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Abstract: There are many studies that model the within-host population dynamics of Human
Immunodeficiency Virus Type 1 (HIV-1) infection. However, the within-infected-cell replication of HIV-1
remains to be not comprehensively addressed. There exist rather few quantitative models describing
the regulation of the HIV-1 life cycle at the intracellular level. In treatment of HIV-1 infection, there
remain issues related to side-effects and drug-resistance that require further search “...for new and
better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle” (as highlighted
recently by Tedbury & Freed, The Future of HIV-1 Therapeutics, 2015). High-resolution mathematical
models of HIV-1 growth in infected cells provide an additional analytical tool in identifying novel drug
targets. We formulate a high-dimensional model describing the biochemical reactions underlying the
replication of HIV-1 in target cells. The model considers a nonlinear regulation of the transcription of
HIV-1 mediated by Tat and the Rev-dependent transport of fully spliced and singly spliced transcripts
from the nucleus to the cytoplasm. The model is calibrated using available information on the kinetics
of various stages of HIV-1 replication. The sensitivity analysis of the model is performed to rank the
biochemical processes of HIV-1 replication with respect to their impact on the net production of virions
by one actively infected cell. The ranking of the sensitivity factors provides a quantitative basis for
identifying novel targets for antiviral therapy. Our analysis suggests that HIV-1 assembly depending on
Gag and Tat-Rev regulation of transcription and mRNA distribution present two most critical stages in
HIV-1 replication that can be targeted to effectively control virus production. These processes are not
covered by current antiretroviral treatments.

Keywords: HIV-1; intracellular replication; mathematical model; sensitivity analysis; antiviral targets

1. Introduction

The Human Immunodeficiency Virus Type 1 (HIV-1) continues to threaten global health and
represents a significant burden for health-care systems. Intensive research on HIV and its induced
acquired immunodeficiency syndrome (AIDS) for more than 35 years has uncovered unprecedented
details of virus and virus-host biology. However, it remains unclear how to cure individuals that are
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already infected. Main reasons for this unresolved issue are the extraordinary diversity of HIV and its
capacity to remain latent within infected cells and thus escape immune surveillance and the action of
antiviral drugs.

The complex, multifactorial and nonlinear behavior of the host response to HIV-1 necessitates the
application of mathematical modeling for analysis and description of individual’s infection dynamics
and for predicting its sensitivity to various drugs. The interventions and conditions that need to
be explored in various combinations include (i) antiretroviral drugs; (ii) immune-based therapies;
and (iii) cell motility-affecting cytokines. We have recently applied mathematical modeling to predict
the impact of PD-L1 blockade on viral load and CD4 T cell gain in HIV-infected individuals [1].
The requirements for cytotoxic CD8 T cells in terms of their frequency and spatial dynamics within
lymphoid tissues have been examined in another study [2].

A major progress in controlling HIV-1 infection is related to highly active antiretroviral therapy
(HAART). Many drugs have been evaluated until today, targeting six distinct steps in the HIV-1 life
cycle, and about 30 drugs can be used in combination [3]. Prevention and control of drug toxicities is
one of the key issues in the current HIV-1 management. As the number of elementary biochemical
reaction steps in the replication cycle of HIV-1 is much larger than six, there should be other potential
targets for ART. This can be explored by formulating a high-resolution model of the intracellular life
cycle of HIV-1 and the computational analysis of the sensitivity of virus production to the variation of
model parameters that determine the reaction rates.

Since the 1980s, the time when HIV-1 was discovered, several mathematical models of HIV-1
replication in target cells have been built to understand the kinetic determinants of the replication
cycle. Among the first models of intracellular HIV-1 kinetics is the model formulated via a system of
ordinary differential equations (ODEs) [4]. It was calibrated to describe the growth of HIV-1 in CD4
T lymphocytes. The model considered reverse transcription, nuclear import and DNA integration,
transcription, mRNA splicing and export to the cytoplasm, translation, post-translational modifications
and transport to the membrane, budding and assembly. The model was used to predict the sensitivity
of the virus growth to the reduction of concentrations of doubly spliced, singly spliced and full-length
mRNAs, protease, Rev, Tat and reverse transcriptase (RT). The mechanistic model of HIV-1 growth
proposed in [5] considered a subset of the HIV-1 life cycle processes ranging from integration of
proviral DNA to nuclear export of incompletely spliced mRNA. The study focused on examining
the effect of positive and negative feedback loops by Tat and Rev, respectively, on the robustness of
virus growth to perturbations resulting from variations of cellular host factors and virus mutations.
Subsequently, the nonlinear Tat-Rev regulation was examined as a generator of oscillatory dynamics
in the synthesis of viral components [6]. A two-scale model of virus growth, coupling intracellular and
cell population levels developed in [7], considered a subset of intracellular stages of HIV-1 replication
from random binding to integration of proviral DNA into the host genome. However, it was not used
to make novel predictions for HIV-1 growth. The regulation of HIV-1 virion maturation was modeled
in [8]. The reaction kinetics of proteolytic processing by HIV-1 protease was developed and calibrated,
taking into account all cleavage sites within Gag and Gag-Pol, intermediate products and enzyme
forms, enzyme dimerization, the initial auto-cleavage of full-length Gag-Pol as well as self-cleavage of
protease. The model was used to identify the rate limiting steps of virion maturation and the parameters
with the strongest effects on maturation kinetics. A model of the HIV-1 replication cycle from reverse
transcription to translation was developed in [9]. In that model, the infected cell undergoes stochastic
transitions between different states corresponding to the stages of virus replication. The kinetics of
biochemical species, representing the products of sequential replication stages are modeled using both
the mono-compartmental description and the spatially resolved approach. The later considered the
infected cell as a circle (2D) and described the movement and interaction of the viral components
following an agent-based framework. The model was used to predict the dependence of viral mRNA
produced per cell as a function of the multiplicity of infection. A data-driven model of the kinetics of
HIV-1 replication intermediates in a T cell line was formulated in [10]. The model described the kinetics
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of the stages in a non-mechanistic wayj i.e., using gamma distribution functions for the net rates of the
replication markers. The parameters of the functions were calibrated using original in vitro data.

The primary aim of our study here was to formulate a high-resolution deterministic model of the
HIV-1 replication cycle and to calibrate the model using available data on the kinetics and process
parameters. The second purpose of the work was to use the model for predicting novel targets of
intervention of HIV-1 production via sensitivity analysis of the model. To this end, we applied the
variational approach based on adjoint equations.

2. Results

2.1. Mathematical Model

In this section, we formulate the equations of the mathematical model describing the sequence of
biochemical reactions underlying the intracellular replication of HIV-1 in productively infected cells.
The schematic representation is shown in Figure 1 modified from [3]. We consider the following
replication stages: entry, reverse transcription, integration, transcription, translation, assembly,
budding and maturation.
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Figure 1. Biochemical scheme of the HIV-1 replication cycle.
2.1.1. Entry
The entry stage is split into three steps represented in Figure 2:

1. binding of virion to CD4 receptors (glycoprotein gp120 binds to CD4 receptors on the T cell surface),
2. binding to the co-receptor (CCR5 or CXCR4),
3.  fusion, i.e., the nucleocapsid is uncoated and the viral RNA is injected into the cell.
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Figure 2. Scheme of HIV-1 entry into the host cell.

The binding of the virion to CD4 is described by equations describing the rates of changes of free-
and receptors-bound virion:

d[Vireel
dft = = _khind[vfree] - d[Vfree] @

alv
% = kbind[Vfree] - (kfuse + dbound)[Vbound] 2)

where [V, | is the number of free virions outside the cell, [V},4] is the number of virions bound to
CD4 and the co-receptor. The respective parameters of the model are described in Table 1.

2.1.2. Reverse Transcription

The fusion of bound virions with the host cell membrane results in the release of the content
of the virion into the cell cytoplasm, starting the phase of reverse transcription [11]. During reverse
transcription, a double-stranded DNA is created from two single-stranded RNA genomes. According to
the scheme presented in Figure 3, the reverse transcription is modeled as three sequential processes:

1.  synthesis of minus-strand DNA from viral RNA,
2. synthesis of plus-strand DNA,
3.  double-strand DNA formation.

RNA - core Kr DNA - core Konas DNA Kint DNA
cytoplasm cytoplasm nucleus integrated
dRNAcor dDNAcor dDNAnuc dDNAint

Figure 3. HIV-1 reverse transcription and integration.
The rates of change of the amount of RNA and proviral DNA species are described by equations:

d [RNACDT]

dt = kfuse[vbaund] - (kRT + dRNAcar) [RNACOT] 3)

d[DN Acor]
dt
where [RN Aco| is the number of genomic RNA molecules in cytoplasm, [DN A, is the number of
proviral DNA molecules synthesized by reverse transcription. The respective parameters of the above
equations are described in Table 1.

= krr[RNAcor] — (kpna, + dpNA,, ) [DN Acor] 4)

2.1.3. Integration

After the proviral DNA is synthesized, it associates with virus-encoded integrase (IN) and
other proteins as a high-molecular-weight nucleoprotein complex (pre-integration complex, PIC) that
is transported into the nucleus for subsequent integration [12]. Integration is the process of viral
DNA insertion into chromosomal DNA of the host cell. The viral DNA can also undergo several
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circularization reactions thus losing the capability to support subsequent replication [12]. The change
in the number of viral DNA in the nucleus and the number of integrated DNA are modeled with the
following equations:

d[DNA
% = kpna, [DNAcor] — (Kint + dpnia,..) [DN Ape] 5)
% = kint[DN Apue] — dpna, , [DNAg] ©)

where [DN Ac| is the number of DNA molecules in the nucleus, [DN A;;;;] stands for the number of
integrated DNA.

2.1.4. Transcription

HIV transcription starts when the host cell receives activation signals. It is a process of messenger
RNA (mRNA) synthesis. There are three types of mRNA species: full-length (around 9 kb), singly
spliced (around 4 kb), doubly spliced (around 2 kb) [3]. After transcription, mRNAs are transported to
the cell cytoplasm. There is a temporal regulation of transcription and mRNA distribution by viral Tat
and Rev proteins. To describe these stages, we used the scheme in Figure 4 and the parameterization
of the feedback regulation similar to [5,6], as specified below:
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Figure 4. Biochemical events underlying transcription, splicing, export and translation of HIV-1.

dl[mRNA
M = TR[DNAint] - (keRNA fREZ] + kssRNA (1 - ,BfRev) + dRNA )[mRNAg] (7)
dt ¢ : ’
d[mRN Ags
% = (1= Bfreo)kssrnag [MRNAg] — (kernay, fRev + ARN Ay, + Kasrna, (1= Bfrev) [MRNAss]  (8)
mRNA
[mRNA] _ (1= Bfrev)kasrN A, [MRNAss] — (drN Ay, + Kernay, ) [MRNA ] ©)
dt
d[mRNAc
% = fRevkeRNAg [mRNAg} - (ka,RNA + dRNAg) [mRNACg] (10)
d[mRNAc
M = fRC'UkERNAss [mRNASS] - dRNAss [mRNACSS] (11)

dt
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d[mRN Acys)
dt

where [mRNA;] is the number of mRNA; molecules in the nucleus and
[mnRNAc;] is the number of mRNA; molecules in the cytoplasm, where i €
{g (genomic or full-length), ss (singly spliced), ds (doubly spliced)}. The Tat-Rev regulation
is parameterized by the following functions

= kernay, [MRNAgs] — drna, [MRN Acgs) (12)

IR = TRcell + fTat . TRTut/ (13)
and the Michaelis-Menten type equations are used for

[PTat]
GTat + [PTat]

[PREU]

—_— 14
GRev + [PREU] ( )

fTat =

’ fRev =

with 0 = (K™)~1, and Og,, = (KR®)~1 (see [4,5]), respectively. The parameters of the above
equations are described in Table 1.

2.1.5. Translation

The viral mRNAs are decoded by ribosomes to produce specific proteins. The proteins then fold
into active proteins. The full-length mRNA codes for Gag and Gag-Pol proteins. The singly spliced
mRNAs code for gp160, Vif, Vpu and Vpr proteins. The doubly spliced mRNAs code for Nef, Tat and
Rev. In our model we account for the kinetics of Gag-Pol, Gag, gp160, Tat and Rev proteins. Their
turnover is described by the following set of equations:

du;?t] = ktrans fas,Tat [MRN Acas] — dp 1ot [ Prat] (15)

d[I;I;W] = Ktrans fas,Reo[MRN Acgs] — dp,reo[Preo] (16)

@ = Ktrans f,Gag-pol [MRN Acg] — (ktp,Gag-pol + dp,Gag-pol) [PGag-Pol] (17)
d[l;ct;ag} = Ktrans fo,Gag [MRNACg] — (Ktp,Gag + dp,Gag) [Peag], (18)
d[PZZMO] = Ktrans fss,gpr60[MRN Acss] — (kip,gp160 + dp,gpie0) [Pgp1eo] (19)

where [P;] is the number of protein molecules j, j € {Gag-Pol, Gag, gp160, Tat, Rev} and f; ; are the
fractions of mRNA; coding [P;], i € {g,ss,ds}. The respective parameters of the model are described
in Table 1.

2.1.6. Assembly, Budding and Maturation

The late phase of the HIV-1 replication cycle includes the trafficking of the regulatory and accessory
proteins and viral glycoproteins to the plasma membrane, the assembly of Gag and Gag-Pol proteins
at the plasma membrane with a subsequent encapsidation of the viral RNA genomes, budding of
the new virions and their maturation [13]. The viral proteins Gag-Pol, Gag, gp160 undergo several
post-translational modifications such as folding, oligomerization, glycosylation, and phosphorylation [4].
After that, the proteins and the full-length mRNA molecules are transported to the membrane where
they associate (pre-virion complex) and combine to generate a new virion. The scheme of this late phase
of virus replication is shown in Figure 5.
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Figure 5. Assembly, budding and maturation.

The transport processes to the membrane are modeled by the following kinetic equations (A =
{Gag-Pol, Gag, gp160}):

d[Pmem,Gug-Pol}

dt = ktp,Gag-Pol [PGag-Pol] - kcombNGag-Pol [RNAmem] HjEA [Pmem,j] - dmem,Gag-Pol [Pmem,Gag-Pol] (20)
d[Prem,Gag)
% = ktp,Gag [PGag] - kcombNGag [RNAmﬁm] H[Pmem,j] - dmem,Gag[Pmem,Gag] (21)
jea
A[Prem,gp160]
mestgp = ktp,gpl60 [ngléo] - kcombngléo[RNAmem] H[Pmem,j] - dmem,gpl60 [Pmem,gp160] (22)
jeA
d[RN Apem)

T = kip rva[MRNAcg] — keompNrnA[RN Apem) II[Pmem,]-} — drnag [RN Apen] (23)
j€

The membrane thus encloses viral RNAs with the proteins Gag, Gag-Pol, Vif, Nef, and Vpr while

gp160 is anchored in the membrane. The assembly of the pre-virion complex then leads to virion

budding. The initially immature budded virions subsequently mature and become infectious for other

cells. These last stages are described by equations:

A[Vyrevirion)
% = Keomb [RNAmem] H[Pmem,j] - (kbud + dcomb)[vpre-virion} (24)
j€
alv;
[dl;ud} = kbud[vpre-virion] - (kmat + dbud) [Vbud] (25)
alv,
[ d";ﬂt] = kmat[Voud] — d[Vinat] (26)

where [V irion] is the number of virions on the membrane, [V},4] is the number of free viruses after
budding from the cell and [V;¢] is the number of mature virions outside the cell.
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2.2. Model Parameters

The model was calibrated using available information on the kinetics and process parameters
presented in [4-6,9,14-21]. The estimated values and admissible ranges of the model parameters are
summarized in Table 1. The variation of threshold parameter 07,; results in a temporal shift of the overall
kinetics (increase of 07, increases the delay before virion release), while the value of 8, positively
influences the rate of virion release. The combination of 67;; and 0g,, parameters influences the overall
dynamics in nonlinear way, therefore, they were tuned manually to achieve the expected temporal
kinetics of replication cycle stages [10] and physiological levels of transcripts, proteins and mature
virions. The initial values of low number of infectious virions (Vf,ee(O) < 5 virions) result in the
integration of Vj,;; < 2 proviral DNA that resembles in vivo scenarios [22] rather than experimental
setups with highly susceptible cell lines and high multiplicity of infection. The overall dynamics of the
individual components of the HIV-1 replication cycle in activated CD4+ T cells infected with Vy,,, (0)=4
infectious virions through their life span of about 36 h [23] is presented in Figure 6. We note from the
solution of the calibrated model that the number of membrane anchored Gag molecules is a limiting
factor for the assembly of pre-virion complexes since all Gag molecules are being incorporated into the
complexes while the abundant levels of other proteins and genomic RNA remain at the membrane.

Binding and fusion RT and integration Transcription
4- — Viree 2.01 10° __._ -------
— Vbound 15 Rﬂ i / T--- mRNA,
837 3 —— DNA, | 510% ~—— mRNA,
1\ < 101 —— DNAw. | 2 === MmRNAg,
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Figure 6. Numerical solution of the calibrated model for the parameter values given in Table 1.
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Table 1. Estimates of the Calibrated Model Parameters.

9of 15

Parameter Description Value Range, Relev. Refs.
kpind rate of virion binding to CD4+ T cell membrane 31h7! (2.1, 6.0) [14,24,25]
d clearance rate of free mature virions 0.38h~! (0.38, 1.5) [23,26]
Apound degradation rate of bound virions 0.0008 h ! (4.8x107%,1.9 x1073)
[27,28]
kfuse rate of virion fusion with the cell 0.7h7! (0.42, 2.2) [15,25,29]
krT reverse transcription rate 043h7! (0.43, 1.02) [4,9,11]
ARNA., degradation rate of RNA in cytoplasm 0.21h71 [30]
dDNA,, degradation rate of DNA in cytoplasm 0.03h7! (0.016,0.2) [10,16,31,32]
kpna, transport rate of DNA from cytoplasm to nucleus 0.12h7! [4,32]
ADN A degradation rate of DNA in nucleus 0.001h~! [16]
Kint integration rate 0.14h71! (0.07, 10) [4,33-36]
ADN A degradation rate of DNA integrated into chromosome 0.00002 h~! [37]
TReent cell intrinsic rate of basal transcription 15071 [4,5]
TRrat level of transcription induced by Tat transactivation 1500 h~! (1000, 1500) [4,5]
Oar threshold for half-maximal boosting of 1000 molec. [4,5], calibrated by [10]
transcription by Tat
ORev threshold for half-maximal boosting 77,000 molec. (12, 6 x 10%),
on export of mRNAg and mRN Ass by Rev calibrated by [10]
B inhibitory effect of Rev on the splicing rates implying 0.9 (0.82, 0.95) [4]
their 1/ (1 — B)-fold reduction at saturation level of Rev
kip,RNA transport rate of RN Ag to cell membrane 2.8h7! (1.44, 43.2) [38]
kerN A rate of mRNA; export from nucleus, i € {g,ss} 23h7! (2.1, 4.6) [4-6]
kerN Ay rate of mRN A export from nucleus 46h7! [4-6]
kssrn A, rate of splicing for full-length virus RNA 24h71 (2, 3) [4-6]
kasrn A, rate of splicing for singly spliced virus RNA 24h71 (2, 3) [4-6]
AdrNA, degradation rate of mRNA;, i € {g,ss,ds} 0.12h7! (0.077, 0.25) [4-6]
dp,¢p160 degradation rate of protein gp160 0.02h71 [4]
dy degradation rate of protein j, j € {Gag, Gag-Pol} 0.09 h~1 (0.05, 0.39) [4,9]
dp, Tt degradation rate of Tat protein 0.04h7! (0.04, 0.173) [4-6]
dp Rev degradation rate of Rev protein 0.07h7! (0.04, 0.173) [4-6]
fij fraction of mRNA; coding P;
i€{gssds}, je {Gag, Gag-Pol, gp160, Tat, Rev}
fg,Gag-Pol — 0.05 [4]
fo.Gag - 0.95 [4]
fss,gp160 — 0.64 [18]
Jas,Tat — 0.025 [4]
fds,Rev — 0.2 (0.095, 0.238) [4,5]
Ktrans rate of mRNA to proteins translation 524 proteins/mRNA/h (50, 1000) [4-6,39]
Amem,Gag-Pol  degradation rate for the membrane anchored protein Gag-Pol ~ 0.004 h! [40]
Ayem,Gag degradation rate for the membrane anchored protein Gag 0.004 h™! [40]
Ainem,gp160 degradation rate for membrane associated gp160 (Env) 0.014h~! [41]
kip,j rate of protein P; transport to membrane, j € A 28h7! (1.386, 432) [4,38,42]
keomp incorporation rate of molecules into pre-virion complexes 8h~! (6, 12) [19,43]
Nrna number of viral RNA transcripts in a new virion 2 [13,19]
Neag number of Gag molecules in a new virion 5000 (2500, 5000) [19,21]
NGag-pol number of Gag-Pol molecules in a new virion 250 (125, 250) [19,21]
N p160 number of gp160 molecules in a new virion 24 (12, 105) [21,44]
deomp degradation rate of assembled pre-virion complex 052h7! (0.33, 1.25) [43]
kpua budding rate of new virions 20h7! (1.3, 4.5) [43]
dpyg =d degradation rate for budded immature viral like particle 0.38h7! (0.38, 1.5) [26]
(= clearance rate of mature virions)
kimat maturation rate 24h7! [8]
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3. Sensitivity Analysis

The calibrated model provides a tool for predicting the dependence of the HIV-1 production by
an infected cell to variations of the rates of underlying biochemical processes. The prediction is based
on the sensitivity analysis of the model solutions or some functions depending on them [45]. Let us
characterize the net outcome of the virus replication cycle by the total number of released virions,

T
J(y) = [ Viadt. Here §j = y(t,p) € RY is the reference (unperturbed) solution to the following initial
0

value problem:

Sy = FlLy(t),p), € T
y(t) = 9t p), t=to )

p = [p1,p2 ..., pL] € RL is a parameter vector. Let the model parameters be changed by small

Op = p — p. The local sensitivity of the functional J(y) with respect to the model parameters can be
computed using the following system of equations

d (9] _ oft) 5 | _
- <api) = <w(t),Tm5p,>, te0.T), 5| =0

The function w(t) = w(t, p) is the solution to the adjoint problem

T
_dz/;ift) — |:g’§:| w=eq,tc [tO,T]

w=01t=T (28)

with
e1 = (0,0,...0,1)7.

For a replication cycle lasting T = 36 h [10], and for initial dose of V., (0) = 4 virions, the calculated

d
J(p) = 1811 virions. The values of the d;{ normalized with respect to parameter values are presented

in Figure 7. The left one ranks the sensiti\l/ity coefficients for the model parameters which negatively
impact the net HIV-1 production when their values are increased. The right bar plot ranks the sensitivity
coefficients for the parameters which positively impact the net virus production with their increasing
values. The summary of the most critical control parameters characterized by the normalized sensitivity
values larger than 1000 and larger than 100, are summarized in Table 2. By comparing the sensitivity
analysis data with the existing targets of antiretroviral therapy [3] specified in Figure 8, we identify
additional processes which could be considered for ART.

Table 2. The most sensitive processes on which the net HIV-1 production depends.

Processes Having Negative Effect on | p —pg—{, Processes Having Positive Effect on | P + pj—’{,
Gag contribution to virion assembly keombNGag 1810  Transcription induced by Tat TRat 1971
Degradation of free and mature virions d 1721  Translation of Gag molecules Ktrans fg,Gﬂg 1811
Transport of genomic mRNA to membrane  kp,rna 1697  Assembly of pre-virion complexes keomp 1810
Degradation of RNA during RT drNA,, 602  Transport of proviral DNA to nucleus kpna, 938
Degradation of assembled complexes deomb 364 Inhibitory effect of Rev on splicing rates B 895
Degradation of DNA during RT dpNA., 268 Reverse transcription krr 781
Splicing of full-length genomic RNA kssrN A, 262 Integration of proviral DNA Kint 712
Degradation of budded immature particles  dy,4 242 Export of full-length genomic RNA kerN A, 415
Degradation of genomic mRNA ARN A, 161 Budding of immature particles kpua 412
Tolerance of mRNA export and ORev 118 Maturation of budded particles Kmat 285
splicing to Rev-mediated regulation Binding of virions to the cell membrane k4 250

Fusion of virions with the cell k fuse 166

Translation of Rev molecules Ktrans fas,Reo 118

Splicing of singly spliced RNA kisrnA., 104
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*p% 0 250 500 750 1000 1250 1500 1750 2000 p% 0 250 500 750 1000 1250 1500 1750 2000
keombNGag TRra
Ktrans fg.Gag
Kip.RN A Ccomb
RN Avor kpna,
deomb B
dpna,, krr
kssrna, Kint
dyua kerna,
drNa, Kpud
Opew Fmat
dpna, Fbind
Orat k fuse
Ker A, Ktrans fas, Rev
dy Rev RdsRN A,y
dp Gag Kitp.Gag
dpna,, Kitrans fas Tat
dpya,, TRean
dyTat KerN Aq,
dpound kitpGag—Pol
dpNa,, Ktrans fss.gp60
diem,Gag Kitpgpico
keombNGag—Pol Ktrans fg.Gag—Pol
rnem,gp160 dy Gag—Pol
dp,gp160 keombNRN A
KeombNgp16o mem Gag—Pol

Normalized sensitivities (negative effect on .J(p) = j“T Vinatdt)

Normalized sensitivities (positive effect on J(p) = ]UT Vinatdt)

Figure 7. The normalized sensitivity of the functional J(p) to the parameters which have (left) negative
effect and (right) positive effect on HIV-1 production.

Fusion of viral
envelope and
cell membrane

Binding of gp120
to receptor and
co-receptor

(Entry/Fusion
Inhibitors)

F viral RNA

Reverse
Transcriptase

Reverse
Transcription

/ (RTIs)

4

n
/
/
/
/
/

S

Integrase

PIC formation
and transport
into nucleus

transcription,
splicing and
P export

. BI .

A\ Rev

Integrase

(INSTIs)

Integration

Figure 8. Intracellular replication of HIV-1 with the identified processes showing the strongest impact
on virion production. Blue boxes indicate the stages which most strongly affect the virus production.
The sets indicated in boxes 1, 2, 3, 4, 5 are the processes with normalized sensitivity values larger
than 500 for which effective inhibitors do not exist. The numbers refer to the sensitivity strength with
1 referring to the more strong and 5 to the less strong sensitivity.

Thus, the ranked processes which display the strongest impact on HIV-1 replication are:

1. maximal achievable level of transcription rate that can be induced by Tat;
2. HIV-1 assembly, specifically sensitive to availability and translation rate of Gag molecules;
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full-length RNA transport to membrane and degradation;

transport of pre-integration complex into nucleus and DNA integration;

Rev-mediated regulation of splicing rates and export of full-length RNA;

reverse transcription (rate of reverse transcription, RNA degradation, DNA degradation);
kinetics of membrane-bound pre-virion complexes and virions;

® NSO

binding and fusion of free virions.

4. Discussion

We have formulated mathematical model (system of ODEs) which describes the biochemical
reactions underlying the replication life cycle of HIV-1 in activated target cells. The model considers
nonlinear regulation of the transcription of HIV-1 mediated by Tat and the Rev-dependent transport
of fully spliced and singly spliced transcripts from nucleus to the cytoplasm. The model has been
calibrated using available information on the kinetics of various stages of HIV-1 replication.

We have performed the sensitivity analysis of the model to rank the biochemical processes
of HIV-1 replication with respect to their impact on the net production of virions by one actively
infected cell. The ranking of the sensitivity factors provides a quantitative basis for identifying
novel targets for antiviral therapy. Our analysis suggests that (1) HIV-1 assembly depending on
Gag and (2) Tat-Rev regulation present two critical stages in HIV-1 replication that can be targeted
to effectively control virus production. These processes while being considered to be interesting
antiviral targets (i.e., [46,47]) are not targeted by the current antiretroviral treatments. The vital role
of the Gag polyprotein precursor and the mature Gag proteins has been discussed recently in [13].
However, the efforts in developing inhibitors of Gag function have not yet resulted in efficacious
drugs. The biochemistry of Gag-Pol processing for the HIV-1 assembly deserved the attention from
the modeling point of view previously [8]. Our study puts the HIV-1 assembly stage into the context
of the whole HIV-1 life cycle and identifies it as the most crucial (in terms of sensitivity) process.

The formulated model and its reduced versions can be used as building blocks for multiscale
hybrid models of HIV-1 infection [48,49]. The current version of our model has the limitation that is
does not consider the discrete nature and stochasticity of the biochemistry of the infection. This is
inherent to the model set up as we considered a deterministic description for it. From the biological
point of view, the model lacks a description of intracellular antiviral defense mechanisms and co-factors
that facilitate virus propagation. Likewise, we did not incorporate error-prone virus replication that
would lead to quasi-species distributions. All these factors can be incorporated to address specific
issues that may arise including optimization of antiviral drug combinations and immune-based
therapies. Further extensions of the model will require the analysis of stochastic effects to understand
the link between the variability across the biochemical parameter values and the heterogeneity of virus
production including the response to therapeutic perturbations.
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Abbreviations

The following abbreviations are used in this manuscript:

HIV-1 Human immunodeficiency virus type 1

ART antiretroviral therapy

Tat trans-activator of transcription

Rev regulator of expression of virion proteins
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