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Abstract: There is an urgency to supplant the heavy reliance on chemical control of Fusarium diseases
in different economically important, staple food crops due to development of resistance in the pathogen
population, the high cost of production to the risk-averse grower, and the concomitant environmental
impacts. Pathogenomics has enabled (i) the creation of genetic inventories which identify those
putative genes, regulators, and effectors that are associated with virulence, pathogenicity, and primary
and secondary metabolism; (ii) comparison of such genes among related pathogens; (iii) identification
of potential genetic targets for chemical control; and (iv) better characterization of the complex
dynamics of host–microbe interactions that lead to disease. This type of genomic data serves to
inform host-induced gene silencing (HIGS) technology for targeted disruption of transcription of
select genes for the control of Fusarium diseases. This review discusses the various repositories and
browser access points for comparison of genomic data, the strategies for identification and selection
of pathogenicity- and virulence-associated genes and effectors in different Fusarium species, HIGS
and successful Fusarium disease control trials with a consideration of loss of RNAi, off-target effects,
and future challenges in applying HIGS for management of Fusarium diseases.
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1. Introduction

Early in the genomic era, the scientific community relied on a single “reference” genome for a
given species due to the prohibitive cost associated with sequencing an entire genome. The genomic
features to be studied included gene sequences, gene order, gene clusters, regulatory sequences,
and other genomic organizational landmarks. In light of the pace of genomic research, a significant
reduction in whole genome sequencing cost (depending on country, size of the genome, and technology
used) enabled genomes to be sequenced faster, at greater depth, and with increased sensitivity [1].
A single reference genome is inadequate. Comparative sequence analysis of an assorted collection of
genomes belonging to a number of individuals within a given species is preferred as the assemblage
of a “pan-genome” offers more advantages [2]. Genomic data must be understood in the context of
biological function and the complex, nonlinear relationship between genotype and phenotype [3].

Pathogenomics is a high-resolution approach that refers to the generation and analysis of whole
genome sequences of oomycete, fungal, bacterial, and viral pathogens in order (i) to identify genes
and their regulators that are associated with virulence, pathogenicity, and primary and secondary
metabolism; (ii) to compare such genes among related pathogens; (iii) to reveal potential genetic targets
for chemical control; and (iv) ultimately, to better understand the complex dynamics of host–microbe
interactions that lead to disease [4].
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2. Fusarium as Plant Pathogens

Fusarium is among the most economically important genera of fungi in the world and is one of the
most studied [5]; there were 25,704 publications on Fusarium in PubMed Central at the time of writing
this review. The genus comprises at least 300 phylogenetically distinct species; 20 species complexes
and nine monotypic lineages have been identified to date [6]. Although the majority of Fusarium species
are soil-inhabiting fungi, Fusarium conidia can be dispersed by water in rain splash and via irrigation
systems but become airborne when dried, which makes them well-suited for atmospheric dispersal
over long distances and which contributes to their worldwide distribution [7–10]. Far less common
is insect dispersal, but it nevertheless plays a critical role in the dispersal of F. verticillioides [11,12].
Although Fusarium utilizes multiple infection strategies, these fungi are considered to be hemibiotrophs
capable of transitioning to necrotrophs depending on specific environmental and metabolic cues [13].
As plant pathogens, they cause root and stem rot, vascular wilt, and/or fruit rot in a number of
economically crop species resulting in major yield losses (MT ha-1) and in economic losses that value
over $1B [14–16]. Additionally, in clinical settings, several species are considered to be opportunistic
pathogens in immunocompromised humans [17,18].

3. The Urgency to Develop Non-Chemical Control Strategies

Sustainable management of plant diseases is challenged by the complexity of meeting the
world’s demand for safe and diversified food. Food production must cope with a reduction in
production potential in exhausted soil and land competition in fertile areas, loss of biodiversity in
agroecosystems, increased risk of disease emergence and epidemics due to agricultural intensification,
a lack of disease-resistant cultivars, monoculture cropping practices favoured by high-value crops, net
disease-related costs impacted by fungicide resistance, and fungicide cost plus disease-induced yield
loss as well as global climate change [19,20].

Virtually all fungicides produced since the 1980s pose a risk of resistance development [21].
Deconstructing a pathogen’s modes of developing resistance is important to assisting in designing
integrated approaches to circumvent or manage the development of resistance and in identifying
pathogens with a high to medium to low risk of developing resistance to a specific fungicide or
class of fungicides [22,23]. Some of the mechanisms of resistance commonly include (i) mutations
that lead to conformational changes to the target site, (ii) mutations of the promoter sequence that
lead to upregulation of the gene target, and (iii) reduction of intracellular fungicide accumulation by
upregulation of efflux pumps (e.g., adenosine triphosphate-binding cassette (ABC) transporters or
major facilitators) [24,25].

Among Fusarium species, reduced sensitivity to single-site fungicides (e.g., methyl benzimidazole
carbamates, demethylation inhibitors, quinone outside inhibitors, and succinate dehydrogenase
inhibitors) represents indiscriminate, long-term use of these different chemical classes by risk-averse
growers [26]. Understanding the mechanisms that drive the evolution and emergence of genotypes
bearing reduced fungicide sensitivity will aid resistance risk assessment and management [27].
The switch between hemi-biotrophic and necrotrophic lifestyles, fungicide targets, and history of
exposure to a given single-target fungicide influence the selection of resistant genotypes in the pathogen
population [26]. Importantly, there are parallel drivers of fungicide resistance in clinical settings and in
the field with cases of cross resistance [28].

De novo mutations and standing genetic variation affect the likelihood and rate of emergence
of resistant genotypes over evolutionary time [29,30]. Selection from standing variation as well as
identification of additional, non-target-site resistance mechanism(s) can be inferred by tracing the
history of the selected target gene through comparative genomics [30,31] for example, comparison
of amino acid mutations in CYP51 paralogues and their corresponding azole resistance phenotypes
among Fusarium species [32–35]. The potential to use complete genome sequences for gene target
identification is theoretically unlimited; however, validation of genome information requires the
integration of chemical-genetic and genetic interaction data [36,37].
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Innovation in fungicide development is warranted [21]. Phenamacril, a cyanoacrylate compound
(JS399-19), was identified as a new type of fungicide with a mode of action that was different to any
other known class of fungicides [38–40]. Phenamacril exhibits reversible and noncompetitive inhibition
of ATP turnover, specifically “actin-binding during ATP-turnover and motor activity” of F. graminearum
and F. avenaceum but not F. solani [41]. Zheng et al. [42] used whole-genome sequencing to determine
the basis of resistance of F. graminearum to phenamacril in in vitro experiments. The study concluded
that single nucleotide polymorphisms in the mycosin-5 gene, mainly A > G and T > C transitions which
are translated to non-synonymous amino acid mutations, were the cause of phenamacril resistance in
F. graminearum. Zhou et al. [43] recently explained that reduced sensitivity to phenamacril was due to a
single amino acid substitution (M375K) located in the phenamacril-binding pocket and which was
found in the myosin I motor domains of phenamacril-sensitive Fusarium species based on first-time
analysis of the structure of FgMyoI (1–736). Fungicide resistance and the lack of resistant cultivars
of economically important food crops have prompted the Fusarium research community to explore
alternate crop protection strategies.

4. Fusarium Genomics

The highest proportion of genome sequences that are available in public repositories belong
to pathogenic fungi and fungi of medical importance, with plant pathogenic fungi being the most
predominant in this group [44]. The majority of plant pathogens are fungi [45], and these sequenced
genomes belong to fungal species that infect at least one food crop including cereals, fruit, vegetables,
and legumes, some of which constitute staple food crops in several countries worldwide whether for
human consumption, livestock, and/or biofuels [46]. Fungal plant pathogens are well represented
in genome sequencing efforts, and this emphasis may be driven, in part, by those fungal species
that destabilize global food security and pose a biosecurity threat [44,47]. Plant pathogenic fungi
are among the best-studied models of pathogen evolution based on genome sequence analysis [48].
The value of Fusarium genome data to disease management lies in an improved understanding of
(i) pathogenicity-related factors (structure and function), (ii) stimulus-based shifts in trophic lifestyles,
(iii) infection strategies, (iv) genome organization and evolution, (v) prediction of risk of emergence of
new strains and future disease outbreaks, (vi) species complex genetic diversity as dictated by specific
genomic regions, (vii) origin and acquisition of pathogenicity-related genes, (viii) the transfer of entire
pathogenicity-related chromosomes, and (ix) the risk of developing fungicide resistance [49–55].

Pathogenomics (systematic analysis of genome sequences of pathogenic microbes) is hinged
on the development of several complementary multispecies databases that provide gene function
annotation. There are 69 Fusarium genome reports, 116 species and 558 genome assemblies are available,
and 19 complete Fusarium genomes have been published according to NCBI Genomes. However, not
all the genomes are annotated. Functional gene annotations are fundamental to selecting potential gene
targets for gene silencing studies [56]. New pathogen–host interaction mechanisms can be revealed by
integrating mutant phenotype data with genetic information. Each database specializes in particular
species/pathogen groups and/or uses only automated approaches to knowledge acquisition (Table 1).
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Table 1. Currently active filamentous fungi databases, genome browsers, and training.

Database and Website Usage Reference

PHI-base - Pathogen-Host Interaction
database
http://www.phi-base.org/
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recognition receptors (PRRs), which activate innate immunity against these microbes [67–69]. In fungal
infections, the polysaccharide component of fungal cell walls (e.g., chitin) is recognized by the plant
host [70]. Pathogens produce small proteins which are secreted into the plant cell to suppress this
immune response and to allow colonisation [71–76]. However, some fungi (e.g., Botrytis cinerea) are
capable of producing non-protein, fungus-derived sRNAs (short RNAs) that are transmitted into the
host plant cell during infection and which serve as “RNA effectors” to disrupt immune signaling and
to suppress host immunity [77]. Interestingly, host-derived sRNAs were detected in Verticillium dahliae,
where they functioned to target the fungal pathogen’s virulence genes to inhibit fungal invasion in a
“trans-kingdom RNAi” phenomenon [78]. Although several proposed translocation approaches have
been hypothesized [79], very little empirical evidence has been described to explain the mechanism(s)
of sRNA transfer from plant cells into fungal cells [80]. One exception was reported for F. graminearum
infecting barley, where DICER-LIKE (DCL) gene expression was not required for natural infection
but is required for fungal gene silencing by artificial dsRNA transfer [80]. This data suggests that
fungal DCL enzymes may be involved in processing mobile plant-derived sRNA based on this specific
pathogen–host interaction. Host adaptation by fungal pathogens can be facilitated by chromosomal
reshuffling and horizontal gene transfer in addition to uptake of trans-kingdom sRNA [73,81].

Neurospora crassa was the model fungus for studying RNAi pathways and the core RNAi machinery
involved, i.e., Dicer, Argonaute, and RNA-dependent RNA-polymerases (RdRps) in eukaryotes [82].
Gene silencing at the posttranscriptional level is activated through recognition of intracellular, long
double-stranded (dsRNA), or RNAs containing secondary structures (e.g., hairpin and/or stem-loop).
Such RNA molecules are cleaved into small RNAs (sRNAs; typically 19 to 25 nt in length) by Dicer
enzymes or DICER-LIKE (DCL1) enzymes (RNase III endonucleases) in plants [78]. The resulting
small dsRNAs (small interfering RNA (siRNA)) are assembled onto ARGONAUTE (AGO) proteins
to produce a ribonucleoprotein complex called the RNA-induced silencing complex (RISC) [83,84].
The double strands dissociate into single strands of sRNA. This activates RISC which is then directed
to a sequence-specific transcript located in the cytoplasm. Hybridization of these sRNA molecules
with target mRNA sequence, through complementary base-pairing, results in interference of the
translation machinery, translational repression of the target sequence, or mRNA decay [85]. The RNAi
machinery in F. graminearum includes two Dicer proteins (FgDicer1 and FgDicer2), two ARGONAUTE
proteins (FgAgo1 and FgAgo2), and five RNA-dependent RNA polymerases (RdRps) (FgRdRp1–5) [86].
The silencing mechanism requires RdRPs to generate dsRNA from single-stranded RNA (ssRNA) [85].

Plants can export both exogenous artificial siRNAs (small interfering RNAs) and endogenously
produced miRNAs (micro-RNAs) into infecting fungal cells to target fungal transcripts [87].
Host-induced gene silencing (HIGS) technology capitalizes on this innate protection mechanism
of plants, where siRNA molecules of the plant host are used to downregulate the expression of target
genes of pathogens in a sequence-specific manner. Baldwin et al. [88] determined that the silencing
efficacy of RNAi vectors varied according to the size and location of the targeted regions of the TRI6
gene of the trichothecene biosynthetic gene cluster. This understanding has enabled HIGS to be
successfully used to protect plants against fungal pathogens including Fusarium [68,80,87,89,90]. HIGS
requires a transgene carrier system including either a virus-based system (e.g., BSMV (Barley stripe
mosaic virus)) or agrobacterium-mediated (AGT (agrobacterium transformation)) transgenic system
for introduction of the artificial dsRNA construct into the plant. Certain fungi (e.g., B. cinerea and
F. graminearum) have the ability to take up exogenous dsRNAs from the environment [90]. dsRNAs
can also be translocated through the vascular system of the plant [80]. This capability facilitated the
development of spray-induced gene silencing (SIGS) technology for crop protection against Fusarium
where artificial dsRNAs targeting pathogen virulence-related genes are sprayed onto the infected
host plant [89–93]. Table 2 outlines research carried out using HIGS and specific target genes for
management of Fusarium diseases in different crop hosts from 2010 to present.
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Table 2. Host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS) of target genes in Fusarium species.

Species Gene Target Gene Function Host Year Reported Reference

F. culmorum FcFgl1 a Secreted lipase Wheat 2016 [91]
FcFmk1 a Mitogen-activated protein (MAP) kinase Wheat 2016 [91]
FcGls1 a Beta-1,3-glucan synthase Wheat 2016 [91]
FcChsV a Chitin synthase Wheat 2016 [91]
FcChsV a Chitin synthase V, myosin-motor domain Wheat 2016 [91]

F. graminearum CYP51 a Cytochrome P459 lanosterol C-14-alpha demethylase Arabidopsis thaliana; Barley 2013 [92]
FgCYP51A; FgCYP51; FgCYP51C 1 Cytochrome P459 lanosterol C-14-alpha demethylase Barley 2016 [93]
Chs3b b Chitin synthase Wheat 2015 [94]

F. graminearum AGO; DCL 1 ARGONAUTE; DICER Barley 2019 [95]
F. graminearum FGSG_03101 a alpha/beta hydrolase Wheat 2018 [96]
F. graminearum Fg00677; Fg08731 Protein kinase Brachypodium distachyon 2019 [97]

FgCYP51A; FgCYP51; FgCYP51C Cytochrome P450 lanosterol C-14-alpha demethylase Brachypodium distachyon 2019 [97]
F. graminearum FgCYP51A; FgCYP51; FgCYP51C Cytochrome P459 lanosterol C-14-alpha demethylase Arabidopsis thaliana 2019 [98]
F. graminearum FgDCL1, FgDCL2 Dicer-like proteins Wheat 2019 [99]

FgAGO1, FgAGO2 ARGONAUTE 1 and 2 Wheat 2019 [99]
FgQDE3 RecQ helicase Wheat 2019 [99]
FgQIP AGO-interacting protein Wheat 2019 [99]
FgRdRP1, FgRdRP2, FgRdRP3, FgRdRP4 RNA-dependent RNA polymerases Wheat 2019 [99]

F. oxysporum f. sp. cubense Velvet Transcription factor Banana 2014 [100]
ftf1 Fusarium transcription factor 1 Banana 2014 [100]

F. oxysporum f. sp. cubense SGE1 SIX (Secreted In Xylem) Gene Expression 1 Banana 2016 [101]
F. oxysporum f. sp. conglutinan FRP1 F-box protein Arabidopsis thaliana 2015 [102]
F. oxysporum f. sp. conglutinans ERG6/11 Ergosterol biosynthetic genes Banana 2020 [103]
F. oxysporum FOW2 Zn(II)2Cys6 family putative transcription regulator Tomato 2017 [104]

ChsV Chitin synthase V, myosin-motor domain Tomato 2017 [104]
F. oxysporum f. sp. lycopersici ODC Ornithine decarboxylase; Polyamine (PA) biosynthesis Tomato 2020 [105]
F. verticilloides GUS a Reporter gene—proof of concept Tobacco 2010 [106]

1 SIGS; all other reports are HIGS; a BSMV (Barley stripe mosaic virus)-mediated gene silencing; b—biolistic/particle bombardment introduction of construct
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6. Selection of Gene Targets

Sequenced genomes of fungal phytopathogens represent the genetic blueprint from which
putative pathogenic and virulence factors can be identified; resolution of these factors into different
roles played in various infection strategies can also be inferred [44]. Fungal pathogenomics facilitated
the identification of fungal genes associated with pathogenesis and virulence and provided the
rationale behind selection of gene targets for HIGS technology for management of Fusarium diseases.
For most target genes, a function in pathogenicity and virulence has been investigated experimentally
by gene disruption, gene knockdown, gene complementation, or overexpression assays (PHI-base;
http://www.phi-base.org/).

The intersection of genomics and plant pathology has blurred some of the basic concepts in
plant pathology. It is, therefore, worth clarifying the often interchangeable use of “Pathogenicity” vs.
“Virulence”. Pathogenicity refers to the capability of a pathogen to cause disease; virulence refers to
the severity of disease caused by the pathogen, i.e., the measurable degree of damage caused by a
pathogen to the host plant [107]. In PHI-base, these pathogenicity- and virulence-associated genes
are classified according to mutant phenotypes, i.e., loss of pathogenicity, unaffected pathogenicity,
increased virulence, and reduced virulence. Examples of these genes are given in Tables 3 and 4.
F. graminearum was omitted from Table 3 because there were >500 genes associated with “reduced
virulence” mutant phenotype in PHI-base. Other reviews summarized similar data for F. graminearum,
the most recent being Rauwane et al. 2020 [108]. Note that genes related to pathogenicity are not the
same genes related to virulence in most cases. The largest number of genes collectively associated with
a “loss of pathogenicity” mutant phenotype was recorded for F. graminearum; the number of genes
associated with a “reduced virulence” mutant phenotype was highest for F. oxysporum, according
to PHI-base.

http://www.phi-base.org/
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Table 3. PHI-base curated genes associated with “loss of pathogenicity” mutant phenotype according to Fusarium species.

Gene Gene Function Species Host Species (Common Name)

FcRav2 Regulator—trichothecene type B biosynthesis F. culmorum Triticum aestivum (bread wheat)
FSR1 Putative signaling scaffold protein F. fujikuroi Zea mays (maize)
FgGT2 Glycosyltransferase F. graminearum T. aestivum (bread wheat)
MGV1 Mitogen-activated protein kinase (MAPK) F. graminearum Triticum (wheat); Solanum lycopersicum (tomato)

MAP1 (GPMK1) Mitogen-activated protein kinase (MAPK) F. graminearum Triticum (wheat); T. aestivum (bread wheat); Glycine max
(soybean); A. thaliana; S. lycopersicum (tomato)

STE7 Mitogen-activated protein kinase (MAPK) F. graminearum Triticum (wheat); S. lycopersicum (tomato)
STE11 Mitogen-activated protein kinase (MAPK) F. graminearum Triticum (wheat); S. lycopersicum (tomato)
Fgrab6; Fgrab7; Fgrab8; Fgrab51; Fgrab52 Rab GTPases F. graminearum T. aestivum (bread wheat)
ACL1 Adenosine triphosphate (ATP) citrate lyase F. graminearum Triticum (wheat)
ACL2 Adenosine triphosphate (ATP) citrate lyase F. graminearum Triticum (wheat)
CPK1 cAMP-dependent protein kinase A (PKA) F. graminearum T. aestivum (bread wheat); Z. mays (maize)
CPK2 cAMP-dependent protein kinase A (PKA) F. graminearum T. aestivum (bread wheat); Z. mays (maize)
FgSte50 Mitogen-activated protein kinase (MAPK) F. graminearum T. aestivum (bread wheat)
Fgk3 Glycogen synthase kinase F. graminearum T. aestivum (bread wheat)
cdc2A Cell cycle progression F. graminearum T. aestivum (bread wheat)
ScOrtholog_YVH1 Uncharacterized protein F. graminearum T. aestivum (bread wheat)
FgVam7 Regulator in cellular differentiation and virulence F. graminearum T. aestivum (bread wheat); S. lycopersicum (tomato)
Fg02025 (FgArb1) ATP-binding cassette (ABC) transporter F. graminearum T. aestivum (bread wheat); Z. mays (maize)
FGA2 G alpha protein subunit F. oxysporum S. lycopersicum (tomato)
FRP1 F-box protein F. oxysporum S. lycopersicum (tomato)
FOW2 Putative Zn finger transcription factor F. oxysporum Cucumis melo (muskmelon); S. lycopersicum (tomato)
Fgb1 G-protein subunit F. oxysporum S. lycopersicum (tomato)
fmk1 Mitogen-activated protein kinase (MAPK) F. oxysporum S. lycopersicum (tomato); Malus domestica (apple)
chsV Class V chitin synthase F. oxysporum S. lycopersicum (tomato)

FolCzf1 C2H2 transcription factor in fusaric acid
biosynthesis F. oxysporum S. lycopersicum (tomato)

Msb2 Transmembrane protein F. oxysporum S. lycopersicum (tomato); M. domestica (apple)
CMLE 3-carboxy- cis, cis-muconate lactonizing enzyme F. oxysporum S. lycopersicum (tomato)
con7-1 Transcription factor F. oxysporum S. lycopersicum (tomato)

FvVE1 Biosynthesis of mycotoxins and other secondary
metabolites F. verticillioides Z. mays (maize)

FSR1 Fungal virulence and sexual mating F. verticillioides Z. mays (maize)
FvSO WW domain protein required for growth F. verticillioides Z. mays (maize)
FvSTR1 Mitogen-activated protein kinase (MAPK) F. virguliforme G. max (soybean)
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Table 4. PHI-base curated genes associated with “reduced virulence” mutant phenotype according to Fusarium species.

Gene Gene Function Species Host Species (Common Name)

FaTuA1 alpha-tubulin F. asiaticum Triticum aestivum ( bread wheat)
FaCdc3; FaCdc12 Septin F. asiaticum T. aestivum ( bread wheat)
Famfs1 Phenamacril-resistance related gene F. asiaticum T. aestivum ( bread wheat)
Myo5 Myosin F. asiaticum T. aestivum ( bread wheat)
FaDHDPS1 Dihydrodipicolinate synthase— deoxynivalenol synthesis F. asiaticum T. aestivum ( bread wheat)
FcABC1 ABC transporter F. culmorum Triticum ( wheat)
SET1 (FFUJ_02475) H3K4-specific histone methyltransferase F. fujikuroi Oryza sativa (rice)
ARG1 Argininosuccinate lyase F. oxysporum Solanum lycopersicum (tomato)
FGB1 G beta protein subunit F. oxysporum S. lycopersicum (tomato)
CHS2 Chitin Synthase F. oxysporum S. lycopersicum (tomato)
CHS7 Chitin Synthase F. oxysporum S. lycopersicum (tomato)
SGE1 Transcriptional regulator—morphological switching F. oxysporum S. lycopersicum (tomato)
FGA1 G alpha protein subunit F. oxysporum S. lycopersicum (tomato)
FOW1 Mitochondrial carrier protein F. oxysporum S. lycopersicum (tomato)
foSNF1 Protein kinase F. oxysporum Brassica oleracea
GAS1 Beta-1,3-glucanosyltransferase F. oxysporum S. lycopersicum (tomato)
FOXG_00016 Homology to Velvet family F. oxysporum Solanum peruvianum (peruvian tomato)
tom1 Tomatinase F. oxysporum S. lycopersicum (tomato)
Snt2 BAH/PHD-containing transcription factor F. oxysporum Cucumis melo (muskmelon)
Ctf1; Ctf2 Transcriptional activator – cutinase/lipase F. oxysporum S. lycopersicum (tomato)
FoEBR1 putative transcription factor F. oxysporum S. lycopersicum (tomato)
FVS1 WCMC-4_G03-encoding gene F. oxysporum C. melo (muskmelon)
FoOCH1 putative a-1,6-mannosyltransferase F. oxysporum Musa x paradisiaca (banana)
AreA Global nitrogen regulator F. oxysporum S. lycopersicum (tomato)
Sho1 Tetraspan transmembrane protein F. oxysporum S. lycopersicum (tomato)
Msb2 mucin-like membrane protein F. oxysporum S. lycopersicum (tomato)
Fbp1 F-box protein F. oxysporum S. lycopersicum (tomato)
FoMkk2 Mitogen-activated protein kinase (MAPK) F. oxysporum Musa acuminata (dwarf banana)
FoBck1 Mitogen-activated protein kinase (MAPK) F. oxysporum M. acuminata (dwarf banana)
pg1 Endopolygalacturonase F. oxysporum S. lycopersicum (tomato)
pgx6 Exopolygalacturonase F. oxysporum S. lycopersicum (tomato)
GLX CWP2 antigen F. oxysporum Triticum aestivum (bread wheat)
fmk1 Mitogen-activated protein kinase (MAPK) F. oxysporum S. lycopersicum (tomato)
mpk1 Mitogen-activated protein kinase (MAPK) F. oxysporum S. lycopersicum (tomato)
GPABC1 ABC transporter F. sambucinum Solanum tuberosum (potato)
CSN1 Chitosanase F. solani Pisum sativum (pea)



Pathogens 2020, 9, 340 10 of 21

6.1. Pathogen Effectors

Genome-based effector characterization has strongly supported the study of pathogenic
determinants [57,58]. An effector protein selectively binds to a target protein and regulates its
biological function. Phytopathogenic fungi produce a range of effectors that can (i) alter the structure
and function of the host cell; (ii) activate effector-triggered immunity (ETI) based on effector perception
by R proteins in the host plant; and/or (iii) accumulate mutations and, as such, develop novel effectors
that are no longer recognized by R proteins, which enables the fungus to avoid or suppress ETI in
the host plant [71,72]. Pathogen effectors are usually small proteins that contain N-terminal signal
peptides, are cysteine-rich, and are highly expressed by the pathogen in planta [56,109]. Fungal effectors
may be secreted into the extracellular space of the host tissues or they can enter host cells [110,111].
Intracellularly located effectors can disrupt plant immune responses and can facilitate colonization
of the plant host [112]. Diversifying selection is most prominent for positive selection of genes that
encode effector proteins [113]. The F. graminearum genome has 1250 putative genes that encode small,
secreted proteins, a substantial number of which are suspected to be effectors (reviewed by Schmidt
and Panstruga [4]). Not all effector candidates are necessary for pathogenic fungus–plant interactions;
the reason is a large percentage of these putative effectors share homologs in other Fusarium species
and in a broad range of filamentous fungi [114]. “True effector genes” have a relatively rapid rate of
evolution and generally lack homologs in closely related species [115]; they are preferentially located
in “repeat-rich and gene-poor regions” of the genome (Dong et al. [116]). Furthermore, transcription
of effector genes is highly regulated and synchronized with host colonization, which is important to
activating the switch from hemibiotrophic and necrotrophic phases in Fusarium species [48].

However, because these effector inventories are curated from bioinformatics analyses of genomic
and transcriptomic data, most small secreted proteins identified by this approach are assumed to be
effectors even though there may not be evidence of direct association with disease and they may also
be found in mutualistic fungi [56]. Studies have revealed that many fungal genes considered to be
associated with disease progression are also involved in general fungal growth and development,
referred to as “functional redundancy” [113]. For these reasons, functional analysis of candidate
pathogenicity genes is important to improve the accuracy of these effector inventories.

6.2. Pathogenicity Genes

van de Wouw and Howlett [56] described pathogenicity genes as genes that encode host-specific
proteins which demonstrate an “inverse” gene-for-gene relationship with the host such that the
host–pathogen interaction results in disease. Pathogenicity genes are generalized into two classes:
basic pathogenicity genes, which are shared by Fusarium and other pathogenic fungi, and specialized
pathogenicity genes, which in most cases are specific to individual Fusarium species on specific hosts.
Over 100 genes were found to alter virulence specifically in F. graminearum based on experimental
evidence (PHI-base). It is important to describe the biological context of these genes, and one approach
involves prediction of function using integrated networks that compares amino acid sequence similarity
and maps known or predicted protein–protein interactions [82,117].

6.2.1. Basic Pathogenicity Genes

Functional characterization of putative genes indicated that those involved in the production of
cell wall-degrading enzymes; transcriptional regulators for carbon, nitrogen, amino acid, and lipid
metabolism; factors involved in host cell wall remodeling; protein translocation and degradation;
and interruption of phyto-hormone pathways are all important for pathogenicity [118–121], reporting
over 100 putative pathogenicity genes in F. oxysporum f. sp. lycopersici (FOL). Mitogen-activated
protein kinase (MAPK) and cyclic AMP-protein kinase A (cAMP-PKA) were also found to be important
regulators of virulence in F. oxysporum [120–125]. Genes encoding modulators of host immune responses
are often organized in distinct genomic compartments [116].
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Proteins involved in primary metabolism are common in Fusarium and other pathogenic fungi
because they catalyze conserved biochemical pathways [126]. Shang et al. [127] reported on the
relationship between pathogenicity and protein families involved in the hydrolysis of host cell
constituents, e.g., carbohydrate-active enzymes (CAZymes), proteases, cellulolytic enzymes, cutinases,
and lipases. Metalloprotease subfamilies M14 and M28, serine peptidases S09 and S26, O-glycosyl
hydrolases, glycosyl transferases, polysaccharide lyases, carbohydrate-binding domain proteins, cutin
polymers, pectin lyases (PL1 and PL3) as well as the UDP (uridine 5’-diphosphate)-glucuronosyl
transferase (GT1), and acetyl xylan esterase (CE1) were significantly associated with pathogen lifestyle
adaptation. The Fgl1 gene, which encodes a secreted lipase, has been shown to be directly involved
in virulence of F. graminearum of barley, maize, and wheat [128,129]. Further, if this Fgl1 gene is
overexpressed, the virulence of nonpathogenic MAPK mutant on wheat is restored [130].

6.2.2. Specialized Effectors and Pathogenicity Genes in Fusarium

Several specialized Fusarium genes are involved in host–pathogen interactions [110,114].
Comparative studies of the genomes of F. oxysporum f. sp. lycopersici (FOL) identified lineage-specific
mobile pathogenicity chromosomes which contain pathogenicity-associated genes [40]. These include
Secreted In Xylem (SIX) genes that encode small effector proteins which are secreted by FOL during
infection of tomato plants [50]. These SIX genes as well as Fusarium transcription factor (FTF)-encoded
genes (FTF1 and FTF2), which are involved in transcription of these SIX genes, are located on
an accessory chromosome that can be transferred horizontally between strains [131]. There are
two identified genes of the FTF gene family: FTF2, which is present as a single copy in all the
filamentous ascomycetes analysed, and FTF1, which is present in multiple copies and is exclusive to F.
oxysporum [132]. PHI-base describes SIX genes-associated transcription factors (Fusarium Transcription
Factor, FTF1/2) with “reduced virulence” mutant phenotype in F. oxysporum in Phaseolus vulgaris
(kidney bean) host plants.

6.2.3. Pathogenicity Chromosomes

Ma et al. [50] experimentally demonstrated the transfer of entire chromosomes from a pathogenic
FOL strain to a nonpathogenic FOL strain of F. oxysporum f. sp. lycopersici. Transfer of an
entire complement of genes required for host compatibility to a new genetic background is via
horizontal transfer mechanisms [47,131]. Horizontal transfer of supernumerary or lineage-specific
(LS) chromosomes is not new in a number of plant pathogenic filamentous fungi; however,
Vlaardingerbroek et al. [133] described the transfer of portions of core chromosomes in addition
to accessory chromosomes of F. oxysporum f. sp. lycopersici. These mobile chromosomes are
referred to as supernumerary or lineage-specific (LS) chromosomes or conditionally dispensable (CD)
chromosomes [134]. F. solani is a species complex of >50 closely related species and is the anamorph of
Nectria haematococca [109]. Experimental data on fungal supernumerary chromosome function was
primarily collected from Cochliobolus carbonum and N. haematococca MP VI in the early to mid-1990s.
Five supernumerary chromosomes were found in N. haematococca MP IV and early experimental
evidence implicated their involvement in pathogenicity in pea plants [135]. For example, it was found
that these CD chromosomes contained PDA and PEP genes responsible for detoxifying phytoalexins
and for restoring pathogenicity in chromosome-deficient strains, respectively [109]. The hypothesized
model of the “two-speed” genome described compartmentalization of the genome identified by distinct
sets of chromosomes, i.e., core and accessory chromosomes, each with different rates of evolution [136].

6.3. Trichothecene Mycotoxins as Specialized Virulence Factors

Trichothecene mycotoxins are proven virulence factors of Fusarium in wheat hosts [51,137–139].
Trichothecenes inhibit protein synthesis in eukaryotes, activate host plant defence systems, and promote
plant cell death [140]. Comparative genome analyses indicated that the Fusarium genome is
compartmentalized into specialty chromosomes and that different biosynthetic gene clusters may
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be influenced by related gene clusters [114,139]. Individual isolates of Fusarium species can have
different trichothecene profiles [141–144]. Mycotoxins produced by certain Fusarium species can lead
to differential virulence toward wheat (Triticum spp.) and maize (Zea mays) [128,137,138] but not barley
(Hordeum vulgare) [145]. Table 5 summarizes the trichothecene (TRI) genes recorded as associated with
“reduced virulence” according to PHI-base; there were no records of “loss of pathogenicity” for any
TRI genes of Fusarium species curated in PHI-base.

Table 5. PHI-base curated trichothecene (TRI) genes associated with “reduced virulence” mutant
phenotype according to Fusarium species.

TRI Gene Protein Encoded Species Host Species

TRI5 Trichodiene synthase F. graminearum
Secale cereale (rye); Triticum (wheat);
Triticum aestivum; (bread wheat);
Glycine max (soybean)

TRI5 Trichodiene synthase F. pseudograminearum Triticum aestivum (bread wheat)

TRI6 Transcription regulator - Zinc
finger C2H2 superfamily F. graminearum Triticum aestivum (bread wheat)

TRI10 Transcription regulator - Zinc
finger C2H2 superfamily F. graminearum Triticum (wheat)

TRI12 Trichothecene efflux pump,
transmembrane transporter F. graminearum T. aestivum (bread wheat)

TRI14 Putative trichothecene
biosynthesis protein F. graminearum T. aestivum (bread wheat)

6.4. CYP51 Paralogues in Fusarium

CYP51 genes encode sterol 14α-demethylase, and three CYP51 paralogues (CYP51A, CYP51B,
and CYP51C) have been described for Fusarium species, of which CYP51C was thought to be unique to
this genus [146]. However, UniProt also presents CYP51C references for clinical strains of Aspergillus
flavus with reported amino acid substitutions that are associated with azole resistance (entry: [147];
entry: [148]). Constructs for HIGS of F. graminearum causing Fusarium head blight (FHB) included
all three CYP51 paralogues based on the rationale that the degree of nucleotide similarity among
CYP51 genes from different species is comparatively low (25–30%) for a gene that is present in most
eukaryotic organisms [149]. Villafana and Rampersad [35] indicated that CYP51C sequences may have
species-specific signatures based on phylogenetic analyses of CYP51C nucleotide sequences of isolates
belonging to the F. incarnatum-equiseti species complex from Trinidad. PHI-base describes the mutant
phenotypes for F. graminearum as “reduced virulence” and “unaffected pathogenicity” for CYP51A,
CYP51B, and CYP51C in four host species; “loss of pathogenicity”, however, was not described as the
mutant phenotype for any of the CYP51 genes for any Fusarium species.

7. Redundancy of Function

Although many fungi-derived genes are involved in host–pathogen interactions, direct evidence
of association with pathogenicity and virulence is difficult to ascertain depending on the putative
target gene. Rauwane et al. [108] reviewed the currently known multitude of putative pathogenicity
and virulence factors of F. graminearum (> 100 factors), which is arguably the most studied Fusarium
species worldwide. Furthermore, because combinations of effectors are generally employed in the
infection process, targeting one would not have an effect on preventing infection.

Genetic redundancy refers to two or more genes that perform the same function and for which
inactivation of one of these genes will have little or no effect on the fitness of the organism. Redundancy
also facilitates extreme flexibility in gene regulation [113]. All Fusarium genomes encode a wide range
of cell wall-degrading enzymes and generalized hydrolytic enzymes with broad substrate-binding
affinities. Redundancy of these enzymes increases the adaptability of these pathogens to utilize
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different nutrient sources depending on availability, and as a result, very few genes involved in such
metabolic function have been directly connected to pathogenicity [128,150].

8. Broad Spectrum Activity and Off-Target Effects

HIGS can be used to target the same essential gene in different fungal species, allowing
broad spectrum control of fungal pathogens [151]. However, broad-spectrum application of HIGS
increases the risk of silencing off-target genes in host plants and/or silencing off-target genes of
beneficial plant-associated fungi, e.g., mycorrhizal fungi [152–155] and fungal biocontrol agents
(e.g., Trichoderma species) [156]. A single mismatched base pair in a 19-base sequence can prevent
duplex formation and can enable cross-hybridization to off-target sequences [157]. For these reasons,
candidate siRNAs must be evaluated for homology to potential off-target sequences.

9. Loss of RNAi Gene Silencing in Fungi

Comparative genomic analysis revealed that the protein machinery of RNAi and the dual
defensive and regulatory roles played by small RNAs generated within the cell are conserved in all
major eukaryotic lineages [158]. The inactivation of RNAi pathways through loss of function of dicer
or ARGONAUTE proteins would produce an RNAi-deficient species [159]. This raises the question of
how such RNAi-deficient species can survive without a functioning RNAi system. Soybean-infecting
oomycete Phytophthora sojae was recently found to produce Phytophthora-encoded suppressors of RNA
silencing (PSRs) [160]. The arsenal of pathogenicity-associated effector proteins produced by pathogenic
fungi is supported by a high rate of evolution and mutation accumulation. Selection pressures to
overcome R protein recognition in host plant defense may explain the low level of homology among
effector proteins and their different host specificities [71]. Conversely, HIGS-mediated resistance
may be less likely to develop where a combination of multiple, conserved, and essential pathogen
biochemistries is targeted [161].

10. Future Challenges

Several of the world’s staple food crops are vulnerable to fungal plant pathogens. Currently used
disease management strategies often fail due to development of chemical resistance in the pathogen
population and the unavailability of disease-resistant cultivars. Selection pressures attributed to
the host, chemical control agents, climate, as well as inter- and intra-specific competition drive the
evolution of fungal genomes. The emergence and introduction of pathogens with novel combinations of
pathogenicity and virulence factors challenge food security. The rapid generation and release of fungal
genomic data contribute important datasets that are relevant to the field of plant pathology. However,
the quality of these assemblies can vary, which hampers utility for comparisons and meaningful
interpretation. Curated databases of genome sequences and genome browsers must be accessed to
ensure quality and completeness of genomic data and to enable comparisons of genome sequences from
several individuals within a given species or across species boundaries. Data-mining with subsequent
identification of putative pathogenicity- and virulence-related genes must be supported with evidence
of function by an integrated protein network analysis as a computational means of understanding
metabolic function and/or functional assays. Such data is fundamental to designing transgenic and
non-transgenic approaches to disease management. Refinement of the genetic inventory of factors
responsible for effecting disease is, therefore, ongoing. Host-induced gene silencing capitalizes on a
conserved, RNAi-based mechanism where small RNAs produced in the plant prevent expression of
select genes belonging to pathogens as part of an innate plant defense response. It is one approach
with demonstrated potential to control Fusarium diseases in some economically important crop hosts.
Control has been defined in terms of reduced virulence and/or loss of pathogenicity of the Fusarium
pathogen, and these phenotypes can vary according to the host plant species for a given Fusarium
species. Management of Fusarium diseases by gene silencing can be potentially achieved without the
cost and hazards of chemical protection.
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