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Figure S1. (A) Stress-strain curves for the four different polyacrylamide hydrogel substrate. 

Four different hydrogels were polymerized where acrylamide was used at 12%, 18%, 21% 

and 24% w/v while bisacrylamide was used at a constant concentration of 0.5 w/v. The 

legend on right shows markers corresponding to different hydrogels made by using different 

% of acrylamide. The horizontal error-bars mark standard deviation in strain values. (B) 

Young’s moduli for the four different hydrogels. Young’s moduli were computed as the 

stress/strain ratios from the data displayed in Figure 1(A). The error-bars mark standard 

deviation in moduli values. 
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Figure S2. Fungal burden in intra-abdominal abscesses. Abscesses > 1 mm in size were used 

for CFU determination. The plot shows logCFU/g of abscesses for the indicated C. albicans 

strains for abscesses that were harvested 3, 7 and 14 days after infection. 

Expansion of a Cylindrical Tube or Borehole in an Elastic Medium under Internal Pressure 

A long cylindrical borehole or tube in a concentric elastic cylinder or an infinite elastic solid can be 

represented in the relaxed state (P = 0) by concentric cylindrical shells in which the innermost shell has 

internal radius R0, and external radius R1 (Figure S3). Upon pressurization of the borehole, the inner 

radius grows to r0 and the external radius grows to r1, with purely radial displacement (U) of every 

material point (R ≥ R0, r ≥ R). If the material is incompressible, U(R) is completely defined by geometry: 

U(R) = r(R) – R = (R2 + r0
2 – R0

2) 1/2 – R (1)

U(R) is greatest at the inner radius, where it equals r0 – R0, and decreases asymptotically as 1/R. 

 

Figure S3. Elastic medium in relaxed state (left) P = 0, and in expanded state (right) P > 0. 

In the relaxed state, R0 is the inner radius of the tube. 
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In the simplest case of an incompressible rubber-like material, Treloar [1–3] derived the principal 

stresses in terms of the local principal strain ratios. In the case of expansion of a cylindrical tube, it can 

be shown that the three Treloar principal stresses are the diagonal elements of the stress tensor in which 

the three principal directions are radial, circumferential, and axial. For the infinite elastic solid, the three 

principal stresses are: 

σ11∞ = –G + G R2/r2 = – G (1 – R2/r2)    (radial) (2)

σ22∞ = –G + G r2/R2 = G (r2/R2 – 1)  (circumferential) (3)

σ33∞ = –G + G = 0     (axial) (4)

Radial stress is negative since R < r for all P > 0. Circumferential stress is always positive, for the 

same reason. Surprisingly, pressurization of the tube causes no axial stress. 

From the boundary condition of hydrostatic pressure P on the internal surface, the relation between 

R0, r0 and P is determined: 

–P = –G + G R0
2/r0

2 (5)

Solving for r0: 

r0 = [G/(G–P)]1/2 R0 (6)

This result shows that, for any pressure less than the modulus of elasticity (P < G), a finite expansion 

will be obtained for a tube of any nonzero internal radius in the relaxed state. If P→G, the expanded 

inner radius can be made arbitrarily large, implying that runaway inflation may occur. Practically, 

expansion would be halted by the elastic limit of the material, or freed by material failure. In principle, 

a “borehole” may be initiated even when R0 = 0 by any mechanism that can generate P = G. Conversely, 

it is shown by Equation (5) that P = G for any finite r0, when R0 = 0. Therefore, for invasion of an elastic 

solid, generation of internal pressure equal to the modulus (P = G) allows expansion from r = 0 to any 

internal radius, r0. This is, of course, a reversible (equilibrium) result. Expansion or invasion at a finite 

rate would require P > G. 

Invasion Progress after Tube Initiation by a Hyphus 

If we consider the hyphus as a cylinder of uniform diameter which grows by extension of the tip cell 

after each mitosis, we can apply a model originally derived for plant cell growth [4–6] in which the cell 

wall has an elastic modulus E and a yield stress for irreversible plastic extension, Pc. If the hyphus is 

invading an elastic solid, it also must expand against the modulus G. As shown above, this requires a 

pressure P = G. Under this condition, the invasive growth rate depends on the turgor pressure in excess 

of Pc + G; 

Peff = P – (Pc + G) (7)

In the case of steady growth under non-nutrient-limited conditions (such as in our eperiments), we 

make the simplifying assumption that hyphal cells maintain a relatively constant osmolarity and resulting 

turgor pressure through the cell cycle. In this case, the volumetric cell growth equation developed by 

Lockhart [4] and extended by Ortega [5,6] can be simplified by dropping the elastic term: 
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(1/V)dV/dt = φPeff (8)

In the cell growth equation, φ is the linear cell wall extensibility above the yield stress. Since hyphal 

growth occurs essentially along one axis, (1/V)dV/dt = (1/L)dL/dt where L is the tip cell length: 

dL/dt = φPeff L (9)

in which case cell elongation is exponential: 

L(t) = L0 exp[φPeff t]  t ≥ 0 (10)

Our observations with invading hyphae show that the invading hyphae have septa, thus they have 

undergone mitosis. We assume that during invasion, the tip cell elongates, then stops, undergoes mitosis 

and septates to form a new tip cell of length L0. The new tip cell then continues the growth process. 

Under our tacit assumption, all the cells in a hyphal chain, except the one at the tip, go to a G0 state. 

Hence, the growth curve for a single hyphal chain would contain a series of exponential “spurts”, each 

of duration equal to the cell-cycle period. An overall plot of hyphal length vs. time would look similar 

to a series of exponential “spurts” arranged in tandem. The mean slope would represent the change in 

hyphal length per cell cycle period, tcc, which is the mean speed of invasion (vi): 

vi = {L(tcc ) – L0}/tcc (11)

= L0 { exp[φPeff tcc] – 1}/tcc (12)

which can be linearized under the growth conditions used in these experiments: 

vi ≈ L0φPeff = L0φ(P – (Pc + G)) (13)

In our invasion experiments, the invasion depth observed at time “tg” (= 48 h) for the wild-type strain 

is very nearly equal to the embedded hyphal length: 

Lh = vi tg = L0φ(P – Pc – G) tg (14)

With a fixed growth period (tg = 48 h), this relation is a linear equation in G, the external  

elastic modulus: 

Lh = (L0 φ (P – Pc) tg) – (L0φtg) G (15)

which shows that increasing the modulus G should decrease the observed invasion depth, Lh, and 

predicts that invasion will fail when G = P – Pc. 
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