
Citation: Thomas, B.A.; Saylor, R.K.;

Taylor, Z.P.; Rhodes, D.V.L.

Evaluating Trends in Strangles

Outbreaks Using Temperature and

Precipitation Data in the United

States of America for 2018–2022.

Pathogens 2023, 12, 1106. https://

doi.org/10.3390/pathogens12091106

Academic Editor: Lawrence S. Young,

Kimberly VanderWaal and Catalina

Picasso-Risso

Received: 28 July 2023

Revised: 17 August 2023

Accepted: 27 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Article

Evaluating Trends in Strangles Outbreaks Using Temperature
and Precipitation Data in the United States of America
for 2018–2022
Bryce A. Thomas 1, Ryan K. Saylor 1 , Zachary P. Taylor 2 and DeLacy V. L. Rhodes 1,*

1 Department of Biology, Berry College, Mount Berry, GA 30149, USA; bryce.thomas@vikings.berry.edu (B.A.T.);
rsaylor@berry.edu (R.K.S.)

2 Department of Environmental Science and Studies, Berry College, Mount Berry, GA 30149, USA;
ztaylor@berry.edu

* Correspondence: drhodes@berry.edu

Abstract: Strangles is a highly contagious upper respiratory infection of equids that is globally
distributed. The causative agent of strangles, Streptococcus equi subspecies equi, can be spread
through indirect contact with infected fomites, and studies have shown this microbe to live well in
varying environmental conditions. The purpose of this study was to analyze strangles case numbers
across the United States of America from 2018 to 2022 to investigate potential temporal or weather
patterns associated with outbreaks. Diagnosed case records were obtained from the Equine Disease
Communication Center, university databases, government agencies, or veterinary diagnostic labs, and
geographic information systems (GISs) were used to map cases and to acquire relevant meteorological
data from outbreak areas. These data were analyzed using logistic regression to explore trends that
occur between outbreaks and changes in temperature and precipitation. Initial review of weather data
suggested monthly changes in strangles case numbers corresponded with changing seasons. Logistic
regression indicated that changes in monthly average temperature and minimum temperature were
significantly associated with increased or decreased odds of strangles outbreaks, respectively. Future
analyses should focus on weather data isolated within a smaller region or state to better resolve
trends in strangles outbreaks throughout the continental USA.

Keywords: strangles; Streptococcus equi subspecies equi; horses; equids; GIS

1. Introduction

Strangles is a highly contagious equine disease of the upper respiratory tract that is
caused by Streptococcus equi subspecies equi (SEE). This disease can be found worldwide
and is the third-most-common upper respiratory infection of horses in the United States of
America (USA) [1], resulting in a high economic burden for horse owners [2]. Strangles is
characterized by sudden-onset pyrexia, lethargy and pharyngitis, profuse mucopurulent
nasal discharge, and lymphadenopathy with lymph node abscesses. In rare cases, these
abscesses become so swollen that they rupture, disrupting breathing, hence the name of the
disease [1,3]. Horses with strangles shed SEE in their nasal discharge, with approximately
10% of infected horses becoming subclinical carriers, harboring SEE in their guttural
pouches after all signs of infection have cleared [3]. Treatment for strangles is controversial
and not always performed due to the development of long-term immunity once an infection
has been naturally cleared in 75% of infected horses [4]. When antibiotic therapy is used,
SEE is typically treated with penicillin and is susceptible to most antibiotics [3].

Infection with SEE is spread through either direct contact with an infected horse
or indirect transmission through fomites, a shared environment, or contact with shared
human attendants [3,5]. Both environmental and direct contact transmission appear to
be important in the spread and perpetuation of SEE. These bacteria have been shown
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experimentally to survive for extended periods of time in subfreezing temperatures, yet do
not remain viable in hot, dry conditions [6]. Additionally, SEE has been found to persist
on a variety of different surfaces but is typically inhibited by exposure to direct sunlight
and can be cultured from environmental surfaces much longer during winter than summer
months [6,7]. These studies demonstrate that local external conditions greatly affect the
survivability of SEE, suggesting that environmental parameters such as temperature and
precipitation could play an important role in the perpetuation of SEE in horse barns and in
the occurrence of strangles outbreaks.

Surveillance of strangles outbreaks, active or passive, has occurred in limited studies
within the USA. Currently, there are no mandatory surveillance systems in place for
strangles, though it did become nationally monitored when it was added to the United
States List of Reportable Animal Diseases (NLRAD) in 2017 [8]. Existing studies focused on
the epidemiology of strangles have focused on identifying the genetic variability occurring
between different SEE isolates, along with the different clinical manifestations observed
during individual disease cases, and have quantified caseloads by month [1,9–12]. To
date, no studies within the United States have sought to examine documented strangles
outbreaks to look for patterns related to temporal and meteorological data. The continental
United States is ideal for such a study because it contains a diverse range of climates.
According to an updated Köppen–Geiger climate classification system [13], the US contains
climates that range from tropical in southern Florida, subtropical in the eastern USA and
along the west coast, continental or microthermal in the northern portions of the country,
and extensive desert and steppe climates in the west. By studying strangles outbreak
data that span the country, we can compare strangles occurrence across a wide range of
weather conditions.

To explore any potential trends or patterns between temperature and precipitation
and strangles outbreaks, we have acquired data on diagnosed strangles cases in the United
States over a five-year period (2018–2022) and have used local temperature and precipitation
data to determine if strangles outbreaks are affected by temperature and/or precipitation.
The purpose of this study is to identify any existing patterns between weather conditions
and cases of strangles in order to better understand the occurrence of these infections
within the United States. An investigation of how weather conditions may relate to
disease outbreaks will help veterinarians and horse owners to better understand patterns
of strangles disease occurrences.

2. Materials and Methods
2.1. Outbreak Data Collection

Strangles occurrence data were acquired from multiple sources, such as the Equine
Disease Communication Center [14] and University of Kentucky [15] online databases, the
Georgia Department of Agriculture, the Wyoming State Veterinary Laboratory, the New
York Department of Agriculture, the Montana Department of Livestock, and the Oklahoma
Department of Agriculture, Food and Forestry. A total of 601 cases from 31 states were
included in our analyses. In this study, the term ‘outbreak’ is used to describe at least a
single horse being diagnosed with strangles during a particular time at a particular location.
As there can be multiple horses on one barn infected with strangles at a time, we feel that
the term outbreak is more inclusive than the term ‘case’. All data included in this study
contain date and county of occurrence. Only cases that occurred between 1 January 2018
and 31 December 2022 were used in these analyses. Figure 1 shows which states reported
strangles cases within the five-year study period. The number of cases reported by each
state can be found in Table S1 and all case information, including county, date of occurrence,
and weather data used in our analysis can be found in Table S2.
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Figure 1. Map of the continental United States depicting states with reported data on strangles cases.
States colored orange reported strangles data, while no data were collected from states colored cream.
Alaska and Hawaii were not considered in this study.

2.2. Temperature and Precipitation Data and GIS Analysis

We used temperature and precipitation data from the National Oceanic and Atmo-
spheric Administration’s Monthly Gridded Dataset [16]. Using zonal statistic functions,
we compiled the gridded temperature data into countywide mean values of maximum
temperature, minimum temperature, mean temperature, and mean precipitation. We then
joined the weather data to each outbreak using a concatenated key that denoted both the
county and month of occurrence using ArcGIS Pro 3.03 (ESRI, Redlands, CA). All counties
that did not report a single case in the given timeframe were omitted from the analyses.
For this study, we used a standard meteorological definition of the seasons where spring
includes the months of March, April, and May, summer includes June, July, and August,
fall includes September, October, and November, and winter includes December, January,
and February.

2.3. Statistical Analysis

Our analyses focused on logistic regression of outbreak occurrence (a binary predictor)
against all continuous weather variables collected from all sites. We used a “nearest
neighbor” approach to select a representative non-outbreak occurrence for the same month
and site from the next calendar year. For example, if an outbreak occurred in March
of 2019, the representative non-outbreak used for comparison was taken from March
2020 at the same site. Outbreaks that occurred in 2022 were paired with a non-outbreak
occurrence from the previous year (e.g., 2021) at the same site and month. The combination
of both methods was used to keep the data within our original 5-year study period and to
include weather data associated with the notably higher frequency of outbreaks reported
in 2021 and 2022. Average daily precipitation, maximum air temperature, minimum air
temperature, and mean air temperature were used in the first logistic regression model
to determine if baseline weather data were predictors of strangles outbreaks. The second
regression included a new variable that was linked to the observed value compared to its
month and site-specific 5-year average (hereafter referred to as “5-year average” data). For
example, the 5-year average was subtracted from the observed values as an estimate of
relative deviation from average conditions linked to each outbreak. The third regression
included a new set of variables that incorporated how the original variables changed
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relative to the month prior to the outbreak being reported at each site (hereafter referred to
as “month-to-month” data). More specifically, if the outbreak occurred in May 2019, the
value observed in April 2019 was subtracted from that of May to determine the overall
change in each parameter prior to the outbreak. The additional regressions were included
because initial review of monthly outbreak frequency suggested outbreaks increased during
seasonal transitions, i.e., spring to summer and fall to winter, when environmental variables
would also be expected to change across all sites. The “corrplot” package and a correlation
matrix was used to test for multicollinearity among all variables in this analysis. [17]. All
logistic regression models were analyzed using a generalized linear model (glm) in the base
statistics package available in R v.4.3.1 [18], while stepwise variable selection utilized the
“MASS” package [19]. Akaike model selection criteria (AIC) and stepwise variable selection
(both forward and backward) were used to help chose the best-fitting model if a significant
regression was detected. All regression analyses assumed α = 0.05.

If a significant model was identified, additional analyses were employed to determine
overall model performance because of the marked variation observed in weather data. The
predictive ability of the model was assessed using a train to test data ratio of 80:20 using
the “car” [20] and “tidyverse” [21] packages, and the area under the curve (AUC) scores
from receiver-operating curves (ROCs) were determined using the “ROCR” package [22].
The AUC values fall between 0 and 1 such that models with values close to unity (but at
least ≥0.7) would indicate the chosen model adequately discriminated outbreaks from
non-outbreak conditions [23]. The same significant model was reanalyzed by randomly
selecting a new 80:20 (train to test) data set that contained the same variables. Each new data
set was reanalyzed using logistic regression and model significance and performance were
assessed a total of 100 times. Random remodeling was used to assess how many logistic
models were significant out of 100 total models analyzed. Model coefficients, odds ratios
with lower and upper confidence intervals, and AUC scores were reported as averages
for all significant models detected from these analyses. Finally, bootstrap resampling with
replacement using the same 80% ratio was performed using the “boot” [24] package to
provide a better estimate of each logistic regression model parameter and its confidence
interval. A total of 1000 random bootstrap resampling events and concurrent logistic
regressions were performed on the data. Model coefficients and odds ratios with lower
and upper confidence intervals were also reported as average values of the 1000 bootstrap
events. Bootstrap resampling was included in the analysis because it does not assume
any distribution (e.g., is nonparametric) among weather data, but random resampling
provided a method for measuring the accuracy of parameter estimates linked with the
logistic regression models. Use of both parametric and nonparametric methods to estimate
model parameters ensured our estimates were an accurate reflection of the weather data
and strangles outbreaks. The random logistic models were assessed assuming α = 0.05, but
we also assessed α = 0.10 to account for variation in weather data, while 95% confidence
intervals were calculated for each model parameter using the “boot.ci” function.

3. Results
3.1. General Trends in Outbreak and Weather Data

Temperature change from one month to another may affect the frequency of strangles
outbreaks throughout the continental USA (Figure 2). The greatest positive rate of temper-
ature change occurred between April and May, when average temperature increased by
6.1 ◦C, whereas the greatest negative rate of temperature change of nearly 6.5 ◦C occurred
between October to November and November to December. Months with the highest
strangles outbreaks were also linked with average air temperatures that were greater than
4 ◦C but less than 17 ◦C. Strangles outbreaks were most frequent in the month of May,
followed by a decline over the summer months during peak temperatures, and with the
lowest incidence of strangles occurring in September (Figure 2). The frequency of out-
breaks then increased until December, where outbreak occurrence remained similar until
increasing again in April and reaching its peak in May. Increases in the frequency of
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strangles outbreaks were also observed during months with (1) a near 5 ◦C decrease in
month-to-month air temperature between September and December and (2) a nearly 5 ◦C
increase in month-to-month air temperature between March and May.
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Figure 2. Representation of total number of strangles outbreaks shown with air temperatures. The
total number of outbreaks per month across the five-year period is represented by a bar graph. The
number inside each bar indicates the total number of cases reported for each month. Temperature
data are represented as a line graph with average maximum temperatures shown as a red dashed
line, average minimum temperatures as a blue dashed and dotted line, and average temperatures are
represented by the purple solid line. The left y-axis denotes temperature (◦C), the right y-axis shows
the number of outbreaks, and the x-axis is labeled by month.

All three temperature variables follow the same trends associated with North Amer-
ican seasons. The times in which temperature is increasing or decreasing at the greatest
rate correspond with the maximum and minimum outbreak frequencies (Figure 2). When
the temperature is at the greatest, lowest, or with a lower rate of change, outbreak fre-
quency also remained more or less consistent during these months, i.e., December to March
and June to August (Figure 2). For example, rates of temperature change between these
remaining months were all generally much less than 3 ◦C and average air temperature
was near freezing or remained above 20 ◦C. Precipitation was also explored in this study,
yet no discernable trend was observed, which suggests there is little change in the rate of
precipitation and no obvious link to outbreak frequency over the course of the five-year
study period (Figure S1).

3.2. Logistic Regressions

One of the three initial logistic regressions of weather data was found to contain
significant predictors of strangles outbreaks. The model that included the month-to-month
weather variables was found to be a significant predictor of strangles outbreaks (Table 1).
The models containing the observed and 5-year average variables were not significant and
multicollinearity was high between all observed temperature variables in model one and
was also detected between the 5-year average temperature and 5-year minimum tempera-
ture of model two. Stepwise variable selection and AIC indicated that (month-to-month)
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minimum temperature and average temperature were the only significant predictors of out-
break in the most parsimonious model (AIC = 1666.3) and only moderate correlation was
detected between these variables in the final model. The latter was true for any model that
included minimum air temperature, regardless of its significance, because the AIC score
increased when minimum air temperature was removed, and only average air temperature
was included. The odds of a strangles outbreak would be expected to increase by 3.5%
for every 1.0 ◦C increase in average air temperature when minimum air temperature was
held constant. In contrast, the odds of an outbreak would be expected to decrease by 3.1%
for every 1.0 ◦C increase in minimum air temperature when average air temperature was
held constant. Bootstrap resampling produced similar odds ratios and confidence intervals
as the random remodeling and original logistic regression model for both minimum air
temperature and average air temperature (Table 2). Random remodeling suggested that
minimum air temperature was a significant predictor of outbreak in 39% of the models,
while average air temperature was a significant predictor of outbreak in 58% of the models
when α = 0.05 (Table 2). The proportion of models that included minimum air temperature
increased to 68% and average air temperature increased to 78% when considering α = 0.10.
Average AUC scores (0.515 when α = 0.05 and 0.526 when α = 0.10) suggested that model
performance (e.g., predictive ability) was low and indicates this model would not properly
discriminate outbreaks from non-outbreaks using these weather data.

Table 1. Results of a logistic regression of outbreak occurrence against monthly average precipitation
(Precip_avg), minimum air temperature (Temp_min), maximum air temperature (Temp_max), and
average air temperature (Temp_avg). Reported variables include model coefficient (Coeff; log odds),
standard error (SE), odds ratio (OR) with 95% confidence interval (CI), p-value (p) assuming α = 0.05,
and Akaike information selection criteria (AIC). Significant variables are in bold.

# Model Variable Coeff SE OR
OR (95% CI) p AICLower Upper

1 Monthly Data (Intercept) −0.174 0.383 0.840 0.396 1.780 0.649 1675.0
Precip_avg 0.001 0.001 1.001 0.999 1.003 0.277
Temp_min 1.475 7.123 4.372 3.759 × 10−6 5.125 × 106 0.836
Temp_max 1.455 7.122 4.286 3.695 × 10−6 5.010 × 106 0.838
Temp_avg −2.934 14.243 0.053 3.896 × 10−14 7.144 × 1010 0.837

2 Rel to 5y_avg (Intercept) 0.023 0.124 1.023 0.802 1.307 0.852 1670.1
Precip_5yr 0.002 0.002 1.002 0.999 1.006 0.119
Tmin_5yr 0.000 0.006 1.000 0.988 1.011 0.960
Tmax_5yr −0.015 0.121 0.985 0.777 1.248 0.899
Tavg_5yr −0.060 0.122 0.941 0.741 1.195 0.619

3 Mon to Mon ∆ (Intercept) 0.015 0.059 1.015 0.904 1.140 0.802 1667.8
Precip_m2m 0.001 0.001 1.001 0.999 1.003 0.212
Tmax_m2m 0.049 0.036 1.050 0.978 1.127 0.176
Tmin_m2m −0.085 0.041 0.919 0.847 0.995 0.039
Tavg_m2m 0.033 0.015 1.033 1.003 1.064 0.030

4 Mon to Mon ∆s (Intercept) 0.011 0.059 1.011 0.901 1.136 0.849 1666.3
Tmin_m2m −0.031 0.016 0.969 0.939 1.000 0.048
Tavg_m2m 0.035 0.015 1.035 1.006 1.066 0.018

Note: The first logistic regression included average weather data (Monthly Data), the second included how each
variable compared to the 5-year average (2018–2022; Rel to 5yr_avg), the third assessed the change in each variable
compared to the previous month (Mon to Mon ∆), and the last regression resulted from stepwise variable selection
that started or ended with the same variable set as the third model (Mon to Mon ∆s).
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Table 2. Results of performance tests including random remodeling (1) and bootstrap resampling (2)
of significant logistic regression of outbreak occurrence against month-to-month change in minimum
(Tmin_m2m) and average air temperature (Tavg_m2m). Coefficient estimates (Coeff; log odds) and
odds ratio (OR) with 95% lower and upper confidence intervals (CI) are presented for both tests. The
percentage of significant models (%) and average area under the curve (AUC) based on α = 0.05 (A5)
and 0.10 (A10) was only calculated for significant models detected during the random remodel test.

No Variable Coeff OR Lower Upper %A5 %A10 AUCA5 AUCA10

1 (Intercept) 0.011 1.012 0.889 1.152 ns ns 0.515 0.526
Tmin_m2m −0.036 0.965 0.931 0.999 39 68
Tavg_m2m 0.040 1.041 1.008 1.075 58 78

2 (Intercept) 0.011 1.011 0.897 1.136 --- --- --- ---
Tmin_m2m −0.031 0.969 0.941 0.999 ---
Tavg_m2m 0.035 1.035 1.007 1.066 ---

Note: Some variables were not significant (ns) for any of the 100 individual logistic models tested. Significance of
individual models and average AUC was not determined for the bootstrap resampling because model parameters
represent averages across all 1000 iterations, which are indicated by the dashed (---) line above.

4. Discussion

Our analyses suggest that the occurrence of strangles outbreaks can be affected by
changes in temperature, though not precipitation (Table 1). The collected data show that
the highest and lowest number of individual outbreaks occur during seasonal changes of
the year, more specifically from winter into spring, when the highest number of cases were
reported, and from summer into fall, when case numbers were at their lowest (Figure 2).
Infection numbers appear to increase as temperatures increase through March, April and
May and then drop when temperatures reach their peak during the summer months of June,
July and August. These numbers then reach their maximal lowest in September and rise
slightly before stabilizing during the winter months of December, January, and February.
Though our model showed no significant correlation between maximum temperature
and disease cases, it did show that the month-to-month change in average minimum
temperature and the overall average temperature have significant impacts on the chances
of outbreak occurrence. Both the general trends observed in case numbers and our logistic
model lend support to the conclusion that changing temperatures may impact the chance
of a strangles outbreak. The odds ratio of the overall average temperature variable suggests
that for a 1 ◦C increase in temperature, the chance of an outbreak increases by 4% (Table 2).
As overall average temperature can change by seven degrees from one month to the next
and by 13 degrees over a season, as observed in this study, these fluctuations may result in
the odds of an outbreak changing by 28% from month to month and as much as 52% across
a season. Additionally, temperature fluctuations, and thereby increased outbreak risk, are
likely to increase over time due to anthropogenic climate change.

Studies suggest that SEE, the bacterial causative agent of strangles, is spread by
both direct and indirect contact [3,5] and our analyses suggest those mechanisms may be
affected by the weather conditions. According to the Florida Department of Agriculture
and Consumer Services, most horse-related events occur in the relatively warm summer
months [25]. Before these events take place across the country, in the spring months, horses
are often moved and trained to prepare for competitions. This would increase horses’
interactions with people, fomites, and other horses that are experiencing a higher risk of
contracting infectious illnesses, perhaps leading to the increase in case numbers recorded
during the April–May period. Changes to horse routines, environments, and increased
exposure to other horses would directly increase the chance of a horse contracting strangles.
While strangles is not a mandatory reportable disease, some states or equine competitions
have vaccine requirements or disease screening alternatives for horses entering the state or
competition [25]. This could explain why strangles outbreaks decrease during the summer
months, as more mandatory testing is occurring for equine diseases than during other times
of the year (Figure 2). Additionally, during this time, horses are more likely to be outdoors,
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and it has been shown that the bacterial causative agent of strangles is typically inhibited
by warmer temperatures, as likely seen during the summer months. The slow increase in
case numbers during the fall/winter months could be a result of horses being stabled for
longer times during colder temperatures, when SEE has been shown to survive well in the
external environment [6,7]. It has been shown that strangles is not the only equine disease
to have the highest rate of infection during the spring season. Vector-borne equine disease
studies have shown that spring months have a higher risk of disease spread because of
vector movement brought on by warmer temperatures [26,27]. Our study is the first to
suggest a relationship between disease risk with temperature that is strictly veterinary and
not vector-borne.

Data acquisition for this study was difficult because veterinary diseases are particularly
challenging to track, especially diseases affecting non-livestock animals, as very few are
mandatory reportable diseases and the process for recording these diseases varies from
state to state. As Figure 1 demonstrates, many states keep no records of diagnosed strangles
cases. The majority of the reported data in this study was generously and voluntarily
provided by veterinarians at veterinary diagnostic labs, professors maintaining university
databases, government agencies in states that track cases, and through access to data found
on the EDCC (Equine Disease Communication Center) website. Despite strangles being
added to the NLRAD in 2017 [7], most state veterinary officials reported that their state
did not track or keep any record of strangles. The lack of surveillance of strangles and
other veterinary diseases creates challenges in fully understanding the impact of these
pathogens on animals and animal owners while also impeding epidemiological research on
their prevalence. As climate change continues, summer and winter temperatures in North
America will rise and the frequency of extreme heat events will increase dramatically [28].
The impacts of these warmer conditions on strangles is uncertain and is likely to vary at
local levels and can only be assessed with increased surveillance efforts.

In conclusion, this preliminary study sought to explore potential patterns or trends
that might exist between cases of the equine disease strangles and weather parameters,
specifically temperature and precipitation. This is the first study that has investigated how
common environmental parameters may affect a non-vector-borne disease of veterinary
importance in the USA. Our analyses found that while precipitation was not a significant
factor in strangles outbreak occurrences, temperature could play a role in the incidence
of this disease, especially the change in temperature associated with the seasons. While a
significant logistic model was detected, the predictive ability of the model was low overall,
which suggests this study should be considered more exploratory and further research is
warranted in this area. More specifically, additional analyses that included weather data
from smaller geographic regions or individual states would help better resolve potential
trends in strangles outbreaks within the continental USA.
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