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Abstract: The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which
plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a
nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD
regulates a wide plethora of genes and physiologic functions through the formation of the complex
Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to
microbial infection has been of interest to many researchers. This is particularly important in oral
health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable
of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory
roles of Vit D in the bone degenerative oral disease, periodontitis.

Keywords: gingivitis; periodontitis; immunology; vitamin D

1. Introduction
1.1. Periodontitis and the Host Inflammatory Response

Periodontitis affects nearly half of the population over age 30 in the US [1]. The
periodontium, consisting of gingiva, periodontal ligament and alveolar bone, provides the
tooth-supporting apparatus. Periodontitis lesions are thought to start as gingivitis lesions,
wherein the inflammation is confined to the gingival tissue without destruction of the
underlying soft and hard tissue. Gingivitis is also characterized by the presence of intact
clinical attachment. Clinical attachment loss occurs when the gingival and periodontal
fibers are destroyed. As a consequence, the integrity of the junctional epithelium becomes
disrupted, and the gingival pocket epithelium migrate apically towards the root apex,
resulting in deepening of the periodontal pocket. Even though there are histopathological
similarities between gingivitis and periodontal disease, it is still unknown how gingivitis
progresses to periodontal disease [2,3]. Previously, periodontitis was classified into chronic
and aggressive periodontitis, according to the old classification system of periodontal
disease [4]. Currently, according to the consensus report of the 2017 World Workshop
on the Classification of Periodontal and Peri-Implant Diseases and Conditions, there is
no evidence that supports the distinction between chronic and aggressive periodontitis.
Current periodontitis classification is based on stages that are defined by severity (level of
interdental clinical attachment loss, radiographic bone loss and tooth loss) and grades that
demonstrate the biologic characteristics of the disease (evidence of rapid progression, risk
factors, anticipated response to therapy, and effects on systemic health) [5]. Given the high
complexity and the broad aspects of the PD inflammatory response, this review will focus
on the influence of Vit D on a specific immune event, that is, the activation of immature
DCs through their pathogen-associated molecular patterns receptors, and the subsequent
antigen presentation to naïve CD4+ T cells which leads to different Th phenotypes.

The periodontal environment provides a rich niche for commensal and pathogenic oral
microbes to live and grow within. The periodontal microenvironment in periodontal health
is characterized by a balanced immuno-inflammatory state that is capable of maintaining
host–microbe homeostasis. In addition, the microbial composition of dental plaque biofilm
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is in a state of balance and stability, comprising mainly symbiotic biofilm of Gram-positive
aerobic bacteria. However, the progression from gingivitis to periodontitis is associated
with a dramatic shift in the microbial community structure, mainly comprising dysbiotic
and anaerobic microbial biofilm [6]. Some of the dysbiotic microbial biofilm implicated in
the development of severe forms of periodontal disease include (Porphyromonas gingivalis
(P. gingivalis), Treponema denticola (T. denticola) and Tannerella forsythia (T. forsythia)) [7].
Furthermore, in periodontitis, the immunoregulatory mechanisms are disrupted, leading
to dysregulation of the host immune response. Periodontitis starts with the accumulation
of periodontal pathogen in the dental plaque. The innate immune system drives the initial
host response to the bacteria of the plaque biofilm as a first line of defense through its
basic mechanisms: anatomical and physical barriers, secretory molecules, and cellular
components such as PMNs, macrophages and dendritic cells (DCs). Tissue residents,
Langerhans cells (LCs), also play an immune-modulatory role in periodontitis. In an
experimental model of periodontitis in mice, it has been reported that mucosal LCs induced
differentiation of P. gingivalis-specific Th17 [8].

The pathogenesis of periodontitis (PD) has been long attributed to excessive gingival
influx of polymorphonuclear leukocytes (PMNs). PMNs encounter oral biofilm, release
MMPs, IL-6 and other cytokines that promote bone loss [9–11]. Over the years, studies of
PD lesion have indicated the involvement of other immune cells, including tissue resident
dendritic cells, B cells, plasma cells, M1 macrophages [12,13] and CD4+ T cells [14]. Particu-
lar attention is drawn to DCs, which bridge the innate and adaptive immunity, and direct T
cell effector responses. Immature DCs (iDCs) infiltrate gingival tissues and other peripheral
sites in PD [15,16], capturing subgingival oral microbes such as P. gingivalis [15,16] and Fu-
sobacterium nucleatum [17], which can regulate DC maturation and migration to secondary
lymphoid organ (SLO) [15,18–20]. Persistent local inflammatory signals promote unre-
strained activation of DC maturation in peripheral tissues in situ, as in Crohn’s disease [21]
arthritis [22] and periodontitis [14,23–25]. Intensive immune clusters of matured CD83+
DCs with CD4+ T cells are found in lamina propria of PD patients [14,23–25], evocative of
ectopic lymphoid foci [26,27]. DCs can shape Th17/Treg balance towards Th17 to eradicate
invading bacteria, but Th17/Treg imbalance promotes osteoclast-mediated alveolar bone
loss [28,29]. Immune-regulatory DCs can also induce FoxP3+ Tregs, which inhibit Th17
responses and attenuate experimental PD [30,31].

DCs are professional antigen-presenting cells (APCs) that play an important role in
both innate and adaptive immune responses [32]. Unlike other leukocytes, DCs lack the
classic leukocyte lineage markers (e.g., CD3, CD14, CD15, CD19, CD20, and CD56), while ex-
pressing high levels of major histocompatibility complex (MHC) class II molecules [33]. DCs
are generally divided into plasmacytoid (CD11c−CD123+) and myeloid (CD11c+CD123−)
subpopulations [34–36]. Myeloid DCs upregulate the expression level of the costimulatory
molecules CD83, CD208 and CCR7 upon maturation, and are involved in cellular immu-
nity against intracellular pathogens. On the other hand, plasmacytoid DCs produce large
amounts of type-I interferon; hence, it is believed to play a crucial role in host immunity
against viral infection [37].

Since the discovery of DCs in the 1970s [38,39], they were considered as immune-
stimulatory cells until their tolerogenic function was observed in the 1990s [40,41]. Imma-
ture DCs capture antigens in the peripheral tissues, phagocytose them, and then process
them for antigen presentation to naïve T cells in MHC-II molecules. Upon pathogen recog-
nition, DCs are exposed to pro-inflammatory signals that lead to their maturation and
the upregulation of their expression of MHC-II, co-stimulatory (e.g., CD40, CD80, CD86,
and CD83) lymph node-homing migratory chemokine receptors, and the inflammatory
cytokines such as IL-12. At the same time, they down-regulate phagocytic mediators such
as C-type lectins. After that, DCs migrate to regional lymph nodes, where they activate
effector T-cell type (e.g., Th1, Th17) responses via presentation of their processed antigen
peptides to T-cells [42]. DCs have been reported in human studies to infiltrate the oral
lamina propria in PD with CD83+ matured DCs [43]. These mature DCs form immune
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complexes in situ with CD4+ T cells, also called oral lymphoid foci [14,43]. These foci are
similar to ectopic lymphoid follicles found in other chronic inflammatory diseases [44], and
are thought to result from continuous exposure to oral microbes and repeated damage to
the oral mucosal epithelium [45–47]. In the experimental PD model in mice, a destructive
role for in situ-matured DCs in promoting Th17-mediated alveolar bone loss has been docu-
mented [48]. DCs also can maintain the immature status when exposed to internal antigens
(e.g., apoptotic cells) in the absence of strong pro-inflammatory stimulants, resulting in
expressing low levels of MHC-II, co-stimulatory molecules and cytokines, inducing T-cell
anergy [49]. On the other hand, using a ligature PD model in mice, recent studies have re-
ported that Tregs may become phenotypically unstable and lose their anti-osteoclastogenic
phenotype [50]. In addition, DCs exposed to TGF-β1 and IL-10 possess impaired matu-
ration, and promote regulatory T-cell (Tregs) responses, while inhibiting Th17 effectors.
Furthermore, cytokines loaded into DC-derived exosomes have been shown to inhibit bone
loss in experimental PD in mice [48].

In their immature state, DCs patrol tissues and blood circulation. They are capable of
capturing different pathogens through the recognition of pathogen-associated molecular
patterns (PAMPs), such as lipopolysaccharide (LPS), fimbriae or flagellin [51]. Immature
DCs identify microbes in the peripheral tissues via a set of extracellular and intracellular
pattern recognition receptors (PRRs). Upon encountering a pathogen, PRRs trigger a proin-
flammatory maturation program by activating intracellular signal transduction pathways,
orchestrating the activation of gene expression and the production of proteins that are
crucial for shaping the innate and the adaptive host immune responses [51]. PRRs can be
classified into Toll-like receptors (TLRs), C-type lectin receptors (CLRs), nucleotide-binding
domain, leucine-rich repeat (LRR)-containing (or NOD-like) receptors (NLRs), RIG-I-like
receptors (RLRs), and AIM2-like receptors (ALRs). These superfamilies of receptors can be
subdivided into two main groups: membrane-bound receptors and unbound intracellular
receptors. The membrane-bound group includes the TLRs and CLRs, and are found at the
cell surface or on endosomal compartments. TLRs and CLRs recognize microbial ligands
in the extracellular environment and within endosomes. On the other hand, the unbound
intracellular receptors include NLRs, RLRs, and ALRs, and are located in the cytoplasm,
where they capture intracellular pathogens [52].

Expansion of blood myeloid CD1c+(BDCA-1) CD209+ DCs is reported in peripheral
blood of periodontitis patients; moreover, this expansion further increases 24 h after me-
chanical debridement (scaling and root planning), which provokes a bacteremia [15]. In
addition, it has been shown that periodontitis patients with existing coronary artery disease
have a further increase in blood myeloid DCs. These DCs circulate in the blood stream
carrying microbial cargo, including P. gingivalis and other periodontal pathogens. More-
over, postmortem analysis of coronary artery samples from periodontitis patients who had
coronary artery disease shows co-localization of CD209 (DC-SIGN), myeloid DCs marker,
with P. gingivalis minor fimbria protein (mfa-1) in the atherosclerotic plaques [15].

Fimbriae are adhesins expressed by periodontal pathogens, such as P. gingivalis, and
constitute a potent virulence factor [53]. Fimbriae bind to other bacteria in the periodontal
microenvironment, facilitating colonization of the oral mucosa and also the invasion of host
cells [54,55]. P. gingivalis has two distinct types of fimbriae, long (major) and short (minor)
fimbriae [56,57], both of which are involved in colonization and adhesion activities [58].
The role of P. gingivalis’s fimbria in the invasion of DCs is notable. While the minor fimbria
targets the C-type lectin DC-SIGN on DCs for invasion and survival within [15,57,59],
the major fimbriae target TLR1/2 on DCs [60]. P. gingivalis minor fimbria ‘dial down’
the signals received from the major fimbriae, inhibiting apoptosis and autophagy of P.
gingivalis-loaded DCs [61]. The exploitation of DC migratory functions by periodontal
pathogens could be responsible for the microbial dissemination from peripheral sites to
systemic circulation. In the periodontium, DCs interact with and activate T-cells in the
lamina propria at the oral lymphoid foci [14].
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It is worth repeating that PMNs are the most dominant leukocytes recruited to the peri-
odontal tissue in periodontitis [62]. Studies have reported that individuals with congenital
deficiencies in PMN function or numbers are more prone to severe forms of periodontitis,
and hence, this suggests that PMNs play a major role in periodontal tissue homeosta-
sis [63,64]. PMNs, when poorly regulated, undergo a process of activation and subsequent
lysis, which leads to the destruction of the periodontium. Even though the initial response
to periodontal pathogens involves recruitment of PMNs, the initiation and regulation of
the adaptive immune response is principally mediated by DCs under the influence of the
proper cytokine microenvironment [65]. DCs are crucial for priming CD4 naïve T cells
to differentiate into Th1, Th2, Th17, follicular helper T (Tfh) and T regulatory cells (Treg).
On the other hand, each T-cell subset has specific immune homeostatic function, and is
responsible for production of cytokines that shape the nature of the host immune response.
Th1 cells are mainly involved in cellular immunity and produce interleukin (IL)-2 and
interferon gamma (IFN-γ) [66]. Th2 cells mediate the humoral response to infection by
the production of IL-4, IL-5, and IL-13, which, in turn, play a role in the production of
pathogen-specific antibodies via the activation of B cells [67]. Th17 cells can affect the
periodontal environment by increasing PMN recruitment to the diseased site [68]. On the
other hand, Treg cells down-regulate T-cell response and reduce the pro-inflammatory host
response [30]. Ultimately, Th17 cells promote alveolar bone loss via activating an excessive
pro-inflammatory response and tipping the OPG/RANKL ratio, while Treg cells results in
the reduction in alveolar bone loss [69].

1.2. Vitamin D and the Immune Modulatory Effects

Vitamin D (Vit D) are a group of fat-soluble hormones that play a well-known role in
bone development via increasing the absorption of calcium. Vitamin D3 (cholecalciferol) is
generated in the skin through photochemical transformation of 7-derydrocholesterol after
exposure to ultraviolet light, while Vitamin D2 (Ergocalciferol) is present in some foods
and dietary supplements [70]. Even though the structural difference in these two forms
does not affect the biological activity of their active metabolites, it alters their metabolism
and binding to the carrier protein Vit D binding protein (DBP), a protein that transports
Vit D metabolites in the blood [71]. It is noteworthy that less than 1% of Vit D circulates
in the free form, whereas around 85–90% circulates bound to DBP, and 10–15% bound
to albumin [72,73]. Both forms of Vit D are metabolized to 25OHD3 in the liver, and
then undergo hydroxylated in the kidneys by CYP27B1 to produce the active hormone
involved in calcium absorption in the gut, 1,25(OH)2D3 (calcitriol) [74,75]. In addition,
1,25(OH)2D has also been shown to be produced by different subsets of human monocyte-
derived macrophages, and that Vit D metabolism is a macrophage polarization-dependent
process [76]. Vit D deficiency is defined as having a 25-hydroxyvitamin D level equal to or
less than 20 ng/mL, and insufficiency is a concentration of 21 to 29 ng/mL [77]. Although
it is difficult for many to attain adequate vit D levels from diet alone, most people achieve
sufficient amounts via skin exposure to sunlight [78].

Studies have shed light on the multi-faceted immune regulatory roles of Vit D, and
its profound anti-inflammatory effects [79]. Vit D deficiency, for example, increases the
incidence and severity of chronic inflammation in patients with periodontitis [80], cardio-
vascular disease [81,82], inflammatory bowel disease [83], asthma [84], chronic obstructive
pulmonary disease (COPD) [85], and autoimmune diseases [86]. Vit D supplementation
in those deficient patients has been shown to reduce the severity of chronic inflammatory
diseases and levels of pro-inflammatory mediators [86,87].

At the cellular level, Vit D exerts its actions via binding to its receptor, Vit D receptor
(VDR), a member of the nuclear receptor superfamily which are ligand-activated tran-
scription regulator molecules [88]. Vit D shapes the host immune response during the
onset of inflammation and infection. Following vaccination, the pro-inflammatory cytokine
responses of immune cells that express VDR, such as monocytes, macrophages, DCs, and
T-cells, are moderated by Vit D [89,90]. Inflammasomes are a group of large multiprotein
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complexes assembled around several innate immune proteins in response to recognition
of pathogens, leading to the direct activation of caspase-1, which subsequently induces
cleavage and unconventional secretion of active IL-1β and IL-18 [91]. Notably, the reduction
in IL-1β induced by Vit D through the inhibitory effect of VDR on NALP3-inflammasome
activation [92] results in the alleviation of PD [93]. Furthermore, low Vit D levels are associ-
ated with increased incidence of autoimmune diseases such as rheumatoid arthritis (RA),
multiple sclerosis (MS), and systemic lupus erythematosus (SLE) [94]. The influence of Vit
D and VDR on T-cell function, differentiation, and homeostasis has been reported in several
studies. In VDR-knockout mice (VDR-KO), VDR has been shown to be non-essential for the
development of CD4+, CD8+, and CD4+ FOXP3+ T-cells, though its absence contributes to
the development of autoimmune diseases [95–97].

VDR expression plays a crucial role in inducing antimicrobial innate immune response
to certain pathogens. The expression levels of VDR and CYP27B1 upregulate as a result of
the activation of TLR1/2 receptor, leading to the production of cathelicidin. In turn, the
increase in CYP27B1 results in the increased production of 1,25(OH)2D3, further leading to
the activation of VDR, resulting in the increased transcription of target genes located in
the regulatory regions of 1,25(OH)2D3 via vitamin D response elements (VDREs) [98–100].
Furthermore, 1,25(OH)2D3 regulates the TLR signaling pathway by stimulating SOCS1,
providing a negative regulatory mechanism to the innate immune response [101]. In
addition, both forms of vitamin D, 1,25(OH)2D3 and 25(OH)D3, have been shown to
inhibit LPS-induced p38, IL-6, and TNFα production [102]. Moreover, 1,25(OH)2D3 can
inhibit the activation of NF-κB, resulting in a reduction in the expression of MCP-1 and IL-
6 [103], thereby leading to decreased recruitment of monocytes/macrophages and overall
inflammation (Figure 1).
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Figure 1. Schematic representation of the primary mechanisms through which vitamin D regulates
the innate immune response.

DCs are the most potent antigen-presenting cells for CD4 naïve T-cells due to their high
expression of major histocompatibility complex-II (MHC-II) and co-stimulatory molecules.
Several studies have unraveled the influence of 1,25(OH)2D3 on the homeostatic func-
tions of DCs by shaping their tolerogenic characteristics, inhibiting the differentiation,
maturation, and immunostimulatory capacity of human DC, in a VDR-dependent man-
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ner [104,105]. In addition, 1,25(OH)2D3 induces tolerogenic properties of DCs via de-
creasing the surface expression of MHC-II, and costimulatory and maturation markers
such as CD40, CD80, and CD86, upregulating inhibitory immunoglobulin-like transcript
3 molecules, and enhancing the secretion of chemokine (C–C motif) ligand 22 and IL-
10 [104,106]. The induction of DC tolerogenic phenotype results in the suppression of
the inflammatory response of T-cells through inducing a regulatory T-cell response [106].
Studies have shown that the relationship between Vit D and T-cell response is bi-directional.
1,25(OH)2D3 has been reported to only inhibit the production of proinflammatory cytokines,
including IFNγ, IL-17, and IL-21 in CD4+ CD25− T lymphocytes, but it also promotes the
development of CD4+ FOXP3+ regulatory T-cells [107]. On the other hand, T-cell responses
can differentially control Vit D metabolism. While IFNγ of the T-helper (Th)-1 effector
response results in the upregulation of CYP27B1, leading to the enhanced bioconversion of
25(OH)D3 to 1,25(OH)2D3, IL-4 production in the Th-2 response results in the catabolism of
25(OH)D3 to the inactive metabolite 24,25(OH)2D3 [108]. Interestingly, naïve T cells do not
express VDR, but VDR expression is induced by TCR signaling via the activation of the
alternative MAP kinase p38 pathway [109]. Although the results of these studies suggest
a potential role for Vit D on both the innate and adaptive host immune response, the
underlying mechanism by which Vit D partakes in this process is still unknown (Figure 2).
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1.3. The Influence of Vit D on the Immune Response in the Periodontium

Vit D plays several essential roles in the periodontium, including modulating proin-
flammatory cytokine production, stimulating the secretion of antimicrobial peptides, and
activating hydrogen peroxide release in monocytes [100,110,111]. The innate immune
response against periodontal pathogens includes secretion of antimicrobial peptides. An-
timicrobial peptides including β-defensins and cathelicidin are crucial for the naturaliza-
tion of bacterial endotoxins and lipopolysaccharides [112,113]. The interaction between
pathogen-associated molecular patterns (PAMPs) and TLR1/2 of monocytes, macrophages
and keratinocytes in the periodontium has been shown to induce the expression of VDR and
the production of the active form of Vit D, 1,25(OH)2D by these cells. Subsequently, the sig-
nal transduction of the 1,25(OH)2D/VDR axis induces the expression of genes encoding the
β-defensins and cathelicidin [114–116], which provides protection against bacterial biofilm
that is crucial for the development of bacterial plaque-induced periodontal disease [117].

Alveolar bone loss in periodontitis is preceded by osteoclast activation or osteoclasto-
genesis. This is induced by the receptor activator of nuclear factor kappa-B ligand (RANKL)
binding to RANKL receptor on osteoclasts, thereby activating them [118]. IL-17 cytokine
production by Th-17 T-cells increases in periodontal disease. In turn, Th17-derived IL-17



Pathogens 2023, 12, 1180 7 of 14

and TNF-α directly or indirectly promote the expression of RANKL. In addition, LPS release
by anaerobic periodontal pathogens stimulates TLRs signaling, which upregulates the ex-
pression of RANKL by host cells such as fibroblasts, osteoblasts, T- cells and B-cells, thereby
increasing the differentiation and activation of osteoclasts. IL-17 can also upregulate the
expression of RANKL by osteoblasts and CD4+ T cells. PMNs, macrophages, and Th1
cells also can directly promote osteoclastogenesis by secretion of TNF-α, which together
contribute to periodontal alveolar bone resorption [119]. Calcitriol is the biologically ac-
tive hormone responsible for regulating the systemic calcium and phosphate homeostasis.
Hence, it is not only required for the mineralization of cartilage and bone matrix, but
it also plays a crucial role in the regulation of gene expression and differentiation [120].
Interestingly, a recent study in rats showed that Vit D deficiency negatively affects the
levels of serum RANKL and RANKL/OPG ratio [121]. Cyp27B1 plays a role in the pro-
duction of calcitriol form vitamin D 25OHD3. Animal studies have reported that deletion
of the Cyp27B1 gene results in increased alveolar bone loss and increased production
of pro-inflammatory cytokines, including interleukin-1β (IL1-β), tumor necrosis factor-α
(TNF-α), and matrix metalloproteinases 3 and 6 (MMP-3 and MMP-8) [122]. In addition,
a study has highlighted the role of calcitriol in the regulation of periodontal health using
ligature-induced periodontitis in CYP27B1 knockout mice [123]. While CYP27B1 knockout
mice show increased alveolar bone loss and gingival inflammation relative to control mice,
exogenous supplementation of calcitriol reverses the effect of CYP27B1 gene deletion and
restores alveolar bone loss and gingival inflammation [123]. In addition to decreasing
alveolar bone loss, calcitriol intervention increases the anti-inflammatory cytokines IL-4
and IL-10 in LPS-induced periodontitis in rats [124]. Moreover, Vit D has been shown to
reduce alveolar bone loss and modulate the AhR/NF-κB/NLRP3 inflammasome pathway
in mice infected by P. gingivalis [93]. Comparing 10 weeks to 12 months 1α(OH)ase-/-

mice and wild-type littermates, Gong et al. have shown increased bone loss, NF-κB p65
and CD3 positive cells, gene expression levels of IL-1β, TNF-α, MMP-3 and -8, and de-
creased number of osteoblasts in 1α(OH)ase−/− group compared with the wild type in an
age-dependent manner [122].

Vit D exerts a potent antimicrobial effect against periodontal pathogens by directly in-
hibiting the growth of the bacteria [125] and LPS-induced inflammation [126] or facilitating
the production of antimicrobial peptides such as β-defensins and cathelicidins [100,111,127].
Calthelicidin LL-37 has a potent antimicrobial activity against both Gram-positive and
Gram-negative bacteria [128,129]. An in vitro study by Yang et al. on keratinocytes showed
that LL-37 promotes autophagy in keratinocytes, and reduces the number of live P. gin-
givalis [130]. Calthelicidin affects multiple aspects of the innate host immune response,
including chemotaxis, cytokines production, vascular permeability and neutralization of
bacterial endotoxins [131]. Furthermore, calcitriol upregulates cathelicidin hCAP-18 gene
expression [100]. Another in vitro study on epithelial cells has shown that calcitriol also
significantly increases the production of calthelicidin LL-37 mRNA, CD14 expression, and
triggers receptor expressed on myeloid cells-1 (TREM-1) in human gingival epithelial cells,
suggesting that calcitriol supplementation enhances the innate immune response in the
periodontium [112]. In addition, a recent study on human gingival fibroblasts has shown
that Vit D exerts an anti-inflammaging effect and reduces oxidative stress through the
activation of Nrf2 signaling pathway [132].

Clinically, cross-sectional studies have reported that normal Vit D serum levels is
associated with stable periodontium, which might confer some resistance to periodontal
disease progression. The positive role of Vit D in maintaining calcium and bone homeostasis
must be noted, which in turn can increase the mineral density of alveolar bone, and thus
may reduce alveolar bone resorption [74,133–135]. Furthermore, the negative role of 1,25
dihydroxyvitamin D/VDR signaling pathway on the transcription of genes encoding
pro-inflammatory cytokines can also suppress other signaling pathways responsible for
cyclo-oxygenase-2 (COX-2) and prostaglandin pathways, and can inhibit the production of
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matrix metalloproteinases (MMPs) that cause destruction of soft and hard tissues in the
periodontium [74,135,136].

Several other studies reported that sufficient Vit D levels may improve periodontal
health [133,137–139], while other reports provide conflicting results on the association of
periodontal health with Vit D levels [140,141]. Cross-sectional analyses of the National
Health and Nutrition Examination Survey (NHANES) database have shown that Vit D
serum levels are negatively associated with periodontal disease and severe clinical attach-
ment loss [142,143]. In addition, it has been shown that not only the increased Vit D levels
reduces gingival inflammation [144], but also, the anti-inflammatory effect of Vit D is dose-
dependent [145]. In addition, prospective and observational studies have demonstrated
that serum Vit D level is negatively associated with tooth loss [135,146].

Vit D regulates autophagy through different signaling pathways [147]. It induces
autophagy activation as an antimicrobial defense mechanism. Vit D transcriptionally pro-
motes the expression of the autophagy protein ATG16, and low levels of Vit D results
in decreased expression of ATG16 [148]. In addition, Vit D increases the expression of
cathelicidin to promote the expression of Beclin1 and ATG5, resulting in autophagy activa-
tion [149]. Our previous clinical study of periodontitis patients demonstrated decreased
expression levels of the autophagy-related proteins ATG5-12 conjugates, ATG16L1 and
ATG7, at the protein and mRNA levels [80]. Interestingly, Vit D supplementation rescued
autophagy in periodontitis patients, and increased the expression of Beclin1, ATG5-12
conjugate, ATG16L1 and ATG7 [80].

2. Conclusions

Vit D is an essential vitamin for overall human health. In addition to its direct effect
on bone metabolism, it has a regulatory role in both the innate and adaptive arms of the
immune system (Figure 3). Its essential function in curbing inflammation responsible
for chronic debilitating diseases such as periodontitis is notable. To better understand
its influence on clinical symptoms and the rate of alveolar bone loss in periodontitis,
randomized controlled trials in Vit D-deficient patients are needed.
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