was opposed to human
movement and supported the human’s own weight. In other words, the one-sided spring
antagonized joint had a passive assist to the human joint.

To realize such an assist, the joint angle and the absolute value of the joint torque must
be positively proportional to each other, as in the case of the one-sided spring antagonized
joint in Figure 4.
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Human motion

T

device

03
Applied pressure to Generate torque Human joint antagonizes
artificial muscle Tgevice = Kdevice®
Changed stiffness to Kyeiccr (0,<6<65)

antagonized angle to 6,
Figure 6. Passive assisted by the one-sided spring antagonized joint [18]. © IEEE 2019.

3. Prototype
3.1. Structure

Figure 7 [20] depicts the CAD model of the prototype (one unit and a configuration for
knee assist) and the appearance of the produced prototype. Each unit consisted of a straight
fiber-type artificial muscle, a spring, a rotary encoder (MES-6-500-PC, MICROTECH LAB-
ORATORY Inc.), a pneumatic valve (EXA-C6-02C3, CKD Co.), and a pressure sensor
(SEU11-6UA, NIHON PISCO Co.). Each unit measured 380 mm long and 100 mm wide
and weighed 2.4 kg. When configured for knee assist as shown in Figure 7c,d, the length
and the width were 580-780 mm and 100 mm, respectively, and the weight was 3.1 kg.
Figure 7a,b depict that the artificial muscle and the spring were antagonistically arranged
similar to the model of the one-sided spring antagonized joint shown in Figure 3a. The
force of the artificial muscle and the spring was transmitted to the pulley by the timing belt
to generate torque. Table 1 shows each parameter value.

3.2. Characteristic Test
3.2.1. Purpose

The produced prototype (Figure 7) showed the theoretical properties of a one-sided
spring antagonized joint (Figure 4). In this experiment, the joint torque and the joint angle
of the prototype were measured for each applied pressure.

3.2.2. Experimental Environment

Figure 8 [20] shows the experimental environment. The prototype was fixed and
driven in a vise. A proportional solenoid valve (ITV2050-312L, SMC Co., Tokyo, Japan) was
controlled by a commanded signal from MATLAB/Simulink and ControlDesk (dSPACE
Co., Tokyo, Japan) through a D/A converter to supply the applied pressure to the artificial
muscles. A compressor was used as the air pressure source. The angle and the external
force were measured by a digital force gauge (FGP-50, NIDEC-SHIMPO Co., Tokyo, Japan)
hooked to the tip of the prototype.

3.2.3. Experimental Method

The experiments were performed from a position where the joint angle was 90 deg.
The command pressures to the artificial muscles were set at 0.10, 0.20, and 0.30 MPa. The
joint angles of each applied pressure were measured when the joint became antagonistic.
The external force for each applied pressure was measured by a force gauge. The external
force was measured in increments of 10 deg in the direction of the decreasing angle from
the antagonistic position. Once the timing belt began to sag, the joint torque exceeded
20 N m, or the range of motion of the joint was reached (0-90 deg), the angle was measured
in increments of 10 deg in the direction of the increasing angle. The joint torque was
calculated from the measured external force and the length of the unit (0.40 m).
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(c) Side view of the knee assist version (d) Front view of the knee assist version

Figure 7. Prototype of the one-sided spring antagonized joint [20].
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e _PC
|  MATLAB |

Simulink |
[ dSPACE |

D/A
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y [ Electro valve |

Extension

Figure 8. Experimental environment of basic characteristics [20].
3.2.4. Result and Discussion

Figure 9 [20] depicts the relationship between the torque and the angle for each applied
pressure, which shows that the absolute value of the torque increased with the increase
of the angle or decreased with the decrease of the angle. In addition, the stiffness and the
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antagonized angle changed with the applied pressure. These results confirmed that the
produced prototype behaved similarly to the theoretical one-sided spring antagonized
joint. However, the measured values had hysteresis, which is thought to be caused by
the friction in the pulley section, and hysteresis of the pneumatic artificial muscles. The
hysteresis of the measured values can also be confirmed in the characteristic test of the
previous study (joint structure with two artificial muscles antagonistically arranged) [14].
The assist effect in that previous study [14] was confirmed in a later assist experiment.
Therefore, the hysteresis of this experiment was thought to also have no effect on the later
assist evaluation.

g
Z,
3
o
o
o
+—
+~
R=
2 -15 Theoretical value in 0.10 MPa
0.20 MPa © 0.30 MPa
20 || & Observed value in 0.10 MPa
A 0.20 MPa A 0.30 MPa
25 ! I I !

0 20 40 60 80 100
Joint angle [deg]

Figure 9. Relationship between the joint torque and the joint angle of theoretical and observed

values [20].

4. Assist Evaluation
4.1. Purpose

In this experiment, a prototype was used to assist a person in the standing-up motion
and gait motion. The effectiveness of the assist by the stiffness and the antagonized angle
control in the one-sided spring antagonized joint was confirmed by EMG. The prototype
performed assistance of the knee joint when standing up from a sitting position and during
gait motion.

4.2. Assist of Standing-up Motion
4.2.1. Subjects

The subjects were three healthy males. Table 3 presents their detailed information.
The subjects were briefed beforehand on the purpose and methods of the experiment. They
consented to participate in this experiment.

Table 3. Subject information in the assist evaluation of the standing-up motion.

Subject A B C
Age 22 24 22
Height [m] 1.80 1.75 1.74

Weight [kg] 90 70 54
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4.2.2. Experimental Environment

Figure 10 depicts the experimental environment. Force plates (TF-4060-D, Tec Gihan
Co., Tokyo, Japan, sampling Hz: 1000 Hz) and EMG sensors (Trigno Wireless EMG, DELSYS
Co., Tokyo, Japan, Sampling rate: 2000 Hz) were used to measure the muscle potential.
One force plate was placed under each foot of the subject, and the other was placed on the
chair. The height of the chair, including the force plate, was set such that the joint angle of
the knee was 90 deg when the subject was sitting with their buttocks in contact with the
force plate on the chair.

¢ EMG sensor
k) Sample rate

2000[Hz]

| MATLAB |
| Simulink |
l dSPACE |
Pressure sensor _
D/A Encoder

‘m Electro
valve

Air compressor

Prototype
ol

Figure 10. Experimental environment in the assist evaluation of the standing-up motion.

Subjects wore a prototype configured for knee assist on their right leg and had a
switch in their hand to control the prototype. They were also seated on a chair containing
a force plate. An EMG sensor was attached to the subject’s vastus medialis muscle (knee
extensor [24], vastus medialis muscle: VM). The force plates were used to monitor the
subjects’ ability to stand up with equal weight on their left and right legs. A compressor
was used as the air pressure source for the prototype artificial muscles.

4.2.3. Assist Target Values

The assist target values for the device (assist suit) during the operation were deter-
mined from the joint stiffness and the antagonized angle obtained in motion analysis [18].
The applied pressure to the one-sided spring antagonized joint was then calculated. The
joint stiffness in the assist target values was calculated by multiplying the joint stiffness
average of each subject obtained from the motion analysis by the assist rate. The target
antagonized angles used were the average of the results of the motion analysis for each
subject. From the motion analysis, the standing-up motion is divided into the slouching
phase, in which the buttocks are on the sitting surface, and the standing phase, in which
the buttocks are off the sitting surface. The assist rates for the knee joint herein were 10%
and 30% during the slouching and standing phases, respectively. Table 4 shows the assist
target values for the standing-up motion calculated from these assist rates. In addition, the
pressure applied to the one-sided spring antagonized joint was investigated based on the
relationship between the applied pressure and the theoretical joint stiffness and antago-
nized angle in Table 2. The antagonized angles of the assist target value and the theoretical
antagonized angles of the one-sided spring antagonized at each applied pressure (0.05 MPa
increments, range: 0.00-0.30 MPa) were compared in this study. The applied pressure
with the greatest theoretical joint stiffness within 15 deg of the target antagonized angle
(exceptionally within =+ 25 deg in the slouching phase) was adopted. Therefore, the applied
pressures at the knee joint were set to 0.10 MPa and 0.30 MPa in the slouching and standing
phases, respectively.
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Table 4. Assist target values in the standing-up motion.

Assist Motion Standing-up Motion
Phase Slouching Standing
Assist Type Passive Active

Criteria for joint stiffness [N m/deg] 11.1 0.625

Criteria for antagonized angle [deg] 92 4.73
Assist rate [%] 10 30

Target joint stiffness [N m/deg] 1.11 0.188

Target antagonized angle [deg] 92 4.73

Applied pressure [MPa] 0.10 0.30

Joint stiffness of the device [N m/deg] 0.0831 0.197
Antagonized angle of the device [deg] 67 0

4.2.4. Operation Method

The assist pattern and the applied pressure in the prototype were sitting (0.0 MPa),
slouching (0.10 MPa), standing (0.30 MPa), and standing straight (0.39 MPa). In Section 4.2.3,
the only assist patterns were in the slouching and standing phases. We added the assist
patterns in the sitting on a chair and standing straight phases in the present experiment
because performing the sitting on a chair and standing straight postures is necessary before
and after the standing motion. Figure 11 shows the prototype operation. In this experi-
ment, the subjects switched the assist pattern according to the timing of their confidence
movements. They can also switch the assist (pressure applied to the artificial muscles)
in the order of sitting, slouching, standing, and standing straight with each pressing of
one switch.

Assist switches each time l Sit (0.0 MPa)
the subject presses the switch l

[ Slouching (0.10 MPa) |

Switch l

[ Standing (0.30 MPa) |

!

Stand Straight (0.39 MPa)|

Figure 11. How to switch the assist mode with a switch.

4.2.5. Experimental Method

The experiment on the standing-up motion was performed in two states: With and
without the prototype. First, the experiment was started with the prototype attached. The
subjects were instructed to stand up naturally for approximately 2 s from sitting on a
chair. They were then instructed to use a switch to switch the assist according to their
own posture.

After all trials with the prototype were completed, the prototype was removed from
the subjects, and they stood up without the prototype. The subjects were then instructed to
stand up naturally for approximately 2 s from the sitting on the chair position, which is
similar to the instructions when the prototype was attached. Each experiment was started
after sufficient practice. Each number of trials was five.
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(a) VM (vastus medialis muscle) of electromyography (EMG)

4.2.6. Analysis Method

The period from the beginning of the subject’s movement to the end of the movement
was defined as one standing-up cycle. The signal for one standing-up cycle obtained from
the EMG sensor was used as an experimental result. The signal was also band-pass filtered
(20-450 Hz) and full-wave rectified. After rectification, it was low-pass filtered (10 Hz).
MATLAB 2019 was used for a series of computational processes.

4.2.7. Result and Discussion

Figure 12 shows the relationship between the EMG with and without assistance, and
the relationship between the command and measured pressures for each subject. The
experiment results show the average of five trials. The force plate confirmed that the
subjects were standing up with their weight evenly distributed on left and right legs.

Figure 12a,c confirmed that the EMG in Subjects A and C decreased with assistance
during the latter half of the slouching phase (period 40-50%). However, as shown in
Figure 12b, the EMG in Subject B was increased in the assisted condition compared to the
un-assisted condition.

This result has two reasons. First, Subject B was slow to switch from the sitting
position to the slouching assist in response to the rise of EMG at approximately 40% of the
cycle (Figure 12b). Therefore, Subject B was considered to have experienced the difference
between the assisted movement and his own movement. Second, the rise of the measured
pressure of Subject B was slower than that of Subjects A and C at approximately 40% of the
period from the relationship of the applied pressure in Figure 12a—c, because the posture of
Subject B at that time put load on the artificial muscles.
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Figure 12. Comparison of EMG with and without assistance and applied pressure to the prototype in one standing-up cycle.

Figure 12 confirms that the assisted decrease in EMG was observed in Subjects A
and B during the standing phase (cycle 50-100%). However, in Subject C, the EMG with
assistance was increased more than those without assistance because the artificial muscles
were quickly filled with pressure when switching from standing assist to standing straight
assist (approximately 80% of the cycle) (Figure 12c). This result can be attributed to the low
load on the artificial muscles caused by the posture of Subject C. As a result, Subject C was
unable to match his own movement with the assisted movement, and the EMG with the
assistance increased.

In conclusion, the effect of the standing-up assist using prototype was effective,
confirming the effectiveness of the standing-up assist by the stiffness and the antagonized
angle control in the one-sided spring antagonized joint. However, the effect of the assist was
influenced by the timing of the assist, wearer’s posture, and load on the artificial muscles.
If the abovementioned conditions are met, as in Subject A, then the entire standing-up
motion can be assisted.

4.3. Assist of Gait Motion
4.3.1. Subjects

The subjects were three healthy males. Table 5 presents their detailed information.
The subjects were briefed beforehand on the purpose and methods of the experiment. They
consented to participate in this experiment.

Table 5. Subject information in the assist evaluation of the gait motion.

Subject D E F
Age 23 22 23
Height [m] 1.74 1.75 1.8

Weight [kg] 54 64 80




Actuators 2021, 10, 17

14 of 20

4.3.2. Experimental Environment

Figure 13 depicts the experimental environment. The EMG sensors and a motion
capture system similar to Section 4.2.2 were used for EMG measurements. The subject
attached the same prototype to his right foot as in Section 4.2 and held a switch in his hand.
The switch was used to synchronize the data of the motion capture system and Control
Desk in the gait assist. The subjects also walked on a treadmill, and EMG sensors were
attached to the subjects” medial vastus muscles.

Switch EMG sensor Sample rate 2000[Hz]
[ MATLAB |
| Simulink | —(m
| dSPACE | !
Pressure sensor
D/A Encoder

( ) :) Electro
valve

Air compressor

Figure 13. Experimental environment in assist evaluation of the gait motion.

4.3.3. Assist Target Values

As in Section 4.2.3, the assist target values and the pressure applied to the one-sided
spring antagonist joint were investigated from motion analysis [18]. The gait motion is
divided into the stance phase, when the feet are on the ground, and the walking phase,
when the feet are off the ground. The assist rates for the knee joint were 10% and 30%
during the standing and swing phases, respectively. Table 6 shows the assist target values
for the gait motion calculated from these assist rates. The pressure applied to the one-sided
spring antagonist joint was examined from Table 2. The applied pressure at the knee joint
was set to 0.30 MPa during the standing phase and 0.10 MPa during the swing phase.

Table 6. Assist target values in the gait motion.

Assist Motion Gait Motion
Phase Stance Swing
Assist Type Passive Active
Criteria for joint stiffness [N m/deg] 3.86 0.329
Criteria for antagonized angle [deg] 13.4 63.2
Assist rate [%] 10 30
Target joint stiffness [N m/deg] 0.386 0.0987
Target antagonized angle [deg] 13.4 63.2
Applied pressure [MPa] 0.30 0.10
Joint stiffness of the device [N m/deg] 0.197 0.0831
Antagonized angle of the device [deg] 0 67

4.3.4. Operation Method

The assist pattern and applied pressure were set for the stance phase (0.30 MPa) and
swing phase (0.10 MPa) from Section 4.3.3. In this experiment, the assist pattern was
automatically switched at a predetermined time. The prototype moves cyclically from
stance phase to swing phase to stance phase, and the subject is assisted by matching the
movement. In addition, one gait cycle was defined as “from the time that the heel touches
the ground to the time that the heel of the same foot touches the ground”, and the cycle
time was set to 1.5 s (0.90 s for the stance phase, and 0.60 s for the swing phase).
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Switching the ideal assist pattern and the subject’s movement is shown in Figure 14 as
an image diagram using the relationship between the command pressure to the device and
the angle of the knee joint during gait motion. The subject and the device reach a period of
0% at a command pressure of 0.30 MPa. They then reach a command pressure of 0.10 MPa
around 40% of the cycle when knee extension is at maximum. In addition, they then reach
a command pressure of 0.30 MPa at around 80% of maximum knee flexion.

Target pressure

Maximum

. flection
Maximum

\
extension!

Pressure signal

Knee angle

0.30 MPa / S i

0.10 MPa {£----------3g------- |
; v

. : : : Gait cycle
0 % 40 % 60 % 80 % 100 % Y

Stance phase Swing phase Stance phase

Figure 14. Image of the relationship between the target pressure on the device and the knee joint
angle during gait motion. It represents the ideal assist pattern switching and subject movement.

4.3.5. Experimental Method

In the experiment, the subjects performed two gait motions, with and without the
device. First, the experiment was started with the device attached. When the subject stands
on a stationary treadmill, send a signal to the device to activate it for walking assistance.
The subject steps in place as the device works. The subject operates the treadmill after
checking that his movements and those of the device are in motion. When stopping the
assist, stop the treadmill and step on the spot. Then, stop the signal of the walk assist and
stop the operation of the device.

After all trials with the device were completed, the device was removed from the
subject and the subject walked without the device. Subjects walked on a treadmill set to
the same walking speed as when they were attached to the device. The treadmill’s walking
speed setting is 1.5 km/h. Each experiment was started after sufficient practice, and the
number of trials was eight, with each trial lasting more than ten gait cycles. The method of
analysis is the same as in Section 4.2.6, and the data of five gait cycles were adopted.

4.3.6. Result and Discussion

Figure 15 shows the relationship between the EMG with and without assistance, and
the relationship between the actual and ideal pressure timing for each subject. Note that
these experimental results are the average of five gait cycles. In the first half of the stance
phase (around 0-20% of the cycle), it can be seen from Figure 15b,c that in subjects E and F,
there was a decrease in EMG with assistance. However, as shown in Figure 15a, subject
D has a higher muscle potential with assistance than without assistance. The reason for
this is the change in muscle activity with walking speed. In the existing study [25], with
treadmill walking at 4.8 km/h, the VM tends to be more active during the first half of the
stance phase. This area is also affected by the walking speed, and the higher the walking
speed, the higher the myoelectricity is [26]. In subject D, the walking speed of 1.5 km/h
was slower and the muscle activity of the VM was smaller than in the existing study [25]
(In Appendix A, the effect of walking speed on gait assist was examined). In addition, from
Figure 15, it can be seen that the change in EMG with and without assistance is smaller in
the swing phase than in the stance phase. This is because the VM tends to be less active
during the swing phase of the gait motion, and the device does not inhibit the swing phase.
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It can be seen from the pressure timing in Figures 14 and 15 that there is a difference
between the idea pressure timing and the actual pressure timing in each subject, but this
difference does not have an adverse effect (large increase in EMG). This is due to the low
muscle activity of the VM in the differential area and the structural flexibility of the device
to absorb the differences in movement between the device and the subject. In conclusion,
the effect of the gait assist using prototype was effective, confirming the effectiveness of
the standing-up assist by the stiffness and the antagonized angle control in the one-sided
spring antagonized joint.

4.4. Summary of Assist Evaluation

In the Section 4, the assistive effects of the proposal method on the standing-up and
gait motions were evaluated using the developed prototype. The assists targeted the knee
joint and measured the VM, which is an extensor muscle of the knee. In the standing
up from a sitting position, the EMG of the VM decreased by the assist, confirming the
effectiveness of the standing- up assist with the prototype. However, it was found that
the effectiveness of the assistance was affected by the load on the artificial muscles due to
posture and the timing of the assistance.

In the gait motion (walking speed of 1.5 km/h), the EMG was decreased by the
assistance during the stance phase, confirming the effectiveness of the gait assist. There
was a difference between the ideal pressure timing and the actual pressure timing, but there
was no adverse effect on the gait assist. This is because the muscle activity of the VM in the
difference area was small and the structural flexibility of the device absorbed the difference
in movement between the device and the subject. In conclusion, the effectiveness of the
assist was confirmed by the stiffness and the antagonized angle control in the one-sided
spring antagonized joint with the prototype.

5. Conclusions

The prototype of an assistive suit for lower limbs based on the one-sided spring
antagonized joint was developed. The developed prototype showed the same behavior as
the theoretical one-sided spring antagonized joint, since the absolute value of torque and
angle were directly proportional, and the joint stiffness and antagonized angle changed
depending on the applied pressure. Therefore, for this device to be able to assist effectively,
the following conditions must be met: (1) The absolute value of the torque and the angle
must be directly proportional, and (2) both the stiffness and the antagonistic angle must be
switched by the motion. The prototype was designed to have a maximum output torque of
20 N m at a joint angle of 90 deg with an applied pressure of 0.30 MPa, but experimental
data showed that the output torque was close to 20 N m even under other conditions due
to hysteresis and friction. This would have a positive effect on the assist, since it implies a
larger assist force. The prototype was used to evaluate the effect of the proposed method
on assisting the knee joint during the standing-up motion and gait motion by using EMG.
The experiment targeted the vastus medialis muscle (VM), which extends the knee, and
performed knee assist in the standing-up motion. The results of standing-up assist showed
that the assist decreased the EMG of the VM, confirming the effectiveness of the prototype
assist in the standing-up motion. However, the effect of the assist was also affected by
the timing of the assist and the load on the artificial muscle. Additionally, the results of
gait assist (walking speed 1.5 km/h) showed that the assist decreased the EMG of the VM,
confirming the effectiveness of the prototype assist in the gait motion. However, it can be
seen that the change in EMG with and without assistance is smaller in the swing phase
than in the stance phase. This is because the VM tends to be less active during the swing
phase of the gait motion, and the device does not inhibit the swing phase. In conclusion,
the effectiveness of the assist was confirmed by the stiffness and the antagonized angle
control in the one-sided spring antagonized joint with the prototype.

In the future, since the parameters of the prototype and the assist rate for each move-
ment were tentatively determined in this paper, an appropriate selection method will
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be established with the opinions of the subjects in this experiment. The start, end, and
switching of the assist in this experiment was done using a switch or a periodic switching
method. We have succeeded in developing a motion judgment algorithm using the joint
angle of the device for switching the assist [27], and we will conduct an assist evaluation
experiment using this algorithm. The prototype will not only assist the knee joint, but
also assists the hip joint, which assists the entire lower limb. Accordingly, the device is
improved to be able to assist the entire lower limb.
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Appendix A.
Appendix A.1. Effect of the Walking Speed
Appendix A.1.1. Experimental Information

In this experiment, it is confirmed whether the assisting effect is obtained at faster
walking speeds (3.0 km/h and 4.5 km/h) than the 1.5 km/h of Section 4.3. The subject
is a single subject F in Section 4.3.1, and the experimental environment, operation, and
experimental method are the same as in Section 4.3, except for the gait cycle time. The cycle
time was set to 1.4 s (0.84 s for stance phase, and 0.56 s for swing phase) at a walking speed
of 3.0 km/h, and 1.1 s (0.66 s for stance phase, and 0.44 s for swing phase) at a walking
speed of 4.5 km/h.

Appendix A.1.2. Result and Discussion

Figure A1 shows the relationship between the EMG with and without assistance, and
the relationship between the actual and ideal pressure timing for subject E. From Figure Al,
it can be seen that there is a decrease in EMG due to the assistance in 0-20% of the cycle,
the same as in Section 4.3. The pressure timing from Figures 14 and Al shows that there is
a difference in the actual pressure timing at walking speed of 3.0 km/h compared to the
ideal pressure timing. However, due to the structural flexibility of the device, no negative
effects of this difference are found. These results confirmed the effectiveness of the gait
assist even at a walking speed of 3.0 km/h and 4.5 km/h.
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Figure A1l. Comparison of EMG with and without assistance and applied pressure to the prototype in one gait cycle
(3.0 km/h and 4.5 km/h).
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