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Abstract: The malaria parasite resides within erythrocytes during one stage of its life cycle. During
this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately
two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called
the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases
sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides
are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid
transporter has also been identified on the digestive vacuole membrane. The environment of the
digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme
into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of
Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites.
The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the
high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the
digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for
the treatment of malaria.

Keywords: Plasmodium; malaria; digestive vacuole; food vacuole; endocytosis; lysosome; endosome;
hemozoin; hematozoans; anti-malarial

1. Introduction

Malaria is a common human disease in the tropics that exhibits substantial morbidity
and mortality. The causative agent of malaria is a protozoan pathogen in the genus
Plasmodium. Plasmodium and related Haemosporida (Apicomplexa) are dixenic parasites
that infect vertebrate hosts, which include reptiles, birds, and mammals, and are transmitted
by dipteran vectors [1]. A major characteristic of haemosporidians is an intraerythrocytic
stage during the infection of the vertebrate host which is characterized by substantial
proliferation. Residence within erythrocytes has certain advantages such as immune
system avoidance and facilitation of vector transmission via blood-feeding arthropods.
However, the erythrocyte may not be very accommodating from a nutritional perspective
due to its rather simple composition and relatively low metabolism. The erythrocyte is
approximately 95% hemoglobin and does not express the full gambit of metabolic pathways
found in most cells. This raises questions about how intraerythrocytic parasites can exploit
their host cell to obtain sufficient metabolites for survival and reproduction. And in some
cases, this reproduction is quite notable with 30–40 progeny being produced in the order of
days. A major source of nutrition for the intraerythrocytic parasite is the digestion of host
cell hemoglobin as described herein.

2. Life Cycle

The physiology of intraerythrocytic parasitism has been best studied in mammalian
malaria parasites, and especially in P. falciparum due to its importance as a human pathogen
and the ability to culture this parasite in vitro. The malaria parasite exhibits a complex life
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cycle involving mosquito transmission and a transient infection of the liver before infecting
erythrocytes [2]. Infection of erythrocytes is initiated by merozoites which are initially
released from infected liver cells. After invading erythrocytes, parasites undergo a trophic
period characterized by parasite growth. The early trophozoite stage is often called the
ring stage which lasts approximately half of the erythrocytic stage replicative cycle. The
late trophozoites continue to increase in size and subsequently develop into stages called
schizonts. The beginning of schizogony is marked by nuclear replication without cytoplas-
mic division resulting in the formation of multinucleated schizonts. Schizonts divide by
a segmentation process to produce numerous merozoites that are released by rupture of
the infected erythrocyte. These newly released merozoites reinitiate the intraerythrocytic
replicative cycle after invading new erythrocytes to produce a chronic infection that often
lasts for months. The repeated rounds of blood-stage schizogony are responsible for the
clinical manifestations and pathology of the disease. Some of the merozoites, instead of
undergoing asexual replication, develop into sexual forms called gametocytes. Mature
gametocytes are uninucleated parasites that are infective to mosquitoes and play a key role
in transmission.

During the intraerythrocytic stage, the parasite ingests the host cell cytoplasm and
essentially converts the mass of the erythrocyte into its own mass. Thus, mature schizonts
and mature gametocytes nearly fill the entire erythrocyte cytoplasm. During these matura-
tion processes, approximately 70% of the soluble content of the infected host erythrocyte
is ingested by the parasite [3]. Ingestion of the erythrocyte cytoplasm, which is primarily
hemoglobin, is mediated by endocytosis and the endocytosed material forms the digestive
vacuole. Within the digestive vacuole, also called the food vacuole, hemoglobin is broken
down into amino acids which can then be utilized by the parasite [4,5]. The parasite also
induces nutrient channels on the infected erythrocyte for the acquisition of metabolites [6,7].

3. Endocytosis and the Digestive Vacuole

Endocytosis is a general term referring to the uptake of substances that involves sur-
rounding the material to be taken up with the plasma membrane and the enclosure of
that material into membrane-bound vesicles. The engulfment of large particulate matter is
called phagocytosis, and pinocytosis has historically been used to describe the engulfment
of fluid. There are distinct types of fluid-phase endocytosis based on the size and volume
of material being taken up and the mechanisms involved in the formation of endocytic vesi-
cles [8,9]. For example, a major form of endocytosis is clathrin-mediated endocytosis which
has historically been called receptor-mediated endocytosis [10]. Clathrin-independent
endocytosis is poorly defined in regards to molecular components and their nomenclature
is imprecise with various names [11]. Endocytic vesicles can fuse to form the endosome,
or the endocytic vesicles can fuse with a pre-existing endosome [12,13]. Endosomes di-
rect their content to other subcellular compartments, such as lysosomes. Alternatively,
lysosomes can fuse with endosomes to form the lysosomal compartment.

The endocytic uptake of host erythrocyte cytoplasm was described in the early days
of electron microscopy of the malaria parasite, and it was correctly surmised that this
endocytosis was related to the digestion of hemoglobin [14]. Endocytosis producing
small vesicles commences during the ring stage shortly after the parasite invades the host
erythrocyte [15]. The intraerythrocytic parasite is surrounded by a membrane partially
of host origin [16,17], called the parasitophorous vacuolar membrane (PVM). Therefore,
endocytosis results in double-membrane vesicles with the inner membrane originating
from the PVM [18]. The inner membrane rapidly disappears and initially the vesicles
function as individual digestive vacuoles [19]. As the parasite grows and develops, the
small independent digestive vacuoles coalesce into larger digestive vacuoles (Figure 1).
The timing of this coalescence varies according to species with some species forming a large
digestive vacuole during the early trophozoite stage, whereas in other species the large
digestive vacuole appears in the late trophozoite stage [4]. In addition, it has long been
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recognized that the small digestive vacuoles do not coalesce into larger digestive vacuoles
in the gametocytes, but remain dispersed as small vesicles [20].
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endocytosis. On average, two and a half cytostomes are found per parasite [22]. Double-
membrane vesicles are pinched from the base of the cytostome and these vesicles fuse 
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membrane is rapidly degraded to release the hemoglobin. Other membrane invaginations 
have been described on the parasite surface and there may be multiple mechanisms of 
host cytosol uptake [23]. 

3.1. Molecular Components of Endocytosis 
The endosomal pathway of the malaria parasite has not yet been extensively charac-

terized at the molecular level and only a few potential endocytosis-associated proteins 
have been identified [5]. Through inhibitor and genetic studies, several Plasmodium 
orthologs of proteins known to be involved in endocytosis or trafficking to the lysosome 
have been implicated (Table 1). Endocytosis in Plasmodium appears to be clathrin inde-
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Figure 1. Endocytosis and digestive vacuole formation. Host cell cytoplasm is taken up by fluid-
phase endocytosis involving the parasite plasma membrane (PPM) and the parasitophorous vacuolar
membrane (PVM) leading to the formation of double membrane vesicles (A). The inner membrane,
corresponding to the PVM, is rapidly degraded and the vesicles form small digestive vacuoles (DV) in
which hemoglobin is degraded and hemozoin (Hz) forms. As the parasite matures, cytostomes appear
and these serve as a major site for endocytosis (B). Also, as the parasite matures the small dispersed
digestive vacuoles coalesce into large digestive vacuoles (C). Thereafter, hemoglobin (Hb)-containing
vesicles deliver their content to the large digestive vacuoles (D). In gametocyte stages the digestive
vacuoles do not coalesce and remain dispersed in the parasite cytoplasm (E).

Coincident with the maturation of trophozoites is the formation of cytostomes [21].
Cytostomes are tube-like openings on the parasite surface that serve as the focal points of
endocytosis. On average, two and a half cytostomes are found per parasite [22]. Double-
membrane vesicles are pinched from the base of the cytostome and these vesicles fuse
with the digestive vacuole releasing the inner vesicle formed from the PVM. This inner
membrane is rapidly degraded to release the hemoglobin. Other membrane invaginations
have been described on the parasite surface and there may be multiple mechanisms of host
cytosol uptake [23].

3.1. Molecular Components of Endocytosis

The endosomal pathway of the malaria parasite has not yet been extensively character-
ized at the molecular level and only a few potential endocytosis-associated proteins have
been identified [5]. Through inhibitor and genetic studies, several Plasmodium orthologs
of proteins known to be involved in endocytosis or trafficking to the lysosome have been
implicated (Table 1). Endocytosis in Plasmodium appears to be clathrin independent, even
though the clathrin adaptor protein complex (AP-2) appears to be involved [24,25]. In
most eukaryotes, the AP-2 complex in conjunction with clathrin forms a major fluid-phase
endocytic pathway [26]. Thus, the AP-2 complex may have a role in Plasmodium that is
distinct from other eukaryotes. For example, Toxoplasma clathrin is not found on the plasma
membrane and is associated with post-Golgi trafficking [27].
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Table 1. Proteins implicated in malaria parasite endocytosis.

Protein Comments

vacuolar sorting protein 45
Inactivation leads to the accumulation of vesicles and
prevents the delivery of hemoglobin to the digestive
vacuole [28]

Rab5a Implicated in hemoglobin uptake and transport to
digestive vacuole [23]

dynamin like protein-1 Inhibitors reduce hemoglobin uptake [29]

actin Inhibition of actin polymerization increases hemoglobin
containing vesicles [22,30]

phosphatidylinositol-3 kinase Inhibitors block trafficking of hemoglobin to the
digestive vacuole [31]

phosphoinositide-binding protein Localized to the digestive vacuole and plays a role in
trafficking of hemoglobin [32]

protein prenylation Inhibitors cause deformation of digestive vacuole and
mislocalization of Rab5 [33]

µ subunit of AP-2 adaptin complex Implicated in clathrin-independent endocytosis [24]

Kelch13 Localized to cytostomes [25] and mutations [34] or
reduced abundance [35] impairs hemoglobin catabolism

Eps15 Localized to a large multi-vesicular structure near the
digestive vacuole [36]

The Plasmodium AP-2µ subunit interacts with Kelch13, which has been localized to
the neck region of the cytostome [25]. Other proteins that interact with Kelch13 include
the de-ubiquitinase UBP1 and the Plasmodium homolog of the endocytosis protein Eps15.
P. falciparum Eps15 has been demonstrated to be involved in endocytosis and possibly lipid
storage [36]. Presumably, this Kelch13-Eps15-AP-2m-UBP1 protein complex mediates the
uptake of the host cell cytoplasm at the cytostome.

3.2. Digestive Vacuole Properties and Formation

The Plasmodium digestive vacuole exhibits similarities to late endosomal compart-
ments in that it is acidic (pH 5.0–5.4) and contains hydrolytic enzymes. However, the
digestive vacuole is lacking in most nonproteolytic hydrolases suggesting a specializa-
tion in the degradation of hemoglobin [37]. The acidic pH of the Plasmodium digestive
vacuole is maintained by two proton pumps. As is also seen in plants, one pump is a
V-type H+-ATPase and the other pump is a H+-pyrophosphatase [38]. Proteomic analysis
of the digestive vacuole has identified 116 proteins [39]. Many of these are the previously
characterized proteases of the digestive vacuole as well as proteins potentially involved
in trafficking and biogenesis of the digestive vacuole. The previously characterized pro-
teases include aspartic proteases (called plasmepsins), cysteine proteases (called falcipains),
metalloproteases (called falcilysins), and exopeptidases (Table 2).

Table 2. Proteases of the Plasmodium digestive vacuole.

Class Protease Comments

Aspartic Proteases [40]

Plasmepsin-1 (PM1)

PM4 is found in all Plasmodium species and PM1, PM2, and HAP
are paralogs of PM4 and are only found in P. falciparum [41]

Plasmepsin-2 (PM2)

Plasmepsin-4 (PM4)

Histoaspartic protease (HAP), aka
plasmepsin-3
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Table 2. Cont.

Class Protease Comments

Cysteine proteases [42]

Falcipain-2 [43]
Falcipain-2 and -3 exhibit 70% sequence identity and falcipain-2′

is a nearly identical copy of falcipain-2
Falcipain-2′

Falcipain-3 [44]

Metalloprotease Falcilysin [45] Prefers peptides < 20 amino acids long

Exopeptidases

Dipeptidyl aminopeptidase-1 [46] Generates dipeptides from hemoglobin-derived peptides

Aminopeptidase P [47] Possibly functions in both the digestive vacuole and the parasite
cytoplasm

M1 alanyl aminopeptidase [48] Inhibition caused swelling of the parasite digestive vacuole and
prevented proteolysis of hemoglobin-derived peptides

The endocytic pathway in Plasmodium does not appear to involve the fusion of pre-
formed lysosomes with the endosomes, as is typical of many eukaryotes. In addition, little
is known about the targeting of hydrolytic enzymes to the digestive vacuole. Plasmepsin-2
is transported through the secretory pathway and taken up by endocytosis along with the
hemoglobin substrate [49]. Dipeptidyl aminopeptidase-1 may be trafficked to the digestive
vacuole via the parasitophorous vacuole [46]. Thus, digestive vacuole hydrolases may be
first secreted into the parasitophorous vacuole or host erythrocyte cytoplasm and then
subsequently endocytosed. Falcipains, on the other hand, are first trafficked to the parasite
plasma membrane en route to the digestive vacuole [50]. Falcipains also activate the plas-
mepsins [51]. It is not clear how the proton pumps are targeted to the digestive vacuole, but
presumably they are trafficked to specific sites on the parasite plasma membrane. The sites
of endocytosis on the parasite plasma membrane, including the cytostome, may possibly
be enriched for the proton pumps and some of the hydrolytic enzymes. This implies that
digestive vacuoles are generated de novo as part of endocytosis, which is consistent with
the endocytic vesicles directly functioning as individual digestive vacuoles [19].

4. Hemoglobin Catabolism

The Plasmodium digestive vacuole contains numerous endo- and exo-proteases, and
hemoglobin is broken down by the sequential action of these proteases in an ordered
process [52]. In addition, gene knockout studies have demonstrated that no single food
vacuole protease is essential, indicating functional redundancy [53]. The various endo-
proteases participate in an ordered digestion of hemoglobin into large peptides, medium
peptides, and small peptides (Figure 2). The initial cleavage likely occurs between residues
33 (phenylalanine) and 34 (leucine) of the α-subunit by a plasmepsin [54]. This proteolytic
site is called the hinge region and is a highly conserved domain responsible for holding the
hemoglobin tetramer together. Cleavage at this site likely results in an unraveling of the
hemoglobin molecule and the exposure of additional proteolytic sites which leads to further
degradation to medium-sized peptides by the plasmepsins and falcipains. Degradation
of medium-sized polypeptides is mediated by falcilysins, and small polypeptides are
degraded into dipeptides and amino acids by exopeptidases in digestive vacuole (Table 2).
The final products of these various proteases and peptidases are small peptides consisting
of 5–10 amino acids, dipeptides, and amino acids that are transported to the cytoplasm
of the parasite. Neutral aminopeptidases in parasite cytoplasm convert the peptides and
dipeptides into amino acids [55].

It is generally presumed that hemoglobin is digested to supply amino acids for the
synthesis of parasite proteins. However, less than one-fifth of the amino acids obtained
from the digestion of hemoglobin are incorporated into parasite proteins [56], and large
amounts of amino acids are effluxed into the host erythrocyte [57]. Possible explanations
for this discrepancy between the amount of hemoglobin ingested and amino acid utilization
might be explained as a means to meet the space requirements of the growing parasite [58].



Pathogens 2024, 13, 182 6 of 14

In addition, digestion of hemoglobin may help balance the intracellular osmotic pressure
and thereby prevent premature lysis of the host erythrocyte [59]. Presumably, amino acids
could also serve as an energy source through glucogenesis.
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4.1. Digestive Vacuole Membrane Transporters

Amino acids and peptides produced by the catabolism of hemoglobin are transported
from the digestive vacuole to the parasite cytoplasm. The chloroquine resistant trans-
porter (CRT) likely plays a major role in this transport, in addition to its role in drug
resistance and chloroquine efflux [60]. CRT is a member of the drug/metabolite transporter
superfamily [61] and was originally identified via a cross between drug-resistant and drug-
sensitive parasites [62]. The natural function of CRT is likely the transport of peptides
consisting of 4–11 amino acids from digestive vacuole to parasite cytoplasm [63]. CRT
may be a proton symporter that utilizes the proton-motive force of the digestive vacuole to
move solutes across the membrane [64].

A predicted amino acid transporter, called PfAAT1, has also been localized to the
P. falciparum digestive vacuole [65]. Its role in amino acid transport has not yet been
demonstrated, but a mutation in PfAAT1 S258L does potentiate chloroquine resistance [66].
Initially, there was a lot of focus on a member of the ATP-binding cassette (ABC) superfamily
of transporters, known as either P-glycoprotein homolog-1 or multiple drug resistance-
1 (MDR-1), as the peptide/amino acid transporter. However, this ABC transporter is
now known to import material, including possibly drugs, from the cytoplasm into the
digestive vacuole [67].

4.2. Heme Detoxification

The proteolysis of hemoglobin results in the release of heme and this release of heme
is associated with the oxidation of iron from the ferrous state (Fe2+) to the ferric state
(Fe3+). Ferric iron is a pro-oxidant and catalyzes the production of reactive oxygen species
(ROS), such as superoxide and hydrogen peroxide [68]. Ferryl iron (Fe4+) has also been
suggested to be involved in the production of ROS [69]. These ROS increase oxidative stress
including the alkylation of proteins and the peroxidation of lipids. In addition, hematin
has detergent-like properties, and combined with lipid peroxidation, can lyse biological
membranes [70]. Since the concentration of hemoglobin is in the millimolar range and
approximately 70% of the hemoglobin is catabolized, high levels of toxic heme molecules
are released during the digestion of hemoglobin. Heme is detoxified through a poorly
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understood biocrystallization process that results in the formation of insoluble hemozoin
which is no longer toxic [71,72].

Hemoglobin crystals appear in the trophozoite stage initially in the small individual
digestive vacuoles and then later as large hemozoin crystals after the coalescence of the
digestive vacuoles. Hemozoin crystals are also called the malarial pigment and this pigment
was instrumental in the discovery of the malaria parasite [73]. During schizogony and
merozoite formation, the hemozoin-containing digestive vacuole is segregated into a
membrane-bound residual body that is released with the rupture of the infected erythrocyte.
Released hemozoin may contribute to severe disease [74,75] and the inflammatory response
associated with malaria [76].

4.3. Hemozoin Formation

Hematin forms dimers known as β-hematin, which is chemically equivalent to hemo-
zoin [77]. It has been suggested that biocrystallization could occur spontaneously under
conditions of low pH and high hematin concentration [78]. However, in addition to the
acidic environment of the digestive vacuole, it appears that lipids and the digestive vac-
uole membrane are crucial for the formation of hemozoin crystals [79–83]. It has been
suggested that the digestive vacuole membrane may serve as an interface for the nucleation
of hemozoin crystals [72].

The exact mechanism of hemozoin formation is unknown and proteins may also
be involved. A Plasmodium lipocalin-like protein has been implicated in the function of
the digestive vacuole [84,85]. Lipocalins bind to small hydrophobic molecules and are
often involved in lipid transport or oxidative stress responses. Plasmodium lipocalin is
localized to both the parasitophorous vacuole and the digestive vacuole. Modulation of
Plasmodium lipocalin levels suppress hemozoin formation [85] and increase susceptibility to
ROS [84]. Parasite proteins previously implicated in hemozoin formation include histidine-
rich proteins [86] and heme detoxification protein [87]. However, histidine-rich proteins are
primarily localized to the host erythrocyte cytoplasm and parasites deficient in histidine-
rich proteins still produce hemozoin. Similarly, heme detoxification protein is localized to
the parasite cytoplasm and denaturing this protein does not abrogate hemozoin formation.
Therefore, the role of histidine-rich protein and heme detoxification protein in hemozoin
formation is questionable.

5. Anti-Malarials and the Digestive Vacuole

Many highly efficacious anti-malarial drugs target the digestive vacuole [5,88], and
especially notable are 4-aminoquinolines, such as chloroquine, and artemisinin derivatives.
Chloroquine has long been known to accumulate to high levels in the digestive vacuole.
This accumulation may be due in part to the weak base properties of chloroquine and its
subsequent protonation in the acidic digestive vacuole. The accumulation of chloroquine
in the digestive vacuole may also be due to its binding to hemozoin [89,90]. Regardless of
the mechanism(s), chloroquine is concentrated to millimolar levels within the digestive
vacuole [91] and interferes with hemozoin formation [92,93]. Specifically, chloroquine may
bind to the hemozoin crystal and thereby prevent the further addition of β-hematin dimers
to the growing crystal [94]. This drug-mediated failure to detoxify heme increases oxidative
stress, lyses membranes, and leads to parasite death.

Artemisinins are potent prodrugs that require activation [95]. The first step in this
activation is the rapid and non-specific conversion of artemisinin derivatives to dihy-
droartemisinin. The second step is parasite specific and requires hemoglobin uptake and
digestion [96]. Free heme in the digestive vacuole interacts with artemisinin and this inter-
action generates free radicals [97]. The activated artemisinin alkylates heme and prevents it
from forming hemozoin crystals [98]. As with the 4-aminoquinolines, artemisinin deriva-
tives also block heme detoxification and increase oxidative stress in the parasite resulting
in parasite death. Heme-mediated activation of artemisinin also results in widespread
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parasite protein alkylation [99]. This would contribute to parasite death by inhibiting key
proteins in essential parasite pathways.

6. Other Intraerythrocytic Protozoan Parasites

Intraerythrocytic protozoa are only found in the Apicomplexa [100]. The four groups
of apicomplexans exhibiting intraerythrocytic stages are haemosporidians, piroplasmids,
haemogregarines, and haemococcidians. Haemosporidians and piroplasmids form a
group called hematozoa and haemogregarines and haemococcidia are within the coc-
cidian clade—a sister group of the hematozoans. By far, most of our knowledge on feeding
mechanisms within the infected erythrocyte is from mammalian malaria parasites which
are members of the haemosporidian clade. Several haemosporidians produce hemozoin
and the presence of hemozoin is used as a taxonomic tool within this group [101]. The abil-
ity to form hemozoin emerged only once and is found in the Plasmodium and Haemoproteus
genera (Figure 3). This emergence of hemozoin formation may have occurred between
57 and 69 million years ago [102]. There are no reported losses of hemozoin production
within this clade indicating it is a robust biological advantage. Hemozoin formation is
not found in the piroplasmids, haemogregarines, or haemococcidians, suggesting that
these species do not extensively digest hemoglobin or have other mechanisms to detox-
ify heme. This gain of hemozoin formation in just one clade of erythrocyte-infecting
protozoa strongly suggests a genetic basis for hemozoin formation. Identification of the
gene(s) involved in hemozoin formation may provide additional therapeutic targets for the
treatment of malaria.

Pathogens 2024, 13, x FOR PEER REVIEW 8 of 15 
 

 

dihydroartemisinin. The second step is parasite specific and requires hemoglobin uptake 
and digestion [96]. Free heme in the digestive vacuole interacts with artemisinin and this 
interaction generates free radicals [97]. The activated artemisinin alkylates heme and pre-
vents it from forming hemozoin crystals [98]. As with the 4-aminoquinolines, artemisinin 
derivatives also block heme detoxification and increase oxidative stress in the parasite re-
sulting in parasite death. Heme-mediated activation of artemisinin also results in wide-
spread parasite protein alkylation [99]. This would contribute to parasite death by inhib-
iting key proteins in essential parasite pathways. 

6. Other Intraerythrocytic Protozoan Parasites 
Intraerythrocytic protozoa are only found in the Apicomplexa [100]. The four groups 

of apicomplexans exhibiting intraerythrocytic stages are haemosporidians, piroplasmids, 
haemogregarines, and haemococcidians. Haemosporidians and piroplasmids form a 
group called hematozoa and haemogregarines and haemococcidia are within the coccid-
ian clade — a sister group of the hematozoans. By far, most of our knowledge on feeding 
mechanisms within the infected erythrocyte is from mammalian malaria parasites which 
are members of the haemosporidian clade. Several haemosporidians produce hemozoin 
and the presence of hemozoin is used as a taxonomic tool within this group [101]. The 
ability to form hemozoin emerged only once and is found in the Plasmodium and Haemo-
proteus genera (Figure 3). This emergence of hemozoin formation may have occurred be-
tween 57 and 69 million years ago [102]. There are no reported losses of hemozoin pro-
duction within this clade indicating it is a robust biological advantage. Hemozoin for-
mation is not found in the piroplasmids, haemogregarines, or haemococcidians, suggest-
ing that these species do not extensively digest hemoglobin or have other mechanisms to 
detoxify heme. This gain of hemozoin formation in just one clade of erythrocyte-infecting 
protozoa strongly suggests a genetic basis for hemozoin formation. Identification of the 
gene(s) involved in hemozoin formation may provide additional therapeutic targets for 
the treatment of malaria. 

 
Figure 3. Phylogenetic relationships among the hematozoans and the gain of hemozoin formation. 
Hematozoans are characterized by one stage of the life cycle involving the infection of erythrocytes. 
The phylogenetic tree shows probable branching order of major genera [101,103]. Branch lengths do 
not depict evolutionary distances and branches do not depict complexity of the genera. Hepatocystis 
may branch within the mammalian Plasmodium clade [1]. The filled circle shows the gain of hemo-
zoin formation, and the filled square shows the gain of schizogony during the erythrocytic stage. 
Erythrocytic schizogony is lost in Hepatocystis (open square). 

Figure 3. Phylogenetic relationships among the hematozoans and the gain of hemozoin formation.
Hematozoans are characterized by one stage of the life cycle involving the infection of erythrocytes.
The phylogenetic tree shows probable branching order of major genera [101,103]. Branch lengths do
not depict evolutionary distances and branches do not depict complexity of the genera. Hepatocystis
may branch within the mammalian Plasmodium clade [1]. The filled circle shows the gain of hemo-
zoin formation, and the filled square shows the gain of schizogony during the erythrocytic stage.
Erythrocytic schizogony is lost in Hepatocystis (open square).

Although probably not related to hemozoin formation, schizogony during the erythro-
cytic stage emerged after hemozoin production and is used to distinguish Plasmodium from
Haemoproteus [101]. Erythrocytic stage schizogony has been lost in Hepatocystis.

Due to their veterinarian significance, some work has been carried out on the piroplas-
mids. However, most of this work has been limited to ultrastructural studies and feeding
mechanisms of the piroplasmids have not been extensively characterized [104]. It has been
suggested that Babesia takes up hemoglobin via endocytosis [105]. However, no digestive
vacuole has been described [106] and the parasite does not have cytostomes [105,106]. Cy-
tostomes and digestive vacuoles have been reported in intraerythrocytic Theileria [107,108],
and there may be a connecting channel between the Theileria’s cytostome and its diges-
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tive vacuole [108]. It has been suggested that feeding in Babesia is mediated by a special
organelle composed of tightly coiled double membranes located partly inside and partly
outside the parasite [109]. It is presumed that extracellular digestion of host cytoplasm
takes place through this organelle, and thus, feeding relies heavily on osmotrophy. In
this regard, it is speculated that Babesia may secrete proteases into host erythrocyte cyto-
plasm [110]. Other than falcipain-2, Babesia does not have orthologs of the hemoglobin
degrading proteases of Plasmodium [104]. Babesia does not produce hemozoin [111], and
expectedly, chloroquine does not work against Babesia nor Theileria [112]. A tubule between
parasite and host erythrocyte membrane is reported in Babesia [113] and Theileria [114]. It is
not clear if this tubule functions in direct feeding from the host plasma, or if the tubule is
involved in excretion of material from the parasite and infected erythrocyte.

7. Summary

The malaria parasite has adapted to life within the erythrocyte by evolving an efficient
mechanism to ingest the host cell hemoglobin. The first step of this hemoglobin inges-
tion is the endocytosis of the host erythrocyte cytoplasm. A few proteins known to be
involved in endocytosis have been identified in Plasmodium, but the exact mechanism(s)
are not known. Interestingly, clathrin does not appear to be involved in endocytosis even
though the adapter protein complex does appear to be involved. One notable unique
feature is the formation of double-membrane vesicles that include the parasitophorous
vacuolar membrane.

A digestive vacuole is formed from the endocytic vesicles and hemoglobin is broken
down into amino acids and peptides. This Plasmodium digestive vacuole is a specialized
lysosome that efficiently degrades hemoglobin and detoxifies heme (Figure 4). Hemoglobin
degradation involves the sequential action of several proteases that convert globin into
peptides, dipeptides, and amino acids. These peptides and amino acids are exported into
the cytoplasm of the parasite with transporters on the digestive vacuole membrane. Heme
is primarily detoxified through the formation of hemozoin via a biocrystallization process.
The exact mechanisms of this biocrystallization are not known, but this process evolved
within the haemosporidian clade. This biocrystallization is critical for parasite survival
since anti-malarial drugs that interfere with this process are highly efficacious.
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