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Abstract: Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as
betel quid, is extensively consumed as a masticatory product in many countries across the world.
Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular
and molecular changes. In the oral cavity, it causes changes at the compositional level in oral
microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid
chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga
gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus
mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its
association with oral cancer development. In the present review, the authors have analysed the
literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations,
evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors
have also shared a perspective that the restoration of local microbiota can become a potentially
therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially
in high-risk population groups.
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1. Introduction

Oral cancer (OC) is a major public health problem in South-Central Asia and Oceania
(hotspots), with the highest estimated incidence rates in Papua New Guinea, Pakistan,
Bangladesh, and India (one-third of total registered OC cases in 2020). According to the
International Agency for Research on Cancer (IARC) Registries, GLOBOCAN (2020), Asia
alone accounts for 65.8% of the estimated new cases of Lip and Oral cavity cancer (C00-C06)
in comparison to Europe (65,279; 17.3%), North America (27,469; 7.3%), and the Caribbean
region (17,888; 4.7%) (Figure 1) [1]. In Asia, India registered the highest number (36%) of
C00-C06 in terms of total new cases in the South-East-Asia-specific region [1]. Following
India, neighbouring countries Pakistan and Bangladesh report the highest incidences and
mortality, thereby increasing the burden of OC in the South-East Asian belt (Figure 2) [1,2].
In this region, the age-old tradition of chewing betel quid (BQ) with or without tobacco
is deeply rooted and believed to have an origin in moist tropical climates. The rampant
chewing of BQ is due to its abundant availability at a cheap cost and the social and cultural
imbibition of the practice.

BQ is prepared with betel leaf (Piper betle), areca nut (Areca catechu), catechu (Acacia
catechu), and slaked lime with or without tobacco, popularly known as Paan in India and
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Pakistan. The Areca nut (AN) is mainly composed of polyphenols, alkaloids majorly includ-
ing arecoline, and tannins [3]. Arecoline is a psychoactive agent that imparts cholinergic
effects on the parasympathetic nervous system as an agonist for muscarinic acetylcholine
receptors [3]. Therefore, the level of toxicity imparted by the alkaloid can be the primary
cause of the formation of reactive oxygen species, reactive metabolic intermediates, ni-
trosamines, tissue inflammation, or other unknown toxic BQ components [4–7]. Further,
an additional factor which plays a key role contributing to the toxicity is the duration of
chewing BQ [8]. Therefore, BQ has been categorised as a Group 1 Carcinogen by Inter-
national Agency for Research on Cancer [5]. A major carcinogen known as nitrosamine
3-methylnitrosaminopropionnitrile (MNPN), derived from AN, has been reported in the
saliva of betel nut chewers and is also classified as a major carcinogen to humans (in Group
2B category) [9].
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Long-term consumption of BQ causes the development of malignant lesions as well as
oral sub-mucosal fibrosis (OSF), eventually leading to OC [10]. Various investigations have
been conducted to comprehend and examine the relationship between the BQ chewing
habit and histological changes including precancerous lesions that precede the progression
of cancer [11,12]. BQ and tobacco chewers experience oral submucous fibrosis (OSMF), a
precancerous condition characterised through inflammation and progressive fibrosis of
submucosal oral tissues [13,14]. Recently, oral microbiota alterations have also emerged
as a strong association with oral diseases, but this still needs further exploration [15–17].
In addition, BQ chewing may potentially affect the oral microorganisms due to their con-
tents of various chemical and salivary alkalinity [18–20]. The oral microbiome is diverse
in composition, which varies between individuals due to differences in their food habits,
lifestyle, and health status. It evolves in stages from birth to adulthood [17]. An individual’s
oral cavity harbours around 100–200 taxa [21]. A newborn displays the initial bacterial
colonisation from the maternal parent source [17]. The metabolites produced from these
initial colonisers facilitate the establishment of new microbes. Thereafter, oral microbiota
complexity and diversity increases with age; for example, Streptococcus species are the first
to colonise, and afterward, Bacteroidetes and Spirochetes become predominant in the oral cav-
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ity during the puberty stage [17]. The bacterial genera predominantly present in a healthy
adult oral cavity include: Prevotella, Capnocytophaga, and Bergeyella (Bacteroidetes), Neisseria,
Cardiobacterium, Haemophilus, Campylobacter (Proteobacteria), Streptococcus, Granulicatella,
Veillonella (Firmicutes), Fusobacterium (Fusobacteria), Rothia, Actinomyces, Corynebacterium,
and Atopobium (Actinobacteria) [22,23]. Among the various locales in the oral cavity, the
tongue shows the highest diversity of bacteria and harbours Veillonella atypical, Prevotella
intermedia, P. gingivalis, Selenomonas subspecies, Actinobacillus actinomycetemcomitans, and
Capnocytophaga [24]. Over time, a ‘microbial homeostasis’ is established in the oral cavity,
displaying a commensal and symbiotic relationship with the host, which provides different
niches to establish, and, in return, oral microbes prevent the adhesion of non-commensal
and pathogenic microbes [25]. However, when there is a change of microflora due to
external interventions like BQ or tobacco chewing, a process called dysbiosis leads to the
manifestation of oral diseases, including: dental caries, periodontitis, and OC. In dental
caries, the enhanced growth of acidogenic and aciduric bacteria, including Streptococcus
mutans, Lactobacillus, and Bifidobacteria, has been reported [26], and in case of periodon-
titis, members of the red complex viz. Treponema denticola, Porphyromonas gingivalis, and
Tannerella forsythia, along with Synergistetes, Saccharibacteria (TM7), and Scardovia wiggsiae
seem to dominate [27–29]. Additionally, there is currently mounting evidence linking the
alterations in the oral microbiome with OC [30–34]. Despite these evidences, the role of
the oral microbiome must be investigated further. In this review, an attempt has been
made to first acquaint the reader about the effects of BQ and other substances (tobacco and
alcohol) abused along with it, which are major risk factors associated with the onset of pre-
cancerous lesions and OC. We have further reviewed the link between OC and alterations
in the oral microbiome and finally tried to gain insight into whether the reversal of oral
microbiome dysbiosis in BQ and other substance abusers could potentially emerge as a
viable prophylactic and/or therapeutic strategy for BQ-induced OC.
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2. Betel Quid and Oral Cancer Prevalence

According to the Globocan 2020 database on cancer (http://gco.iarc.fr/; accessed on 24
December 2021), globally, there are roughly 377,713 new cases of OC (C00-C06) with more
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than 130,590 deaths. The major burden of OC is borne by India, with the highest number
of new cases of C00-C06 after breast cancer in 2020 (Figure 3). The statistics account for
135,929 new cases and 75,290 deaths. Cancer occurring in the lips, oral cavity, nasopharynx,
and pharynx are included under the classification of oral cancer. The squamous epithelium,
due to its superficial position, is firstly influenced by the carcinogens [35,36]. Ninety percent
of OC cases globally are therefore oral squamous cell carcinoma (OSCC) [37]. Other habits,
including tobacco, BQ, and alcohol consumption, are some of the major risk factors for
OSCC [37].
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AN, the seed of Areca catechu belonging to the family Palmaceae, is commonly and
mistakenly called betel and is a constituent of BQ chewed along with Piper betle leaf [38]. AN
is used in unripe, ripe, raw, baked, roasted, boiled, or fermented forms in BQ preparations.
India stands as the largest AN producer (colloquially called supari) and consumer, partly
due to its dependence [39]. Therefore, the onset of addiction occurs at an early age due
to its easy availability in many attractive flavours and forms with or without tobacco at
a low price. It is also popular among other Asian countries; however, the composition
of BQ varies in different regions. For instance, in Taiwan, BQ is always taken without
tobacco [40], unlike in India. It is chewed for its psycho-stimulating effects, to diminish
hunger and constipation, to remove bad breath, and as a social practice. The medicinal
benefits of BQ, including laxative, anti-ulcerative, anti-diarrhoeal, anti-helminthic, and
anti-hypertension properties, are credited to its components, leading to a high consumption
rate [41]. Piper betle leaf extracts have also been reported to have antibacterial activity
against both Gram-negative and Gram-positive bacteria [42]. The alkaloid components of
AN viz. arecoline, arecaidine, guvacoline, and guvacine are absorbed in the oral cavity
because of ample time of contact as it is chewed gradually, leading to the onset of a number
of physiological effects. While these effects are habit-associated and dose-dependent, they
are more prominent in fresh and occasional chewers in comparison to habitual chewers,
indicating BQ tolerance in them [43].

WHO also reported tobacco and alcohol as the two most important associated factors
accounting for 75–90% of OC in people with the habit of chewing BQ and AN, and both
are labelled as Group I carcinogens. A meta-analysis of earlier reported studies from
South-East Asia displayed an increase in OC through smoking–drinking–BQ chewing
interaction by 23–34 times, accounting for two-thirds of the cases in this region [44]. Table 1
captures studies connecting chewing and other substances with the rise in the risk of
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oral, pharyngeal, and oesophageal cancer in Asian countries as a prevalent habit. The
following section reviews the studies elucidating the various underlying mechanisms for
oral carcinogenesis due to BQ components [45].

Table 1. Studies connecting BQ chewing and other substances with OCs in Asian countries.

S.
No.

Number of Subjects and
Country of Study Findings References

1
42 OSCC patients, 45 OSF

patients with areca chewing,
45 controls; China

Different abundance of bacterial taxa at
different pathological stages of OSCC,

areca chewing induces oral site-specific
microbial alterations

[46]

2 20 subjects; Andhra
Pradesh, India

The duration, frequency of betel nut,
tobacco chewing, and overnight

placement were statistically significant
factors associated with potentially

malignant lesions in oral cavity

[47]

3 2008 users Age: 20–80 years;
Uttar Pradesh, India

High incidence of OPMDs in this
population, associated with the
smoking and BQ chewing habits

[48]

4

487 male Head and. Neck
Cancer subjects (313 OC,

119 Oro- and hypopharyngeal
cancers, and 55 Laryngeal
cancers) and 617 controls;

Taiwan

The highest Head and Neck Cancer risk
associated with BQ was reported in

buccal mucosa and gingiva of
oral cavity

[49]

5

80 cases with OSF-associated
OSCC and 80 controls with OSF

but without evident OSCC;
Hunan Province,
Mainland China.

The use of BQ, cigarette, and alcohol
identified as risk factors for malignant

transformation of OSF in the
synergistic effects between BQ chewing
and cigarette or alcohol consumption

were revealed

[50]

6
110 Subjects; Arunachal

Pradesh, North East Region,
India

Increased frequency of micro nuclei in
buccal epithelium among smokers and

alcohol consumers, BQ chewers and
tobacco users compared to the

control group.

[51]

7
81 cases of OC with 162 controls;

Jakarta
Indonesia

Smoking and BQ chewing are directly
associated with OC risk. Chewing of at

least one quid per day and betel leaf,
AN, lime, and tobacco together caused

a 5–6 times increased risk.

[37]

8

91 cases of Oesophageal
Squamous Cell Carcinoma and

364 controls from three
tertiary-care hospitals; Karachi,

Pakistan

Several fold increase in the risk of
oesophageal squamous-cell carcinoma,
if the subjects smoked cigarettes and

chewed BQ with tobacco

[52]

9 1522 Patients of aerodigestive
tract OSCC; Taiwan

Groups with Alcohol, Betelnut and
Cigarette and Alcohol, Tobacco-free BQ

exhibited earlier diagnosis ages
(10 years ahead) than non-users of

these substances for OC

[53]

10 10,657 patients; Taiwan
Strong relationship between smoking,
alcohol consumption, and BQ chewing

for OC development
[54]
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Table 1. Cont.

S.
No.

Number of Subjects and
Country of Study Findings References

11 1029 subjects; Sri Lanka

Synergistic effect of chewing and
alcohol consumption was reported as

risk factors for oral potentially
malignant disorders (OPMDs)

[55]

12
254 patients with oral

Squamous Cell Carcinoma;
Taiwan

BQ chewing and cigarette smoking
patients are more likely to be diagnosed
with oral cavity cancer at a younger age

than those who have just one habit
or none.

[56]

13 75 Habituates; North East
Region, India

BQ chewers showed a significant
increase in the binucleated cells in
comparison to the non-chewers.

[57]

14
513 Patients of oesophagus

Squamous cell carcinoma and
818 controls; Taiwan

Alcohol interacts with tobacco and BQ
in a synergistic way in development of

oesophageal cancer.
[58]

15

219 Patients with confirmed
Oral Leukoplakia (OL) or OSF,

and 876 randomly selected
community controls; Taiwan

Tobacco smoking act synergistically
along with BQ chewing to cause OL

and OSF
[59]

16

Samples from 591 incident cases
of oral cavity cancer and

582 hospital controls;
Bangalore, Madras and

Trivandrum, India

35% of OC in men was found
attributable to the combination of

smoking and alcohol consumption and
49% to pan-tobacco chewing.

[60]

17 79 subjects and 149 controls
from hospitals; Pakistan

Subjects using quid without tobacco
were 9.9 times more likely to develop
OSCC as compared with non-users,

those using with tobacco were at
8.4 times the controls, clearly showing

association between use of paan
without tobacco and OSCC

[61]

18
104 oral cancer patients

compared with 194 controls;
Taiwan

OC, 123-fold higher in patients who
smoked, drank alcohol, and chewed

BQ. Demonstrated synergistic effects of
alcohol, tobacco smoke, and BQ in OC

[62]

19 143 OSCC; Natal, South Africa
AN habit with or without tobacco use

was important in the development
of OSCC

[63]

3. Multifaceted Effects of Betel Quid Components in Oral Carcinogenesis

Arecoline and other alkaloids of AN in BQ lead to genotoxic and interfering effects in
the DNA repair mechanism in the chewing population [64–68]. Studies have reported an
accumulation of damaged mitochondrial DNA primarily in the form of deletions in BQ
chewers [69]. Salivary arecoline persists in the oral cavity of the user for a long time after
exposure to the AN and greatly enhances the adverse effects of the alkaloid [70]. Thus, a
bridging concept could be established with BQ chewing and oral potential malignancy
disorder (OPMD), OSF, and leukoplakia, ultimately leading to OC at the same site [59].
Oxidation of Arecoline in AN produces Arecoline N-oxide, which is an initiator of OC. It
may be detoxified by N-acetylcysteine and block the cascade of cytotoxicity [9]. Cysteine
found in human saliva converts to N-acetylcysteine and conjugates with arecoline N-oxide
to form non-toxic arecoline N-oxide mercapturic acid. Arecoline has also been reported to
up-regulate cystatin C in buccal mucosa fibroblasts, inducing a misbalance in extracellular
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matrix (ECM) synthesis and degradation by overexpression of cystatin C, which leads to
OSF [71]. The presence of lime in BQ further greatly facilitates the penetration of arecoline
in the mucosal barrier due to an increase in the salivary pH [70]. Arecoline metabolism to
arecoline N-oxide by human-flavin-containing monooxygenase-3 generates a high level
of Reactive Oxygen Species (ROS) in human saliva [72,73], which may induce cytogenetic
damage observed in the oral cavity of BQ chewers [74]. BQ chewing with AN may also lead
to exhaustion of the GSH (glutathione) oral levels, which is otherwise known to prevent
damage to cellular components caused by ROS, exhibiting ROS-induced genotoxicity [75].
Thus, the presence of lime in BQ and ROS may have a role in the development of OC [76].
Arecoline N-oxide subsequently influences molecular pathways involving P53, NOTCH1,
FAT1, and caspase-8 [77,78]. The role of iron and copper in the oral epithelium has also
been suggested to be involved in the formation of ROS and, hence, leading to cancer
progression. The presence of highly reactive oxygen species in the tumour sites with free
iron is capable of generating H2O2 (hydrogen peroxide), which damages DNA, paving the
way for cancer induction and progression [79]. Copper present in the AN can also magnify
collagen formation and/or interfere with p53 signalling [80]. Therefore, compounds that
can sequester the free iron and copper in the oral cavity have potential therapeutic value.

4. The Human Oral Microbiome, Dysbiosis, and Oral Cancer Development

The human oral cavity extends from the vermilion border of the lip to the junction of
the hard and soft palate in the mouth roof and circumvallate papillae on the tongue. There-
fore, the oral cavity comprises the lips, commissures, tongue, mouth-floor, gingivae, buccal
mucosa, retromolar trigone, and hard palate. The principal surface structure of the skin,
lips, and mucous membranes of the oral cavity are called the squamous epithelium. The
oral cavity maintains a temperature of 37 ◦C and pH of 6.5–7.5, conducive for oral bacteria
to flourish. Since the first discovery of microbes in the human oral cavity by Leeuwenhoek
(1683) and further progression of scientific studies revealing the oral microbiota secrets,
we have come a long way ahead (Figure 4) [81]. After human gut microbiota, the human
oral microbiota is the most varied and dynamic in composition. The oral microbiota has
co-evolved with us, acquiring beneficial and deleterious properties. The oral microbiota
consists of bacteria, viruses, fungi, protozoa, and archaebacteria. Among these, bacteria are
the most abundant, with more than 700 species [81].
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The Human Microbiome project led to the development of the Human Oral Micro-
biome Database (HOMD) in 2010 [96], and the current Expanded Human Oral Microbiome
Database (eHOMD) includes a total of 771 microbial species [97], providing exhaustive
literature on the bacterial species in the human aerodigestive tract (ADT), spanning the
oro-nasopharyngeal cavity, sinuses, and oesophagus. The oral microbiome composition
is variable in saliva and other parts of the oral cavity [98]. Most human oral bacteriome
studies have characterised the culturable and nonculturable bacteria in the oral cavity un-
der different conditions using around 1500 bp long 16S rRNA gene-based next-generation
sequencing (NGS) technologies [99]. The 16S rRNA gene ic composed of nine hypervariable
regions from V1 to V9. V1, V2, V3, and V4 sequences are extremely variable, and V5 exhibits
the least variability. The PCR amplification of the V3 to V4 region generates a 500 bp long
amplicon suitable for analysing bacterial diversity in oral cavity through metagenomic data
analysis tools [100]. Several investigations have identified the oral cavity of healthy subjects
being composed of a plethora of microbes that can be broadly categorised into six phyla:
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes, and Fusobacteria,
and contain 96% of the taxa [101]. The remaining seven phyla, Euryarchaeota, Chlamydia,
Chloroflexi, SR1, Synergistetes, Tenericutes, and TM7, constitute only 4% of the taxa [94].

The oral microbiota has been determined to be influenced by several factors, including
light, atmospheric pressure, and redox potential, as well as nutrient sources, macro and
micronutrients present in the saliva [102,103]. For example, the relative abundance of
Betaproteobacteria and Fusobacteria is positively correlated with saturated fatty acids
intake. Similarly, higher intake of sugars and water-soluble vitamins were found to be
positively correlated with Lactobacillaceae and Fusobacteria, respectively [102]. Recently,
differences in oral microbiota of the Indian population versus Western counterparts have
also been reported, with the saliva of Indians harbouring more of Enterobacteriaceae,
Proteobacteria, and Streptococcus. Among the Indian population itself, there are differences
in microbiome composition in different geographical regions; for instance, Chromobacterium
subspecies of bacteria were found to be enriched in the saliva of the Assamese population of
the Indian subcontinent [24]. Such differences could be attributed to both diet and genetics
of the population. Welch et al. (2019) highlighted a “site-specialist hypothesis”, stating
that most microorganisms inhabiting the mouth are site specialists, mainly localised in
one preferred habitat inside the mouth [104]. The same bacteria outside of its preferred
site is typically found in much lower abundance, and the authors proposed a micro-scale
analysis to understand how this site-specificity is achieved [104]. In a study by Caselli et al.
(2020) of the oral microbiome of twenty healthy subjects, Streptococci was reported to be
the most abundant bacteria in mucosal tissues (44–66% in the hard palate, oral mucosa,
and keratinised gingiva), and 12–23% of the total genera was prevalent in the other sites
(tongue, supragingival and subgingival plaque, saliva, and oral rinse) [98]. Streptococcus
mitis is the most prevalent species, followed by S. oralis, S. salivarius, and S. sanguinis.
Neisseria, Prevotella, Rothia, and Haemophilus were prominently present in most oral sites
(representing 4–29% of the total bacteria). Anaerobes (Actinomyces, Veillonella, Fusobacterium)
were particularly detectable in subgingival plaques, and Simonsiella was only found in
the hard palate. In this study, the authors also reported the presence of a large number
of strains, with genes conferring resistance functionality to different classes of antibiotics,
macrolides, lincosamides, streptogramin, tetracycline, and quinolones [98].

A complex state of equilibrium existing in the primitive niche of the oral cavity
represents a healthy state [105,106]. Changes in microbial species or taxa level diversity, due
to environmental factors such as infection, diet, or lifestyle, cause a change in equilibrium
leading to dysbiosis. This dysbiosis has emerged in many diseases in recent years and is
a current subject of interest [107,108]. According to the ‘Keystone Pathogen Hypothesis’,
certain microbial pathogens in low abundance are responsible for inflammatory diseases
by bringing normal microbiota to a dysbiotic state [95]. Though many mechanisms have
emerged with regard to the role of oral bacteria in cancer development, as reported in
studies and reviewed by Zhang et al. (2018) [109], the question remains whether the
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oral microbiome is the cause or consequence of cancer. If the former is true, then does
the microbiome have a role in the initiation or facilitation of the progress of cancer, and
is there a microbial signature specific for OC which can be exploited as a biomarker?
Some studies have tried to address these questions pertaining to the connection between
bacteria and OC, investigating the possibility of a particular bacteria as a risk factor for
OC. The role of the oral microbiome in OSCC through direct metabolism of carcinogens
and inflammatory effects with higher representation of C. gingivalis, P. melaninogenica, and
S. mitis in the saliva of healthy individuals has been reported [110]. S. gordonii, S. mitis,
S. oralis, S. salivarius, S. sanguinis, and Candida [69] have been determined to facilitate
an alcoholic metabolising mechanism which leads to the production of acetaldehyde
supporting neoplastic transformations [111]. Nagy et al. (1998) reported significantly
higher levels of Porphyromonas sp., and Fusobacterium sp. on OSCC tissue compared to the
healthy mucosa region [112]. F. nucleatum, a Gram-negative non-spore-forming anaerobic
prominently inflammatory bacilli with basins in the oral cavity and gastrointestinal tract,
draws attention as an opportunistic pathogen because it has been isolated in a variety
of infections and colorectal cancer biopsies [112,113]. F. nucleatum induces cytokines like
tumor necrosis factor, interleukins-6, 8, 10, and 12, along with reactive oxygen species (ROS)
and kinase generation, which helps in cancer progression [114]. It also acts as a bridging
organism during the formation of biofilm in the oral cavity [115]. Species of Fusobacteria
are hyperactive metabolically in the OSCC sites [79]. Oral leukoplakia, a precancerous
condition, has also been shown to have an increased abundance of Fusobacteria and
reduced levels of Firmicutes when compared to healthy controls [116–119]. However,
contradicting findings lacking convincing evidence for the association of Fusobacteria with
OC have also been reported [109,120], which may also be attributable to methodological
differences between studies with respect to sampling sites and the selection of controls.
Alterations in the NADPH oxidase activity and nitric oxide synthase (NOS) resulting in ROS
and RNS accumulation leading to initial chronic inflammations and cancer development
has been observed [121]. These effects are supported through the per-oxygenic oral bacterial
classes such as Bifidobacterium adolescentis, Lactobacillus acidophilus, L. fermentum, L. jensenii,
L. minutus [111], and other bacteria producing H2O2, which damages the macromolecules,
DNA, proteins, and lipids [122]. Bacteroides and Firmicutes species also produce oncogenic
substances, including sulfides and nitrosamines, in addition to fermenting the host’s
excessive proteins [123].

Thus, oral microbiome alterations have been found to be associated with OC devel-
opment. In addition, oral microbiome composition changes have also been shown to
occur due to a number of lifestyle factors, including food intake (high sugar diet, etc.),
hygiene, and betel nut, tobacco, and alcohol consumption [124,125]. With regard to this
association in long-term BQ chewers, changes have been observed in the composition of
normal oral microbiota as compared to non-chewers [124]. Interestingly, Hernandez et al.
(2017) determined the alpha diversity (diversity within-sample) to be significantly lower
among long-term (310 years) betel nut chewers as compared to non-chewers [124]. Further,
alpha diversity has also been shown to be significantly lower in chewers with oral lesions
as compared to chewers and non-chewers with no lesions [124]. Among the oral microbial
population, Streptococcus infantis consistently increased in BQ chewers as compared to
past/non-chewers [126]. BQ chewers have also shown a higher abundance of S. infantis
and decreased levels of Parascardovia and Streptococccus [124]. Another study reported a
decrease in microbial diversity and richness in saliva following BQ chewing [127]. However,
the study lacked microbiome analysis, so species-wise changes in the oral microbiota were
not well understood. Tables 2 and 3 summarise some more studies on oral microbiome
changes associated with OCs.
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Table 2. Oral Microbiome alterations associated with OCs.

Bacteria References Clinically Useful Outcome Summary of Key Findings

Porphyromonas
gingivalis [128] May provide a diagnostic tool

for OSCC
Increase in the abundance was
noted in OC and leukoplakia.

Bacteroidetes,
Proteobacteria

[129]
Suggested biomarkers for

OSCC

Reduction in the abundance of
phylum Bacteroidetes and increased
detection of phylum Proteobacteria

in OSCC tumour.
Reported yeasts like Rhodotorula,

Geotrichum and Pneumocystis to be
linked with the tumour

[35] Reduction in the abundance of
Bacteroidetes in tumour tissue.

Neisseria [130]
Indicates a decrease in

bacterial richness due to
tobacco and alcohol abuse as a

cause of oral health
deterioration

Significant decrease in smokers

Prevotella

Significant reduction in smokers
and drinkers.

[131] Poor oral hygiene correlated
with OSCC Associated with OSCC

Capnocytophaga [130,132]

Indicates a decrease in
bacterial richness due to

tobacco and alcohol abuse as a
cause of oral health

deterioration

Significant reduction in smokers
and drinkers.

Actinobacteria [120,133]
Deviations in the abundance of

oral microbiome related to
OCC

Reduction in abundances in the
tumour samples

Fusobacterium
nucleatum;

Fusobacteria

[116] F. nucleatum as a prognostic
marker

Linked with aggressive tumour
behaviour through stimulation of

chemokines

[117,119,131,
133–135]

Association of F. nucleatum and
Pseudomonas aeruginosa with

OSCC.

Increase in the abundance was
noted in OC.

[35] Suggested biomarkers for
OSCC

Reduction in the abundance in
tumour tissue.

[136]
Suggested biomarkers for

OSCC including bacteria and
their metabolites.

Higher abundance of pathogenic
bacteria and lower abundance of
commensals observed in tumour

tissues compared to the
non-tumour ones.

Identified differential metabolic
activities in the tumour tissue.

Streptococcus
anginosus [137]

S. anginosus of dental plaque
linked to squamous cell

carcinoma

S. anginosus isolated from the
cancer tissue was identical to that
from the dental plaque implying
that dental plaque was the source

site of pathogenic S. anginosus

Methanogenic
archaea [138]

Prevalence of methanogens in
tobacco smokers and their

transmission to non-smokers

Presence of Methanobrevibacter
oralis and M. smithii in the oral

fluid of tobacco smokers.
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Table 3. Oral microbiome alterations concerning BQ and commonly associated abusive substances
(tobacco and alcohol).

Bacterial rRNA
Amplification &

Sequencing

Subject Count &
Mean Age (years) Region Results References

V3–V4 region N = 22 India
BQ chewers exhibit overall

decreased bacterial diversity
and richness

[23]

V3–V4 region N = 43; Age—
37.9 ± 6.19 Sri Lanka

Altered oral microflora in BQ
chewers: increased abundance of

periodontal pathogens
(Actinomyces, Tannerella, and

Prevotella), and decreased
abundance of cariogenic pathogens

(Streptococcus, Lautropia, and
Actinobacillus)

[139]

V3–V5 region N = 122; Age not
provided Guam

BQ chewers showing oral lesions
higher levels of Oribacterium,

Actinomyces, and Streptococcus
[124]

V1 region N = 22; Age—58 Brazil

Neisseria abundance decreased in
smokers and drinkers than controls.
Smokers had a significant increase

in Prevotella and Capnocytophaga
and reductions in Granulicatella,

Staphylococcus, Peptostreptococcus,
and Gemella. Smokers/drinkers had

lower levels of Fusobacteria

[130]

V4 region N = 30; Age-62 USA

Reduction in Firmicutes and
Actinobacteria while the increase in
Fusobacteria in oral tumour samples

of the smokers

[120]

V4 region N = 252; Age—53 Taiwan

Higher abundance of Cloacobacillus,
Gemmiger, Oscillospora, and

Roseburia in the saliva of smokers
and chewers than controls.

[19]

V4 region N = 363; Age—58
(media) USA

Higher abundance of Dialister in
oral rinse samples of smokers than

controls.
[119]

V3–V4 region N = 55; Age not
provided Pakistan

Acidogenic and aciduric bacteria
including Veillonella, Streptococcus,
Leptotrichia, and Serratia showed

increased abundance in BQ
chewers.

[140]

Thus, dysbiosis in long-term exposure to substances like betel nut, tobacco, and alco-
hol has been shown to be associated with OSCC. Species of Streptococcus, Prevotella, Rothia,
Veillonella, Porphyromonas, Gemella, Peptostreptococcus, Porphyromonas, Micromonas, Dialister,
Tanerella, Exiguobacterium oxidotolerans, Staphylococcus aureus, Eubacterium saburreum, and
Capnocytophaga were found to be elevated in oral and oesophageal cancer tissues as reported
by previous studies [24,110]. Hooper et al. (2007) also observed significant differences
between the microbial composition of tumorous and non-tumorous tissues [141]. In general,
the cancer site’s microbiota was composed of saccharolytic and aciduric species [141]. The
association of these bacteria with OSCC can be explained by inflammation-induced geno-
toxicity in epithelial cells caused by endotoxins [142]. Prevotella melaninogenica, P.intermedia,
P. nigrescens, and P. veroralis have been frequently associated with OC patients [143]. The
presence of other bacteria in the saliva of OC patients includes Capnocytophaga gingivalis,
Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis [25]. Porphyromonas
gingivalis is a keystone pathogen in adult periodontitis. These bacteria have also been
suggested as diagnostic oncogenic markers [108,110]. A study by Zhang et al., 2020 [32] has
shown that Peptostreptococcaceae incertae sedis, which occupied 0.04% in the normal oral buc-
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cal mucosa, escalated to 0.36% in OSCC sites and therefore might be a “keystone” pathogen
with a critical role in carcinogenesis [32]. In earlier studies by Pushalkar et al., 2011;
2012 [144,145] Streptococcus and Rothia were found to be significantly lower as opposed to
Fusobacterium in the cancer samples in comparison to normal and control samples [144,145].
Phylum Bacteroidetes was reported in higher abundance in OSCC patient’s cancerous and
as well as normal tissues in comparison to pre-cancer and healthy control subjects [35].
Hence, this may serve as a biomarker of OSCC diagnosis. P. gingivalis, an intracellular bac-
terium, is an oral cavity coloniser [25]. In addition to causing periodontal destruction [25],
it is potentially oncogenic by inhibition of mitochondrial apoptosis in the epithelial cells,
which is regulated by the activation of Jak1/Akt/Stat3 signalling [113]. Patients with high
levels of plasma antibodies against P. gingivalis have been shown to be at high risk of
developing pancreatic and oesophageal cancer [146]. Elevated levels of F. nucleatum and
P. gingivalis can be considered an indicator of tissue malignancy promoting cellular invasion
and migration in OCs [25]. Zhou et al. (2020) proposed consortia of 12 bacteria, including
Streptococcus, Microbacterium, Fusobacterium, Brevundimonas, and Rhizobium, with potential
usage as biomarkers for predicting the risk of OSCC [147]. Unlike bacteria, there is very
little evidence to associate fungal infections with OC [113].

5. Approach for the Reversal of Oral Microbiome Dysbiosis

The dysbiosis of the gut, skin, oral, and vaginal microbiome has been linked to many
diseases and excellently reviewed [24,148–154]. Changes in microbial communities of the
abovementioned human ecosystems and their application of probiotics—the living micro-
bial strains—as an addition to diet, have gained interest in recent years [155–159]. Probiotics
confer promising oral health benefits by restoring the balance of the oral microbiota [160].
Therefore, the oral cavity may be a potential target for probiotic interventions [161]. How-
ever, there are limited studies on the effects of probiotics on oral microbiome dysbiosis.
Bifidobacterium, Lactobacillus, and Streptococcus strains are the most studied and qualified
probiotic candidates [162,163]. In one of the most prevalent chronic oral diseases, dental
caries, in both children and adults, the composition, structure, and function of oral micro-
bial communities have been found to change [109] with microbial imbalance in terms of the
dominance of acidogenic and acid-tolerant Gram-positive bacteria. Lactobacillus, Bifidobac-
terium, and Streptococcus have been reported to be effective in preventing dental caries [162].
Furthermore, diseases like periodontitis are one of the key oral diseases leading to OC,
and gingivitis and periodontic infections explain the definite ability of certain probiotic
lactobacilli as an antagonistic aid to the active pathogenic bacteria such as Porphyromonas
gingivitis and Aggregatibacter species [164,165]. Ahuja and Ahuja (2021) reviewed the ran-
domised controlled trials (RCTs) for the use of probiotic strains in the cases of chronic
generalised periodontitis, concluding the beneficial effects of probiotic Lactobacillus reuteri
in reversal to eubiosis state and/or improving clinical parameters [166]. The strains of lactic
acid bacteria, Lacticaseibacillus paracasei 111 and Lacticaseibacillus paracasei 141, formulated
into oral tablets were demonstrated to diminish the levels of periodontal pathogens by
bacteriocin production and coaggregation activity in a clinical study [167].

In an interesting study by Terai et al. (2015), the effects of new probiotic candidates
for potential oral health benefits were studied [168]. Out of 896 oral isolates derived from
healthy subjects, 14 Lactobacillus and 36 Streptococcus strains showed key beneficial features
such as no production of volatile sulphur compounds or water-insoluble glucan, exhibiting
higher antibacterial activity against periodontal bacteria and higher adherence levels to
oral epithelial cells [168]. Probiotics affect the oral cavity indirectly by modulating innate
and adaptive immune function [169]. Lactic-acid-producing bacteria can interact with
immunocompetent cells, such as macrophages and T-cells, causing alterations in cytokines
production, leading to overall immunomodulation [169]. Considerable evidence related to
the crucial role of the microbiome in cancer progression, targeting the microbiome could
be used to enhance the efficacy of therapeutics, reduce their toxicity, and prevent cancer
development [170]. The members of Enterobacteriaceae, Fusobacterium, Haemophilus, Porphy-
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romonas, Prevotella, Streptococcus spp., and Veillonella have been found to be associated with
pre-cancerous lesions and cancer in the oral cavity [24]. Numerous malignancies depend
significantly on immune modulation. As probiotics play an important role in immune
modulation, their efficacy has been thoroughly investigated in various cancer types. The
probiotic products containing Lactobacillus and Bifidobacterium symbiotic associations in
the form of pre-biotics are also a new concept to consider for the treatment of various oral
diseases [171]. An earlier study also reported a similar concept of a symbiotic associa-
tion of Bifidobacterium longum and L. acidophilus, displaying the inhibition of linoleic acid
peroxidation as an antioxidant activity [172]. Thus, in relation to probiotic interventions
as a prospected tool for the treatment or prevention of OC, the Lactobacillus strains have
displayed various immunomodulatory, antioxidating, and apoptotic effects, in addition to
DNA damage prevention and epigenetic mechanisms in literature [173].

Furthermore, Lactobacilli spp. secrete postbiotics (biogenics, metabolites, cell-free
supernatants, and other waste products [174]) in the form of bacteriocin and reuterin (by
L. reuteri) with a broad spectrum of antimicrobial activity, inhibiting the overgrowth of
pathogenic as well as commensal bacteria [175,176]. In different studies, culture super-
natants of Lactobacillus rhamnosus GG, Lactococcus lactis MG5125, and Lactobacillus salivarius
MG4265 were found to inhibit the biofilms of Streptococcus mutans indicative of the produc-
tion of anticariogenic metabolites [176,177]. Various studies have explored the adjunctive
therapy potential of probiotics expressing anticancer activity by secretion of anticancer
agents, induction of apoptosis by means of reducing the COX2 (cyclooxygenase 2) expres-
sion (L. salivarius REN) as well as metabolite secretion (Acidobacter syzygii), and altering
mRNA expressions (L. plantarum) [177–180]. In another context, nisin, a bacteriocin pro-
duced by the oral probiotic species has been determined to reverse the effects of the
pathogens of the periodontal region, including Porphyromonas gingivalis, Fusobacterium
nucleatum, and Treponema denticola that are actively involved in enhancing the aggressivity
of OC via TLR/MyD88 mediated Integrin alpha5/FAK signalling [181].

Some recent advances in the identification of diverse oral microbiota have led to
investigative studies of Oral Microbiota Transplant (OMT), where attempts have been made
to transfer oral biofilms from a healthy donor to a patient with oral diseases such as caries or
periodontitis in order to modify the oral environment and to maintain good oral health [182].
These studies have focused mainly on glycosylation-based bacterial cell adherence to oral
cavity surfaces [183]. This concept is also supported by the expression of the arginine
deiminase system (ADS) by a group of oral streptococci present in a substantial proportion
of the oral microbiome [96]. Streptococcus dentisani or Streptococcus A12 have probiotic roles
pertaining to preventing the growth of cariogenic species like S. mutans and change in
acidic pH due to arginolytic activities, which critically contributes to pH homeostasis in
oral biofilms [24,81,184]. Another study by Cheng et al. (2017) demonstrated the ability of
Lactobacillus rhamnosus GG (LGG) to enhance the geniposide anticancer potential in human
oral squamous carcinoma cells (HSC-3) [185]. The alpha diversity of the saliva microbiome
increased significantly in the sample group that consumed the probiotic [155]. In our view,
this should be investigated further to reverse the decreased alpha diversity observed in
long-term BQ chewers [124].

In addition to the beneficial effects of probiotic microorganisms in the prevention or
inhibition of OC, several studies reflect similar findings in the cases of cancer-therapy-
induced oral mucositis. The potential of Lactobacillus reuteri to prevent oral mucositis
by Nrf-2 signalling mediated decrement of oxidative stress, has been explored [186]. A
meta-analysis of RCTs conducted in this regard revealed the significance of probiotics in
the mitigation and prevention of mucositis as evidenced by low incidences of the disease
in the probiotic groups [187]. Furthermore, according to a study utilising nanotherapeutics-
based approach employing probiotic strains, a potential for better admissibility due to
higher absorption and satisfactory targeted tumor activity in forms of oral medication,
has been observed, which could be a better lead for utilising a microbiome approach with
nanobiotechnological interventions for cancer patients [188]. In support of the following
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study, probiotics spores with chemotherapeutic drug activity can also be effectively utilised
for their pharmacological efficiency to surpass the rigid molecular barriers, due to a similar
colonising property in a rapid disintegrated hydrophobic protein form [189].

Thus, probiotics seem to be a potential explorable approach to reverse the oral micro-
biota dysbiosis leading to OC due to BQ chewing and other such consumed substances.
Detailed identification and comparisons of bacterial populations in the oral cavity under
different conditions, such as among the healthy, pre-cancerous, and cancerous populations,
may provide a lead for a promising probiotic consortium that could alter the oral microbial
ecology in BQ chewers reversing or relieving the adverse impacts of BQ on oral dysbiosis
and deteriorated oral health (Figure 5).
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6. Conclusions and Future Prospects

Populations with high betel nut chewing rates, tobacco, and alcohol consumption [117,190]
often exhibit a higher incidence rate of oral and pharyngeal cancers. OCs at early stages
are generally asymptomatic, and patients typically seek medical attention only when the
discomfort sets in. Thereby, the early benign stage of cancer is missed out, and only when
there is growth, ulceration, pain, excessive salivation, loosening of teeth, and difficulty
in swallowing do the patients seek medical help and advanced stages of OCs are diag-
nosed. Even after advances in cancer management, survival rates have not improved
significantly. Therefore, innovative diagnostic approaches should be explored as a priority
to identify patients at the pre-cancerous stage. This high-risk population of BQ chew-
ers and people with habits of other substance abuse should be made aware of a regular
oral mucosal check-up by dentists so that pre-cancerous lesions can be identified and
treated. Fortunately, pre-cancerous lesions in the oral cavity can be detected through visual
examination [191]. Numerous studies have pointed towards the role of oral bacteria in
carcinogenesis [192–194] and confirmed the carcinogenic effects of Fusobacterium nuclea-
tum and Porphyromonas gingivalis [28,115]; this could be good biomarker especially with
vulnerabilities due to betel nut, alcohol abuse, smoking [31], and poor oral hygiene [195].
However, whether the imbalance in the oral microbiota results in further oncogenic progres-
sion is still a matter of debate [79]. Nevertheless, it can be safely proposed that the OSCC
microenvironment “forces” the existent oral microbiome to ‘re-calibrate’ itself accordingly.
This inference is further supported by the fact that the tumour or its adjacent buccal sites
have bacteria with enhanced superoxide dismutase and lactoyl glutathione lyase activity,
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overcoming increased H2O2 and methylglyoxal in the tumour microenvironment [79,108].
Methylglyoxal can damage the biomolecules resulting in genotoxicity and disruption in
cellular functions. Hence, the oral microbiome, being very responsive to changes in its
environment, may be explored as a biomarker for the diagnosis of oral and oropharyngeal
cancers [196]. These oral microbiome alterations will help in the fast diagnosis of cancer
at its early stages if standardised protocols for sampling from different sites of the oral
cavity are developed for accurate comparisons of healthy and cancer patient profiles with
minimum error. The limitations of cultivation-based studies have been overcome following
the approach of metagenomics. Detection using 16S rRNA gene-based molecular methods
has certainly facilitated the discovery of previously undetected oral microbiome species
and the association between the oral microbiota and OC. Metatranscriptomics and metapro-
teomics studies of such complex microbial communities as the oral microbiome can further
advance this identification and comparison of the activities of microbes in different oral
samples [197]. Yost et al. (2018) reported an increased expression of virulence genes in
tumour and their adjacent sites, which could be related to cancer progression [79]. Similarly,
another approach using metabolomics has been suggested for studying oral biofilms and
OC [198,199]. Such studies will certainly enhance our understanding of oral microbiome
dynamics and provide new directions on how dysbiosis arising in a different lifestyle and
disease conditions can be successfully reversed. Moreover, with the success story of Faecal
Microbiota Transplant (FMT) for the treatment of persistent Clostridium difficile infections, it
is evident that the microbiome can be replenished and restored [200].

Thus, with regard to the reversal or restoration of oral dysbiosis to eubiosis state,
there seem to be sufficient indicators that the probiotic approach can be helpful, as already
achieved in the case of the gut microbiome. Further studies should be targeted towards
the development of beneficial probiotic cocktails to restore oral cavity microbiota, for
example, in BQ chewers to ameliorate its destructive effects through precise identification
and detailed analysis of specific bacterial strains in oral microbiomes of healthy individuals.
This probiotic-cocktail-based prophylactic treatment will require region/locale-specific
customisation in terms of the composition of the specific probiotic bacterium. Moreover, a
series of systematic epidemiological bacterial genome mapping studies, testing of specific
bacterial species combinations, and clinical validation studies are warranted.
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