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Abstract: Several types of phototherapy target human pathogens and Porphyromonas gingivitis (Pg) in
particular. The various approaches can be organized into five different treatment modes sorted by
different power densities, interaction times, effective wavelengths and mechanisms of action. Mode 1:
antimicrobial ultraviolet (aUV); mode 2: antimicrobial blue light (aBL); mode 3: antimicrobial selective
photothermolysis (aSP); mode 4: antimicrobial vaporization; mode 5: antimicrobial photodynamic
therapy (aPDT). This report reviews the literature to identify for each mode (a) the putative molecular
mechanism of action; (b) the effective wavelength range and penetration depth; (c) selectivity;
(d) in vitro outcomes; and (e) clinical trial/study outcomes as these elements apply to Porphyromonas
gingivalis (Pg). The characteristics of each mode influence how each is translated into the clinic.

Keywords: dentistry; laser; periodontal pathogens; photodynamic therapy; photoinactivation;
photothermolysis; ultraviolet therapy

1. Introduction

Growing concerns about pathogen resistance to chemical antimicrobials have led
to a surge of interest in antimicrobial phototherapies that target drug-resistant strains to
which the pathogens may not be able to develop resistance. In support of this possibility,
Amin et al. (2016) [1] reported no evidence of tolerance development of Pseudomonas
aeruginosa (Pa) to ten sublethal cycles of antimicrobial blue light and Sabino et al. (2020) [2]
tested photodynamic inactivation with methylene blue and red light and found aPDT
to be consistently effective against the World Health Organization list of global priority
multidrug-resistant pathogens.

Fueled by this possibility, there has developed an enormous literature on numerous
approaches to antimicrobial phototherapies using a perplexing array of light sources and
wavelengths against scores of different microbial pathogens. In this report, we identify five
unique modes for the photoantisepsis of Pg and define their characteristics to provide a
theoretical framework for understanding this complex topic.

Pg is a pathogenic bacterium primarily associated with periodontal disease. The
clinical applications directed at photo-eradication of Porphyromas gingivalis (Pg) will be
discussed within the context of dentistry. Pg is often chosen as a candidate pathogen for
study because it belongs to a class of bacteria known as black pigmented bacteroides
that are assumed to selectively absorb light energy. Several different approaches to
photoantisepsis can be organized into specific “modes” and we examine Pg as a target
using these different modes.
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1.1. Modes of Antimicrobial Phototherapy

At least five unique modes can be differentiated by photon energy and
putative chromophores.

Mode 1: Antimicrobial ultraviolet (aUV): 200–300 nm, high-energy photons that target
DNA.

Mode 2: Antimicrobial blue light (aBL): 400–440 nm, low-power photochemical reaction
that targets bacterial and fungal endogenous photosensitizers that generate toxic
oxygen radicals.

Mode 3: Antimicrobial selective photothermolysis (aSP): 700–1100 nm, high-power, pho-
tothermal ablation that targets endogenous chromophores.

Mode 4: Antimicrobial vaporization: 1300–11,000 nm, high-power, infrared photons that
target intracellular water.

Mode 5: Antimicrobial photodynamic therapy (aPDT): 405–980 nm, low-power, photo-
chemical reaction that targets a localized photoactive substance.

1.2. Light Can Be Selective

A favorite demonstration of the American physicist and laser pioneer, Dr. Arthur
Schawlow (1921–1999), was to inflate a green balloon inside a clear balloon and pop only
the green one with a monochromatic laser [3]. A survival strategy of Pg is to invade the
cytoplasm of host cells [4,5] (Figure 1). With the same “balloon-in-a-balloon” concept,
one should be able to selectively destroy intracellular Pg leaving the host cell (gingival
fibroblasts [6] or gingival epithelial cells (GECs) [7]) intact. Wasson et al. 2012 [8] reduced
the intracellular bacterial load of Chlamydia trachomatis-infected HeLa cells using 405 nm
blue light.
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Figure 1. Immunohistofluorescence imaged with confocal microscopy of invasion of gingival ep-
ithelial cells (GECs, green) by P. gingivalis (Pg, red). Once the Pg are intracellular, they cluster at the
nuclear membrane (blue). Using light, it may be possible to selectively remove the Pg and leave
the GECs intact. Invasion assay provided by Stephan R. Coats, PhD, University of Washington.
Reproduced with permission from Harris, Jacques and Darveau, [9] 2016, Wiley.

Selectivity is quantified with a concept borrowed from pharmacology, the therapeutic
ratio: the light dose that is toxic to the host divided by the light dose that inhibits or destroys
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the pathology [10]. The larger the ratio, the safer and more effective is the treatment. Several
light-based technologies have evolved as potential alternatives or adjuncts to antimicrobial
drug therapies. Each technology seeks “selectivity,” a dosage window with an acceptable
therapeutic ratio.

There are other advantages to antimicrobial phototherapies. Light provides access
to poorly vascularized sites such as ischemic burns and ulcers and “privileged sites” in
the oral cavity such as calculus and dentin. Light treatment alone leaves no residuals, is
local, not systemic and can eradicate microorganisms instantly or within minutes, while
chemical antibiotics can require days to take effect.

1.3. Watts, Seconds, Joules and Square Centimeters

In order to describe these modes quantitatively, we need to define specific terms.
Power, or the rate that energy is dissipated, is measured in Watts (W). Power density (PD) is
easily understood with the following thought experiment. You are a ten-year-old boy with
a magnifying glass. The sun is out. You see an unsuspecting ant. . . A more quantitative
example is the beam from a 6 W laser focused into a 1 mm spot. In this case, power density
is 6 Watts divided by the area:

6 W/π(0.1/2 cm)2 = 764 W/cm2 (1)

Power delivered over time is energy (Watts × seconds = Joules (J)). Power density de-
livered over time is equal to energy density or light dose (J/cm2). Light dose, or surface irra-
diance, combined with the penetration depth (see below) is analogous to drug dose (mg/kg)
as both describe the concentration of a therapeutic agent in a specific tissue volume.

The same light dose can be delivered with a low-power density over a long period
of time or with a high-power density in a short period of time. Low-power density
irradiation over long time periods drives photochemical reactions. High-power densi-
ties result in the rapid accumulation of heat, and in short time periods, can generate
photothermal damage [11].

1.4. Photon Wavelength and Energy/Biomolecular Target (Chromophore)

Photons are packets of variable amounts of energy that oscillate as they travel through
space. High-energy photons vibrate at a higher frequency than low-energy photons. “Wave-
length” is the distance a photon travels as it vibrates through one cycle. Since all photons
travel at the same speed of light, energy (vibration frequency) determines the wavelength:
high-energy ultraviolet photons have shorter wavelengths and lower-energy infrared pho-
tons have longer wavelengths. For the purpose of this discussion, we divide the wavelength
range of interest, 200–11,000 nm, into seven segments: UVC (100–280 nm), UVB (280–315),
UVA (315–400), blue (400–440), VIS (380–700), NIR (700–1300) and H2O (1200–11,000).
People with normal color vision perceive the color violet in the range 380–450 nm and blue
is perceived for 450–495 nm wavelengths. The term “blue light” in this report encompasses
“violet-blue.”

1.5. Tissue Optics: Absorption and Penetration Depth

When light irradiates tissue, the photons can be reflected, scattered, transmitted
or absorbed. No tissue effect occurs without absorption, which leads to photochemical
reactions or to significant heating. “Chromophores” are biomolecular components that
absorb light energy. Each chromophore has a unique absorption spectrum, a description of
an entity’s ability to absorb a photon as a function of the photon’s wavelength. Absorption
results in the conversion of photon energy into radiant, rotational or vibrational energy.
Chromophores that transfer energy to produce toxic reactive oxygen species (ROS) are
termed “photosensitizers.”

Different chromophores absorb strongly in different wavelength regions. For example,
water absorption dominates the region >1200 nm and these photons are absorbed at the
tissue surface with minimal penetration depth. Also, an optical window exists in tissue in
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the near-infrared (NIR) between about 700 and 1200 nm [12,13] (Figure 2) where there is less
absorption and photons can penetrate more deeply into tissues. This provides the ability
to treat large tissue volumes (the therapeutic window). The depth a specific wavelength
can travel into tissue is quantified as the penetration depth, which is equal to the depth at
which the energy density is attenuated to 1/e (37%) of the surface irradiance (Table 1).
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Figure 2. The therapeutic window is a band of wavelengths where tissue chromophores (H2O, Hb,
HbO2 and melanin) have minimal absorption and a therapeutic light dose has maximum depth of
kill. The horizontal bars show the 700–1100 nm window for P. gingivalis and a narrower window for
Prevotella nigrescens (Pn), which has lower absorption coefficients than Pg (see Section 4.2, Figure 7A).

Table 1. Penetration depth (1/e of incident energy density) for light of different wavelengths (WL)
into fair Caucasian skin from Anderson and Parrish (1981) [12]. Values at 3000 nm and 10,000 nm are
soft tissue penetration depths from Sakamoto et al. (2018) [14].

WL (nm) 250 280 300 350 400 450 500 600 700 800 1000 1200 3000 10,000

Depth (µm) 2 1.5 6 60 90 150 230 550 750 1200 1600 2200 2 20

2. MODE 1: Ultraviolet Inactivation through DNA Damage

A comprehensive account of the origins and evolution of ultraviolet (UV) and violet-blue
light phototherapies is provided by Enwemeka et al. (2021) [15] and Dai et al. (2012) [16]
review of antimicrobial UVC, specifically.

2.1. Mechanism of Action

In the late 19th century, Nobel laureate Dr. Niels Ryberg Finsen developed a method
for using concentrated ultraviolet (UV) light to treat lupus vulgaris [17], which is caused
by Mycobacterium tuberculosis, known now for its intrinsic drug resistance and antibiotic
tolerance. Although the phototherapy became common in clinical practice, it was several
decades before the mechanism of action was well understood. It is now accepted that UVC
radiation is mostly absorbed by nucleic acids in RNA and DNA [18,19] which can generate
toxic photochemical reactions. An immediate effect of DNA-damaging UV is a transient
inhibition of DNA synthesis. Intrinsic repair mechanisms may partially reverse DNA
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damage, known as microbial reactivation [20]. Cytotoxic DNA lesions affect metabolism
and disrupt the ability to reproduce [21]. Peak et al. (1984) [19] obtained action spectra for
lethality in Escherichia coli (Ec) that closely matched the average DNA spectrum of Setlow
(1974) [22]. Figure 3 presents more recent data showing the normalized disinfection rates
for Ec, Pa and Staphylococcus epidermidis (Se) and a portion of the DNA absorbance spectrum
(derived from Matsumoto et al. 2022 [23]). Ultraviolet irradiation in the 200–300 nm
wavelength range is germicidal. This range includes both UVC and UVB wavelengths.
There is a peak in the absorption spectrum of DNA at 254–260 nm that also corresponds to
the greatest bactericidal efficacy [24,25]. Antimicrobial UV wavelengths off-peak require a
higher light dose to achieve the same log reduction.
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Figure 3. Comparison of normalized disinfection rate of E. coli, P. aeruginosa and S. epidermidis
(data points) with the absorption spectrum of DNA (curve). Redrawn with permission from
Matsumoto et al. (2022) [23].

2.2. UVC Dosimetry

Pg has about the same sensitivity to UVC as other oral pathogens, although Henry
et al. (2008) [26] reported that a uvrB-defective mutant strain of Pg was more sensitive to
UVC than the wild-type W83 Pg strain. Near the peak sensitivity, Metzger et al. (2007) [27]
tested endodontic pathogens, Pg, Enterococcus faecalis (Ef), Streptococcus sanguinis (Ss),
Fusobacterium nucleatum (Fn) and Lactobacillus brevis (Lb) to 254 nm light. Pg was 99.9%
eliminated at 2–6 mJ/cm2. Takada et al. (2017) [25] observed with 265 nm light the complete
eradication of Pg, Fn, Ss and Streptococcus mutans (Sm) at 17 mJ/cm2. The power density
was 1.7 mW/cm2. An international standard (DIN EN 14897:2007-09, 2007) for germicidal
efficacy for industrial devices is 40 mJ/cm2 for UVC.

2.3. Penetration Depth

The penetration depth of UVC light in Caucasian skin is only about 2 µm at 250 nm
(Table 1). Metzger et al. (2007) [27] measured a light dose of 2–7 mJ/cm2 for 100% surface
elimination of Pg but also observed “shielding” in biofilms. Only four cells in the light path
were sufficient to block UVC light, requiring a 10× greater light dose to effectively treat a
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multilayer biofilm. They concluded that a germicidal UVC dose required in vivo may be
orders of magnitude higher than that in vitro.

2.4. Selectivity

A phototherapy can be selective if there is an acceptable therapeutic ratio. UVC
treatment advocates the claim that there is selectivity since mammalian cells have repair
mechanisms that limit UV toxicity, although bacteria, including Pg, also have DNA repair
mechanisms [28,29]. Dai et al. (2012) [16] assert that bacteria are more sensitive to UVC
than mammalian cells. They acknowledge that UVC treatment of a tissue volume is not
feasible due to the shallow penetration depth. This means that a therapeutic dose in deep
tissues (more than a few cell widths) may be toxic at the surface. It is also possible that UV
germicidal wavelengths of 222 nm or 310 nm are less toxic to normal cells but have less
germicidal efficacy. It is uncertain if the therapeutic ratio is better.

From above, it can be assumed that the in vitro germicidal dosimetry for Pg inacti-
vation is in the range of 2–17 mJ/cm2 for UVC irradiation. Dai et al. [16] conclude that
a germicidal UVC dose required in vivo may be orders of magnitude higher than that
in vitro, so assume that a minimally effective clinical light dose is about 20 mJ/cm2. The
guideline for UVC exposure by the American Conference of Governmental Industrial Hy-
gienists suggest an exposure limit value of 3 mJ/cm2 [30]. The therapeutic ratio calculated
from these data is 3/20 or 0.15. This therapeutic ratio applies to a specific set of estimated
conditions and should not be generalized to all conditions.

3. MODE 2: Blue Light Inactivation through ROS Generation (aBL) [15,31–34]

Photo-eradication of pathogens with blue light has generated considerable attention
because of the potential germicidal efficacy and safety. The current status is thoroughly
reviewed by Wang et al. (2017) [34] followed by Enwemeka et al. (2021) [15] and Leanse
et al. (2022) [32]. Leanse et al. predict that blue light photoinactivation may become the
“Magic Bullet” to thwart microbe antibiotic resistance.

3.1. Mechanism of Action

The current thinking is that blue light is absorbed by endogenous photosensitiz-
ers, molecular components of a bacterium that absorb photons and transfer the photon
energy to generate toxic reactive oxygen species (ROS) [33,35–41]. The absorption of pho-
ton energy raises the photosensitizer from the ground energy state to an excited state.
From the excited state, the energy is transferred through either a Type I or Type II re-
action to produce free ROS that induce membrane damage and intracellular damage
wherever the photosensitizers are located. Detailed reviews of the photochemical reaction
pathways are provided by Hamblin and Hasan (2004) [42], Enwemeka et al. (2020) [15],
Rapacka-Zdończyk et al. (2021) [43] and Leanse et al. (2022) [32].

The location of photosensitizers is important for effective photoinactivation. Results
from Kato et al. (2018) [39] indicate that photosensitizers located in the outer layer of the
cytoplasmic membrane inactivate membrane function and the strength of photoinactivation
is dependent on their affinity to the cell membrane. This implies that membrane-bound
photosensitizers [36] are a primary target for aBL inactivation. Rapacka-Zdończyk et al.
(2021) [43] describe both gram-positive and gram-negative bacterial membrane structures
that are likely involved in photodynamic inactivation. They also identify intracellular
elements that may likewise be involved in photoinactivation. The reactions leading to
inactivation may be different for different species. Chui et al. (2012) [44] suggest that for
Pg, blue light may not be directly bactericidal but rather inhibits growth by suppressing the
expression of genes concomitant with chromosomal DNA replication and cell division. In
this case, ROS production results in DNA damage [45].

Whole-cell absorbance measured with diffuse reflection spectroscopy (Harris et al. 2016,
Appendix) [9] represents the summed absorbance of all endogenous chromophores. The
high concentration of porphyrins within certain pathogens is reflected in their whole-cell
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absorbance spectrum (Figures 4 and 5). In Figure 4, the porphyrin heme structure “signa-
ture” of a Soret absorption band around 410 nm and Q-band peaks at longer wavelengths
is apparent [46]. The blue-light whole-cell spectrum of Staphylococcus aureus (Sa) from 400
to 430 nm approximates the action spectrum for photoinactivation (red circles) [47], both of
which reflect the Soret-band absorption by endogenous photosensitizers.
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Figure 4. Comparison of diffuse reflection whole-cell spectra of S. aureus with bactericidal data. There
is a high correlation between the blue light “Soret band” absorbance and germicidal efficacy. Adapted
from Harris (2023) [46].

Pg whole-cell absorption also demonstrates a Soret peak at 410 nm with an absorption
coefficient of about 1000 cm−1 (Figure 5) [9]. Colony growth inhibition of Pg at 405–425 nm
is in the range of 0.3–62 J/cm2 [32,36,48–51]. Higher power densities require less time to
achieve the same light dose. Fukui et al. (2008) [48] found higher PD more efficient against
Pg in the range of 30–100 mW/cm2.

Many authors conclude that blue light inactivation does not occur at wavelengths
beyond about 430 nm for most pathogens studied [47–49]. Pg has a peak of 410 nm like
other pathogens tested but also shows strong absorption up to about 650 nm (Figure 5). This
accounts for Pg’s greater sensitivity to ROS stimulation at wavelengths >450 nm. Kim et al.
(2013) [49] reported a 525 nm light-dose-suppressed growth of Pg biofilm. With 400–500 nm
broadband exposure, the photoinactivation dose for Pg was 16–62 J/cm2, whereas inac-
tivation for Sm and Streptococcus faecalis (Sf ) was 3× to 10× higher at 159–212 J/cm2 [50].
The response of Pg to the bactericidal effect of argon laser (488 nm and 514 nm) also indi-
cates that it has greater absorption in that portion of the spectrum. In the study by Henry
et al. [52], a light dose of 35 to 80 J/cm2 from an argon laser inhibited growth of Pg biofilm.
Data from Izzo and Walsh (2004) [53] at 455 nm and 625 nm indicate that the bactericidal
mode at these longer wavelengths may be thermal.
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3.2. Penetration Depth

The review by Leanse et al. (2022) [32] estimates the tissue penetration depth of blue
light to be about 400 µm. However, this may be an overestimate since the penetration depth
in the skin is only 90 µm at 400 nm and 150 µm at 450 nm (Table 1). Song et al. (2013) [54]
treated Pg at 400–520 nm with a halogen curing lamp. They estimated a 30–45 µm depth of
kill and much lower efficiency in biofilm vs. planktonic state due to quorum interactions
and variance in oxygen distribution in the biofilm.

3.3. Selectivity

Apparently, aBL is far less toxic to mammalian host cells when compared to microbial
pathogens. Leanse et al. (2022) [32] examined published data from 15 various studies
including both in vitro and clinical studies. A toxic dose is estimated as the median value
of 110 J/cm2 from their summary of host cell damage. If the in vivo photoinactivation of
Pg requires a 10× increase in light dose in vitro (2–7 J/cm2) [27], then in vivo inactivation
would be in the range of 20–70 J/cm2. The therapeutic ratio is calculated to be 110:20–70 or
in the range of 1.6–5.5. This selectivity is a result of the high concentration of photosensitizes
within certain bacteria relative to mammalian cells. Bacteria are rich in cytochromes,
porphyrins and other photosensitizers [32,55].

4. MODE 3: Thermal Ablation through Antimicrobial Selective
Photothermolysis (aSP)

As defined by Anderson and Parrish (1983) [56], selective photothermolysis “relies on
selective absorption of a brief radiation pulse to generate and confine heat at certain pig-
mented targets. An absolute requirement is that the targets have greater optical absorption
at some wavelength than their surrounding tissues.”

Selective photothermolysis (SP) has revolutionized the field of dermatology to produce
a “cosmetic laser industry” for selective removal of vascular anomalies such as telangiec-
tasias, including acne rosacea and spider angioma [57], tattoo pigment removal [58] and
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permanent hair removal by selective destruction of hair follicles [59]. This concept can also
be applied for the selective destruction of periodontal pathogens.

4.1. Mechanism of Action

Pg scavenges heme from the environment that first attaches to the outer membrane.
Once transported across the membrane, it localizes within the cytoplasm where it sup-
ports several metabolic functions [60]. Pg synthesizes endogenous porphyrins known as
tetrapyrroles including iron protoporphyrin IX that aggregate on the cell surface [61]. These
chromophores in Pg account for its high absorption in the VIS and NIR. Since the materials
available in the environment vary, the visual colors of Pg colonies can vary. The whole-cell
absorption spectrum of Pg from 390 nm to 1100 nm (Figure 5) shows the combined absorp-
tion of all the chromophores that are intracellular or attached to the outer membrane [9].
All chromophores contribute to light absorption but, unlike aBL, chromophores do not
need to be photosensitizers.

The mode of selective photothermolysis requires increased power densities and
short interaction times to achieve thermal damage (Figure 6). Pulsed dental lasers like
a 6 W Nd:YAG or Er:YAG emit the 6 Watts in very short-duration high-peak power
pulses repeated at a certain repetition rate. For example, typical parameters used for
laser sulcular debridement for the pulsed Nd:YAG laser are 100 µs duration pulses
with a peak power of 1000 W/pulse (100 mJ per pulse) repeated at 20 Hz equals 2 W
average power. As these pulses exit a 320-micron diameter optical fiber, the peak power
density during the pulse is 1.2 × 106 W/cm2. This value of power density causes a
rapid increase in temperature and the 100 µs interaction time confines thermal damage
to the target. Above 60◦ to 70 ◦C, structural proteins such as collagens are denatured
and above 70◦ to 80 ◦C, nucleic acids are denatured. Soft tissue heated to 70–100 ◦C will
undergo protein denaturation, leading to "coagulation necrosis." Above 100 ◦C, there
ensues the vaporization of water with rapid expansion that separates or ablates tissues.
These temperatures must be maintained for a certain period of time in order to cause
thermal damage. The exposure time and temperature necessary to accomplish thermal
damage in a Pg colony is based on the thermal capacity of the colony, modeled as: molar
entropy (∆S) = 585.1 J/mol K and the molar enthalpy (∆H) = 2.9 × 105 J/mol [9,62]. With
this model, a 111 ◦C exposure temperature for a 100-µs exposure time (pulsed Nd:YAG,
Er:YAG, or CO2 laser) or an 84 ◦C temperature for 100-ms (pulsed diode laser) will cause
thermal damage (Figure 6).
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4.2. Selectivity

The absorption coefficient of a substance, µa, describes the relative rate of attenuation
of light as it travels through that substance, in this case, a bacterium or its medium. Larger
values of µa represent a higher probability of absorption, and better absorption implies
greater efficacy. A therapeutic ratio for photoablation of Pg in the periodontal ligament can
be estimated from the difference in absorption coefficients of Pg and its host environment
at a specific wavelength; larger differences mean greater selectivity. Figure 7A shows the
relative absorption spectra (µa as a function of wavelength) of three periodontal pathogens,
Pg, Prevotella intermedia (Pi) and Prevotella nigrescens (Pn), and spectra for two of the host
environments, the periodontal ligament (PL) and water. The periodontal ligament is
modeled as normal healthy connective tissue at 75% water, blood volume 1.7% (35 µM
HbO2 and 60 µM Hb), 15% collagen and 5% extracellular ground substance and cellular
components [63]. At 810 nm, the ratio of absorption coefficients is 10:0.03 or 333 and at
1064 nm, the ratio is 7.7:0.18 or 43. There is also a significant difference (>100) in absorption
coefficients of Pg compared to dentin (see Section 5.1, Figure 8).

Pathogens 2023, 12, x FOR PEER REVIEW 10 of 29 
 

 

 

Figure 6. Minimum temperature maintained for an exposure duration required to cause thermal 

damage in a Pg colony. Reproduced with permission from Harris, Jacques and Darveau, Lasers [9], 

2016, Wiley. 

4.2. Selectivity 

The absorption coefficient of a substance, μa, describes the relative rate of attenuation 

of light as it travels through that substance, in this case, a bacterium or its medium. Larger 

values of μa represent a higher probability of absorption, and better absorption implies 

greater efficacy. A therapeutic ratio for photoablation of Pg in the periodontal ligament 

can be estimated from the difference in absorption coefficients of Pg and its host environ-

ment at a specific wavelength; larger differences mean greater selectivity. Figure 7A shows 

the relative absorption spectra (μa as a function of wavelength) of three periodontal path-

ogens, Pg, Prevotella intermedia (Pi) and Prevotella nigrescens (Pn), and spectra for two of the 

host environments, the periodontal ligament (PL) and water. The periodontal ligament is 

modeled as normal healthy connective tissue at 75% water, blood volume 1.7% (35 μM 

HbO2 and 60 μM Hb), 15% collagen and 5% extracellular ground substance and cellular 

components [63]. At 810 nm, the ratio of absorption coefficients is 10:0.03 or 333 and at 

1064, the ratio is 7.7:0.18 or 43. There is also a significant difference (>100) in absorption 

coefficients of Pg compared to dentin (see Section 5.1, Figure 8). 

 

Figure 7. (A) Absorption coefficients for P. gingivalis (Pg), P. intermedia (Pi) and P. nigrescens (Pn) 

compared to absorption of the periodontal ligament (PL) and water. Vertical dashed lines are posi-

tioned to illustrate the differences at 810 nm (diode laser) and 1064 nm (Nd:YAG laser). (B) 

Figure 7. (A) Absorption coefficients for P. gingivalis (Pg), P. intermedia (Pi) and P. nigrescens (Pn) com-
pared to absorption of the periodontal ligament (PL) and water. Vertical dashed lines are positioned
to illustrate the differences at 810 nm (diode laser) and 1064 nm (Nd:YAG laser). (B) Absorption
spectrum for P. gingivalis cultured in a gradient of hemin concentrations. Hemin concentration
influenced Pg absorption from 390 nm to about 950 nm but not at longer wavelengths. The inset
illustrates the gradation in visual pigmentation associated with each concentration. Data adapted
from Harris et al. (2016) [9], periodontal ligament from Harris and Reinisch (2016) [63].

The optimum wavelength entails the greatest difference in optical absorption between
the target and the host. For excellent specificity, the ratio of target-to-tissue coefficients
(therapeutic ratio) should be on the order of 10 or greater, but SP may be achievable with
ratios as low as 2 [56]. The optimum wavelength is also selected to provide the maximum
depth where SP can destroy a target. It can be seen in Figure 7A that there is a difference
of up to 1000× between Pg and PL in the range of 500–900 nm. Due to increased water
absorption in the range of 900–1000 nm, the ratio remains 10× for Pg but is less selective
for the other two microbes. The window opens again at 1000 nm to about 1100 nm, where
Table 1 indicates penetration depths of more than 2 mm. The window closes for longer
wavelengths beyond 1300 nm that are strongly absorbed by water. These windows are
illustrated in Figure 2 for Pg and Pn. Clinically, this determines the wavelength with the
safest therapeutic ratio and a maximum depth of kill.

Selectivity depends on environmental conditions [64]. Henry et al. (1995) [35] observed
that Pg phototoxicity to an argon laser (488 and 514 nm) was influenced by the hemin
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concentration in the culture, which also influences porphyrin content [64]. This was studied
in detail by Harris et al. (2016) [9]. The absorption spectra of Pg cultured in increasing
concentrations of hemin (0.5–15 µg hemin/mL) were measured with diffuse reflection
spectroscopy (Figure 7B). There was a strong correlation between the hemin concentration
and the level of visual pigmentation in the colonies (illustrated by the graduated bar in the
inset). The hemin strongly asserted its effect on the absorption coefficients in the visible
range from 400 nm to about 900 nm but had a minimal effect on the longer wavelengths
in the near-infrared range from 900 to 1200 nm, which includes the 980 nm diode and the
1064 nm Nd:YAG lasers. Heme availability influences the absorption coefficient, hence the
therapeutic ratios computed for Pg above will depend on those environmental conditions
at 810 nm but less so at 1064 nm.

4.3. Depth of Kill

Given these optical and thermal properties of the pathogens and the host tissue,
Harris and Reinisch (2016) [63] constructed a mathematical model for the surgical scenario
of “laser sulcular debridement” and ran a simulation to illustrate the depth of kill in a
virtual periodontal ligament. In the simulations, 50 µm diameter colonies were placed at
1, 2, 3 and 4 mm depths. An optical fiber was inserted in the periodontal pocket, light
pulses were delivered and the fiber was passed around the tooth four times at 1 cm/s.
A video of sequential instantaneous thermal profiles illustrates accumulating selective
thermal damage in the colonies. One of the videos shows a comparison of the thermal
profiles for three dental lasers. Pg colonies have absorption coefficients equal to 10 cm−1

at 810 nm, 7.7 cm−1 at 1064 nm and 13,000 cm−1 at 2940 nm, which is the same as water.
Both the 810 nm diode laser and the 1064 nm Nd:YAG laser achieved a 2–3 mm deep kill
zone for Pg and Pi in the periodontal ligament without surface damage. Accumulated
background heat from multiple passes increased the depth of the kill zone. The 2940 nm
Er:YAG laser ablated the surface of the periodontal ligament but did not influence the 1
mm-deep Pg colony. Another video illustrates photoablation of three different pathogens
with different absorption coefficients. In that comparison, the absorption coefficient of the
target determined the depth of kill.

5. MODE 4: Cell Lysis through Explosive Vaporization
5.1. Mechanism of Action

Water absorption dominates over all other soft tissue absorbers at wavelengths longer
than about 1250 nm (Figure 8). The erbium lasers and carbon dioxide lasers are near peaks
in the water absorption spectrum. Because Pg is mostly water, one can consider water
to be the intracellular chromophore at those wavelengths. Absorption of photon energy
by a water molecule raises the molecule to a higher energy vibration mode, effecting a
transition from liquid to vapor and the rapid expansion lyses the cell [65]. Akiyama et al.
(2011) [66] examined with electron microscopy inoculated root surfaces and Pg cultures
after Er:YAG laser exposure and concluded that ablation was by photothermal vaporization.
The Sethasathien group (2022) [67] conducted an in vitro investigation of the bactericidal
effect of the Er,Cr:YSGG laser on Aggregatibacter actinomycetemcomitans (Aa) and Pg. They
also indicated that the mechanism may be thermal evaporation or a photothermal reaction.
Similar results of effective bacterial reduction are reported following CO2 irradiation of Pg
suspensions [68] and titanium discs [69].
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Dentin is composed of 47% inorganic carbonated hydroxyapatite, 33% organic mate-
rial and 20% water [71]. Figure 8 shows the absorption peaks of hydroxyapatite at about
2900 nm and 9600 nm, which are close to the output wavelengths of 2790 nm Er,Cr:YSGG
and 2940 nm Er:YAG and the 9300 nm CO2 lasers. Because of the high affinity of hydroxya-
patite at these wavelengths, these lasers have been used to ablate hard tissues.

5.2. Selectivity and Depth of Penetration

The soft tissue penetration depth is only 2 µm at 3000 nm and 20 µm at 10,000 nm
(Table 1) and the absorption depth in dentin is in the range of 6.7–12 µm from 2790 nm to
10,600 nm [72]. Pg is known to invade dentin either from the root surface in the periodontal
pocket or internally from the root canal. The effect of mode 4 irradiation on Pg is no
different than the effect on any other living cell that contains water and is surrounded
by an aqueous environment. High-power density erbium and CO2 lasers will ablate the
surface layer of soft tissue or dentin and its contents indiscriminately and have minimal
effect on deeper tissues. We may assume, then, that the therapeutic ratio is close to zero.
Consequently, mode 4 demonstrates no selectivity in periodontal tissues or dentin and the
depth of kill is restricted to the surface [63].

6. MODE 5: Cell Lysis through Drug/Light Interaction (aPDT)
6.1. Mechanism of Action

The mechanism is similar to that described for aBL, except the photosensitizer is
delivered exogenously and is then selectively accumulated in the target tissues. When
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irradiated with light of the proper wavelength, the energy absorbed by the photosensitizer
is transferred through a Type I or Type II photochemical reaction to generate ROS that
can oxidize biomolecules and destroy cells. Research on the photochemical pathways
leading from photon absorption to inactivation is detailed in Hamblin (2016) [73] and
Rapacka-Zdończyk et al. (2021) [43].

Photodynamic therapy (PDT) was originally devised as a nonsurgical treatment for
certain types of cancer [74]. Figure 9 illustrates the procedure. A photosensitizer, in this
case, hematoporphyrin derivative (HpD), is delivered intravenously and after 24 h has
localized in the cancerous cells of a squamous carcinoma just below the jaw as evidenced
by HpD’s fluorescence (Figure 9A). HpD has a Q-band absorption peak at 620 nm, so light
at 620 nm from an argon-pumped dye laser is delivered via an optical fiber inserted into the
center of the tumor (Figure 9B). Light plus HpD generates ROS and, at 48 h posttreatment,
necrosis is localized to the tumor mass (Figure 9C). Specific criteria for PDT include the
characteristics of the photosensitizer and matching light source:

• Selective uptake or binding of exogenous photosensitizer by cells of the target tissues
• Selective wavelength for photoinactivation

# Maximize absorption by photosensitizer
# Optical window to maximize depth of kill 650–1000 nm

• Presence of oxygen for ROS production
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Figure 9. Photodynamic therapy (PDT) for the treatment of solid tumors. (A). Localization of the
photosensitizer, HpD, within the tumor is indicated by its fluorescence. (B). Light at 620 nm from an
argon-pumped dye laser is delivered to the center of the tumor by a fiber optic. (C). The tumor is
selectively destroyed. Harris, D.M; Hill, J.H. “Photoradiation Therapy.” Case presented at the 40th
Annual Midwest Conference, Chicago Medical Society, Chicago, IL, March 1984.

Early researchers suggested that the basic procedure could be modified for the photo-
eradication of localized infections, antimicrobial PDT (aPDT; also known as antimicro-
bial photodynamic inactivation, aPDI, and photodynamic antimicrobial chemotherapy,
PACT) [75–77]. Various combinations of photosensitizers, light sources and protocols have
since been studied in dentistry as an antimicrobial treatment for periodontitis [78–82], peri-
implantitis [83–86], and root canal disinfection [87–89]. There is yet to evolve a standard
protocol [90]. However, there are essential differences between PDT and aPDT. PDT uses
intravenous injection and systemic delivery of a photosensitizer, whereas aPDT relies on
topical application and local diffusion. The photosensitizer in PDT is designed to localize
in tumors, whereas the photosensitizer in aPDT needs to localize in pathogens. Hamblin
(2016) [73] provides a set of criteria for photosensitizers to be used against bacteria:

• Nontoxic in the dark
• Good quantum yields of ROS
• High molar absorption coefficient in red and near-infrared spectrum
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• Selective for microbial over mammalian cells
• Cationic charges

Investigations of photodynamic therapy and Pg in particular have utilized lasers at
405, 532, 630–690, 805–830 and 905–980 nm and LEDs ranging from 390 to 480 and 565 to
671 nm. Among the photosensitizers examined in research involving Pg, the most exten-
sively studied to date have been indocyanine green [91–93], methylene blue [94–96] and
toluidine blue [97–99]. Other photosensitizers have included: aminolevulinic acid [100],
azulene [101], β-NaYF4:Yb3+, Tm3+@TiO2 (termed UCNPs@TiO2) [102], BLC 1010 and
BLC 1014 [103], cadmium telluride nanocrystals [104], captopril-protected gold clus-
ters [105], cationic amino acid-porphyrin conjugate 4i [106], Chlorin-e6 [103,107,108], chloro-
aluminum phthalocyanine [109,110], Coumarin 6 [111], Curcumin [112,113], curcumin-
NP [114], cyanidin-3-glucoside [115], doxycycline [116], erythrosine [115,117], graphene
silver polymethyl methacrylate [118], lysine-porphyrin conjugate 4i [119], meta-tetra
(hydroxyphenyl)chlorin (mTHPC) [120], oxyhemoglobin-based oxyHb@IR820 [121], phe-
nothiazine chloride [122–124], phloxine B [125], Photodithazine [126], phycocyanin [127],
protoporphyrin IX [35], purpurin-based photosensitizer [128], Radachlorin® [129], ri-
boflavin [130], rose bengal [131,132], ruthenium-based photosensitizers [133], safranine
O [134], sinoporphyrin sodium [135], temoporfin [136], tolonium chloride [137] and
zinc phthalocyanine [138].

Certain photosensitizers have exhibited some degree of antimicrobial effects on a
variety of micro-organisms relevant to dentistry in the absence of photoexcitation, includ-
ing methylene blue (MB), toluidine blue-O (TBO), indocyanine green, rose bengal and
erythrosine. In general, though, the antimicrobial effects of photosensitizers tend to be
more pronounced when the agent has been exposed to low levels of irradiation [139].

The Bhatti group [140,141] studied the destruction of Pg using TBO and 632.8 nm red
light from a helium-neon (HeNe) laser. The TBO localized in the outer membrane and,
to a lesser extent, the inner cytoplasmic membrane. Inactivation was the result of lipid
peroxidation and/or protein–protein cross-linking and a resultant decrease in membrane
fluidity. Electron microscopy showed membrane condensation and vacuolization of cells.

6.2. Selectivity and Depth of Penetration

Topical application of a photosensitizer is probably as effective as topical applica-
tion of a chemical antibiotic, although the great advantage of aPDT is to avoid resis-
tance. Repeated applications of aPDT utilizing methylene blue and 670-nm illumination
to methicillin-resistant Staphylococcus aureus (MRSA) could not promote microbial resis-
tance [142]. Rapacka-Zdończyk [43] present evidence of “tolerance” (changes in suscep-
tibility) to aPDT and aBL following a series of sublethal cycles but did not consider it
“resistance” since photoinactivation was still possible with an increased light dose.

The light sources selected for aPDT are mostly from 635 to 810 nm. The photosensi-
tizer determines the best wavelength, which may be outside the therapeutic window.
Photosensitizers commonly tested for aPDT include methylene blue with an absorption
peak of 668 nm [143], toluidine blue O with an absorption peak of 630 nm [144] and
indocyanine green (ICG) with broad absorption from 640 nm to 940 nm [145]. The pene-
tration depth of 600–700 nm in the skin is 0.5 to 0.75 mm (Table 1). Wavelengths in the
1000–1200 nm range may penetrate tissues more deeply but are not absorbed efficiently
by these photosensitizers. The depth of kill is limited to a few hundred microns with
delivery of the photosensitizer through simple diffusion. Rogers et al. (2018) [128]
found aPDT “fully efficacious” at removing in vitro Pg biofilms to an average depth
of 23 µm. However, data indicate that although aPDT is effective in vitro on zirconia
implants [146], titanium blocks [147] and in planktonic suspensions, it cannot disrupt
root canal biofilms [148,149].

The purpose of aPDT is to sensitize the target for photodynamic destruction. Pg is
naturally sensitized and is easily destroyed with the other modes described above. In fact,
its sensitivity can be enhanced simply by increasing availability to heme in the environment
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(Figure 7B). However, there is overwhelming evidence that Pg can be further sensitized
with an array of photosensitizers including MB, TBO or ICG and responds to aPDT as well
as, if not better than, other pathogens [94,97,150,151].

This review did not capture any reports of adverse effects of aPDT from clinical or
animal [152–154] studies. Solarte et al. (2022) [145] studied the bactericidal efficacy of ICG
plus a broad-spectrum light source. They also tested for cytotoxicity of aPDT on human
gingival keratinocytes. Values that killed the bacteria (60 J/cm2) also caused morphological
damage to normal cells. The level of toxicity was related to both the ICG concentration
and irradiation time. Without threshold values, their data cannot provide an accurate
therapeutic ratio and results cannot be generalized to other aPDT photosensitizers and
light sources.

There are three primary sources of potential toxicity of aPDT. The light source, espe-
cially a diode laser, can accumulate thermal damage if left immobile or delivered with a
high-power density in an attempt to shorten treatment time [155]. The photosensitizer can
in itself be toxic [145]. The combined photosensitizer plus light is designed to be synergistic
and toxic dosimetry is yet to be defined. This is an area that warrants further study.

7. Summary and Translation to Clinical Practice
7.1. Mode 1: Antimicrobial Ultraviolet (aUV):

• Mechanism of action: high-energy photons that target DNA
• Optimal wavelengths: 200–300 nm with peak efficacy near 265 nm, outside therapeutic

window
• Penetration depth: depth of penetration 2 µm
• Selectivity: a therapeutic ratio of less than one (3/20 or 0.15) is not selective

Clinical studies and translation to practice: UVC is successfully employed for an
operating room environment and air disinfection [15] and is proposed for surgical
sites [156] and wound disinfection [16]. Implant and surgical instrument sterilization
are applications of ex vivo aUV sterilization in dentistry that do not require selectivity.
However, Han et al. (2018) [157] compared the decontamination of zirconia discs using
UVC versus dry heat. Heat was more efficient and there was higher adhesion of Pg to
the zirconia surface after UVC sterilization than after dry heat. Metzger et al. (2007) [27]
suggested that an appropriate dental application in endodontics would be to include
aUV irradiation in the protocol for disinfection of root canals. In vitro studies have
demonstrated some efficacy [24,27].

The risk/benefit of this treatment mode appears to be different from that of other
phototherapies. With other modes, a toxic dose results in local tissue damage; however, with
the aUV mode, a toxic dose could result in a potentially lethal malignancy since damage to
nucleotides encompasses human DNA. This represents a significant disadvantage of using
aUV light for disinfection in vivo [38].

7.2. Mode 2: Antimicrobial Blue Light (aBL)

• Mechanism of action: violet-blue visible light that targets bacterial and fungal endoge-
nous photosensitizers that generate ROS

• Optimal wavelengths: 390–440 nm with peak efficacy at 405–410 nm, wavelengths
outside therapeutic window

• Penetration depth: depth of penetration 90–150 µm
• Selectivity: a therapeutic ratio in the range of 1.6–5.5 is estimated from in vitro studies

Clinical studies and translation to practice: Blue light therapy has been practiced in
dermatology for more than 100 years [158]. The fact that visible light is quite harmless for
human cells represents a benefit with regard to medical applications. Potential fields of
operation include the disinfection of air and surfaces [159]. Suggested dental applications
include general disinfection of the oral and nasal cavities [15], root canal disinfection [160]
and dental implant disinfection [161]. Soukos et al. (2015) [162] irradiated dental plaque
in vivo at 455 nm, 70 J/cm2 and received reductions in Pg and Pi.
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This mode of photoantisepsis is currently experimental with few, if any, published
clinical studies in dentistry. Specific applications in dentistry need to be developed and
safety and efficacy validated in clinical trials. Zhang et al. (2023) [161] have developed an
interesting application of aBL for treating peri-implantitis, so far tested only in implants
placed in the tibia of rabbits. A 410 nm LED is incorporated into a zirconia implant and
provides low-level, continuous blue light irradiation. A similar application in endodontics
might be a light-transmitting root canal fill. Enwemeka et al. suggest that aBL dosimetry
values can be reduced significantly if the light is pulsed to synchronize with the aBL
photochemistry. Pulsing is timed to “pump” ROS production [15].

7.3. Mode 3: Antimicrobial Selective Photothermolysis (aSP)

• Mechanism of action: high-power density, thermal ablation that targets endogenous
chromophores

• Optimal wavelengths: for Pg 700–1200 nm, within therapeutic window
• Penetration depth: depth of Pg kill is 2 mm at 810 nm and 1064 nm depending on

environmental conditions
• Selectivity: for Pg, the therapeutic ratio can be higher than 100 but >10 from 400–1200 nm

in both soft tissues and dentin under most environmental conditions

Clinical studies of aSP applied to black pigmented, red complex periodontal pathogens:
Dental lasers were introduced as surgical instruments and early users suggested that
they could also be used for “reduction of bacterial level” [163–165]. Published results
from in vivo sampling from periodontal pockets following surgical debridement pro-
tocol with the 1064 nm Nd:YAG laser [166–172] and diode lasers at 685, 805, 808, 810
and 980 nm [173–178] universally show immediate reduction of Pg often maintained for
3–6 month follow-ups. Several dental laser systems have also been evaluated for their
ability to disinfect root canals. Saydjari et al. (2016) [179] reviewed 22 endodontic studies of
bacterial reduction with 1064, 810 and 980 nm lasers. They conclude that all are effective at
bacterial reduction and that pigmented bacteria were more sensitive to photodestruction.

High-powered dental lasers operating in mode 3 have been cleared for antibacterial
marketing claims. From 10 September 1999 through 31 March 2023, the U.S. Food and Drug
Administration (FDA) has cleared for marketing certain Class 4 diode dental lasers (7 at
810 nm and 7 at 980 nm) for “reduction of bacterial level,” without specifying the bacterial
species involved. One Class 4 Nd:YAG dental laser received clearance on 12 July 2019 for
“reducing bacteria on the dentin surface,” based on an in vitro study involving Bacillus
subtilis, Escherichia coli and Bacillus stearothermophilus. No other laser types have received
such clearances.

Translation to practice: Unlike the extensive basic research on aBL, the clinical appli-
cations came first and translation had already transpired. This is because high-powered
dental lasers have a long history as surgical instruments used to achieve surgical outcomes
to which bacterial reduction is subordinate. In an actual procedure such as sulcular debride-
ment and removal of the pocket epithelium or root canal shaping, the antimicrobial action
is incidental to those surgical objectives. Determining the dosimetry range for effective
bacterial reduction from those clinical data is challenging. No single standardized protocol
exists and all relevant parameters are rarely published. Nevertheless, there is sufficient
evidence that the bacterial load of Pg and other oral pathogens is significantly reduced
during these procedures using the Nd:YAG laser and many of the dental diode lasers with
output wavelengths within the therapeutic window.

The clinician needs to understand this mode of bacterial reduction to better optimize
it during a procedure. For example, for soft tissue surgical procedures, diode laser users
are often instructed to “initiate the tip” of the optical fiber by coating it with a layer of
carbon. The result is absorption of the light energy as it exits the fiber creating a “hot tip”
that turns out to be an excellent tool for dissecting soft tissues. However, in this scenario,
heat is transferred to the tissue and bactericidal light is blocked.
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This mode has proven to be effective at bacterial reduction and demonstrates the
greatest depth of kill within the therapeutic window. Although bacterial reduction is
a welcomed side effect, it is subordinate to a surgical procedure. Protocols designed
specifically for aSP need to be developed. Another barrier to translation is that high-
powered dental lasers are costly and require significant training.

7.4. Mode 4: Antimicrobial Vaporization

• Mechanism of action: high-power density, thermal ablation that targets intracellular
water

• Optimal wavelengths: >1300 nm, outside the therapeutic window
• Penetration depth: depth of penetration 5–20 µm in both soft tissues and dentin
• Selectivity: for Pg in dentin or soft tissues—none.

Reviews of clinical trials and studies: A review by Sgolastra et al. (2012) [180] of
five randomized, controlled clinical trials concluded that there was no evidence of the
effectiveness of Er:YAG lasers for the treatment of periodontal disease. The review by Zhao
et al. (2014) [181] of 12 controlled clinical trials also found no evidence that erbium laser
protocols were better than scaling and root planing (SRP) alone for improvement in clinical
signs of periodontitis. The Świder et al. (2019) [182] review found Er:YAG laser application
shows no significant effect on bacteria in the periodontal pockets in the long term. However,
some individual clinical studies do show significant bacterial reduction [183]. Erbium lasers
are efficient surgical tools used for sulcular debridement in the treatment of periodontitis
and peri-implantitis. Several investigators have also established in vitro their efficacy for
disinfecting implant surfaces [184,185]. CO2 lasers are also efficient at implant disinfection
without causing surface alterations [69,186].

Cheng et al. (2012) [87] determined with electron microscopy and cultures that an
Er:YAG laser can completely remove Pg biofilm from ex vivo root canals and up to 200 µm
into lateral dentinal tubules.

Translation to clinic: Jurič and Anić. (2014) [88] reviewed the surgical challenges asso-
ciated with using lasers for cleaning and disinfecting the root canal system and evaluated
outcomes following Er:YAG and Er-Cr:YSGG laser treatments. They concluded that the
erbium lasers are efficient at the removal of the smear layer and both wavelengths have
bactericidal effects.

Erbium lasers are currently in use for hard-tissue procedures, root canal manage-
ment and periodontal pocket debridement, although several literature reviews [180–182]
suggest that these lasers may not be the most effective choice for periodontitis and peri-
implantitis treatment. Linden and Vitruk (2015) [187] provide a detailed protocol for using
the 10,600 nm CO2 laser to treat peri-implantitis. Miyazaki et al. (2003) [168] compared the
results of Nd:YAG and CO2 laser treatment of periodontitis in 18 patients. They reported a
significant decrease in Pg and an improvement in clinical signs with Nd:YAG but not with
CO2. However, erbium lasers are apparently the optimal system for removing biofilms
and the use of erbium lasers is indicated for canal shaping and disinfection. Due to the
shallow depth of penetration, residual infection often remains in accessory (side) channels
of the root canal that could be accessed with a dual-wavelength system having shorter
wavelengths within the therapeutic window.

7.5. Mode 5: Antimicrobial Photodynamic Therapy (aPDT)

• Mechanism of action: photochemical reaction that targets a localized photoactive
substance to produce ROS

• Optimal wavelengths: the optimum wavelength depends on the absorption character-
istics of the selected photosensitizer, preferably within the therapeutic window

• Penetration depth: the depth of kill is limited by wavelength selection and diffusion
of the photosensitizer

• Selectivity is indeterminate because of the lack of data on toxic dose vs. therapeutic
dose. The lack of reports of toxicity of aPDT may indicate high selectivity
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Reviews of clinical trials and studies: Dai et al. (2009) [188] provided one of the first
reviews of aPDT. When the Dai group wrote their review in 2009, they noted that aPDT
applied to treat dental and oral localized infections was a rapidly growing clinical ap-
plication. At that time, most of the data were from in vitro studies and some companies
were beginning to run trials of aPDT systems for dental applications. They conclude that
the available systems have some efficacy but are not yet optimized. Meisel and Kocher
(2005) [189] saw promise in these early studies and encouraged further development and
testing of aPDT applied to periodontal and endodontic disease.

Since 2009, there have been hundreds of clinical studies published just on the dental
applications of aPDT. The Meimandi et al. (2017) [190] review analyzed 16 studies of
treatment for periodontitis comparing SRP vs. SRP + aPDT. Half of the studies showed that
aPDT had an incremental effect on improving clinical signs and bacterial reduction. Peron
et al. (2019) [90] reviewed 4 of 49 studies of aPDT for periodontitis. aPDT was effective at
reducing Pg, Aa, Fn and Pn as well as causing decreased inflammation. All four studies
used a 660–662 nm diode but four different photosensitizers. The authors noted substantial
heterogeneity in the aPDT parameters. Another review of aPDT for periodontitis by Vohra
et al. (2016) [191] of seven controlled and randomized trials came to an identical conclusion:
aPDT is effective as an adjunct to SRP but there is considerable heterogeneity of aPDT
parameters among studies. Fraga et al. (2018) [192] reviewed aPDT studies applied to
peri-implantitis. Only three studies met their strict inclusion criteria, also with a mixture of
aPDT parameters: photosensitizers were TBO (activated with 810 nm and 690 nm diode
lasers) and phenothiazine chloride (activated with a 660 nm diode laser). They concluded
that aPDT is effective at bacterial load reduction (Pg, Aa, and Pi) in peri-implantitis. A
review by Muhammad et al. (2015) [193] searched “endodontic disinfection with laser” and
generated 306 articles from 1982 to 2014. Although some studies show promising results,
they considered the approach to be still controversial. They provided a useful discussion on
finding the proper place for aPDT within a medically sound protocol for canal debridement,
shaping and disinfection (including accessory channels) prior to obturation. The most
recent review by Gholami et al. (2022) [194] analyzed 60 randomized, controlled trials of
aPDT in periodontal (42), peri-implant (6) and root canal infections (12). They concluded
that aPDT is effective as an adjunctive treatment to reduce the bacterial load but could not
recommend specific irradiation parameters “due to heterogeneity among studies.”

Translation to practice: Amidst this assortment of aPDT parameters and applications
have emerged a few commercial products for aPDT-based systems with protocols and
delivery systems to treat periodontitis, peri-implantitis and endodontic infections. The
photosensitizers are mostly based on MB in solutions or gels that are injected into the
periodontal or peri-implant pocket or into the root canal. Activation is with fiberoptic-
delivered light from a 660–670 nm diode laser. These commercial systems are marketed
outside the United States with claims of efficacy based on a substantial literature showing
positive outcomes.

Several authors have indicated potential drawbacks to the use of aPDT. It is un-
known how aPDT affects benign oral flora. Treatment may lead to phototoxic or pho-
toallergic unwanted side effects and dominance of a single resistant species [189]. There
is concern about the potential cosmetic and metabolic side effects of residual photosensi-
tizers in the pocket and surrounding tissues [101,155]. To mitigate this concern, aPDT
protocols should include techniques to localize diffusion and for routine removal of the
photosensitizer after treatment.

As a note of caution, aPDT is still considered to be experimental in the United States.
As of 31 March 2023, no aPDT device has received U.S. FDA marketing clearance. The
plethora of protocols needs to be culled and safety better defined with studies that are
designed to identify levels of toxicity.
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8. Conclusions

Pg is an appropriate candidate to examine photoantisepsis in general since all modali-
ties identified in this report are effective at reducing its numbers or inhibiting its growth.
Targeting the reduction of Pg will remove its immune subversion strategies that benefit
cohabiting species [195]. In the case of selective thermal ablation, Pg may act as a heat sink
and transfer thermal damage to the rest of a mixed-species colony. With its various evasion
strategies, Pg has been resistant to the immune system and chemical antibiotics. Colonies
located in dental plaque, calculus, dentinal tubules and the cytoplasm of host cells are all
sites that are inaccessible by neutrophils or amoxicillin but accessible by light.

Light-based antisepsis is currently a multifaceted and very active area of research
in engineering, microbiology and clinical laboratories. Several research groups around
the world are testing a wide variety of blue light protocols, photosensitizers and dental
laser delivery systems. Some researchers are testing combined modalities in an attempt to
increase efficacy. For example, Amaroli et al. (2020) [196] tested in vitro combined aPDT
and aSP with an 810 nm diode laser. Chui et al. (2013) [125] tested in vitro aBL combined
with aPDT and noted a greater log reduction from the combined treatment compared to
aBL alone.

The five modes of Pg inactivation or ablation are localized and minimally invasive
light-based modalities that show promise in reducing and controlling the bacterial load
in the oral cavity. Understanding the mechanisms, characteristics and limitations of each
modality will allow the clinician to apply the proper technique to achieve the desired
clinical outcome. This report suggests a framework for the organization of a complex
literature. This review provides an overview for the graduate student, experienced
researcher or clinician to fill in any gaps in their knowledge base and to stimulate
interdisciplinary research.
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aPI antimicrobial photodynamic inactivation
aPDT antimicrobial photodynamic therapy
aSP antimicrobial selective photothermolysis
aUV antimicrobial ultraviolet
CO2 carbon dioxide
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Er:YAG erbium:yttrium-aluminum garnet
GEC gingival epithelial cell
Hb hemoglobin
HbO2 oxygenated hemoglobin
HeLa immortalized human cell line
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ICG indocyanine green
MB methylene blue
Nd:YAG neodymium:yttrium-aluminum garnet
NIR near-infrared
PACT photodynamic antimicrobial chemotherapy
PD power density
PDT photodynamic therapy
PL periodontal ligament
ROS reactive oxygen species
SRP scaling and root planing
TBO toluidine blue O
Aa Aggregatibacter actinomycetemcomitans
Ec Escherichia coli
Ef Enterococcus faecalis
Fn Fusobacterium nucleatum
Lb Lactobacillus brevis
Pa Pseudomonas aeruginosa
Pg Porphyromonas gingivalis
Pi Prevotella intermedia
Pn Prevotella nigrescens
Sa Staphylococcus aureus
Se Staphylococcus epidermidis
Sf Streptococcus faecalis
Sm Streptococcus mutans
Ss Streptococcus sanguinis
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