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Abstract: An emerging multidrug-resistant pathogenic yeast called Candida auris has a high potential
to spread quickly among hospitalized patients and immunodeficient patients causing nosocomial
outbreaks. It has the potential to cause pandemic outbreaks in about 45 nations with high mortality
rates. Additionally, the fungus has become resistant to decontamination techniques and can survive
for weeks in a hospital environment. Nanoparticles might be a good substitute to treat illnesses
brought on by this newly discovered pathogen. Nanoparticles have become a trend and hot topic in
recent years to combat this fatal fungus. This review gives a general insight into the epidemiology
of C. auris and infection. It discusses the current conventional therapy and mechanism of resistance
development. Furthermore, it focuses on nanoparticles, their different types, and up-to-date trials to
evaluate the promising efficacy of nanoparticles with respect to C. auris.
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1. Introduction

Fungi are eukaryotic organisms that can be found anywhere. They can be found
indoors on surfaces and in the air, on people’s skin, inside the body, and outdoors, for
example, in soil and on plants. Although there are countless varieties of fungi, only a
few of them can truly cause danger to people. Fungal infections are a significant threat
to public health as they are associated with life-threatening mycoses and mortality [1,2].
Fungal infections are one of the most common causes of death globally, affecting more
than 300 million individuals and resulting in over 2 million deaths annually. In addition,
the challenge of mycoses is exacerbated when new pathogenic fungi appear due to their
capacity to withstand the few available antifungal drugs, significantly decreasing the
efficacy of treatments [3–7]. As seen from this angle, Candida auris (C. auris) infections
have grown to pose a serious hazard to human health worldwide as it is difficult to be
diagnosed by conventional laboratory techniques, and some strains are resistant to all kinds
of antifungal drugs that are frequently utilized to combat Candida infections [8,9].

Some fungi are commensal organisms that reside on the skin and in the digestive
tract; if they leave their normal environment, they are thought to pose a risk of developing
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various fungal infections. For instance, the danger of infection spreading has increased due
to a dramatic rise in the usage of antibiotics, chemotherapeutic treatments, and immunosup-
pressive medications [10,11]. Due to the increase in the use of invasive medical devices and
procedures (such as catheters and hematopoietic transplantation), these commensal fungi
also have a greater potential to enter tissues and blood and cause invasive diseases [12,13].
Additionally, recent substantial health problems unrelated to mycoses, such as seasonal
influenza outbreaks and the SARS-CoV-2 pandemic, have exacerbated the intensity of the
population’s diseases and susceptibility to secondary fungal infections [14–16].

When a patient fails to respond or no longer responds to a treatment when it is
administered at the advised dosage, therapeutic failure and the development of resistance
occur. Several factors lead to therapeutic failure, some related to the patient and others
related to the drug. For instance, poor compliance, co-infection, cavitary lesions and
abscesses near the site of infection, and obesity may relate to the patient [17]. In addition,
immunocompromised patients receiving immunosuppressive drugs are more vulnerable
to treatment failure, because the drug is not accompanied by a robust immune response
in the fight against infection [18]. Other factors may relate to drugs, such as non-linear
pharmacokinetics, drug–drug interactions, selectivity, toxicity, and spectrum of activity [19].

There are only five classes of drugs available for treating fungal infections. Since fungi
are eukaryotic cells, such as mammalian cells, it is difficult to identify specific therapeutic
targets against them. These previous issues drive modern research to nanoparticles, as
carriers or adjuvants, to improve the efficacy and performance of current medication [20,21].
This review will provide insights into current trends in nanoparticles and their mechanisms
to combat multidrug resistance (MDR) fungal infection.

2. Fungal Infections

Fungal infection can be categorized according to the affected site of infection, into
superficial, cutaneous, subcutaneous, mucosal, and systemic infection. The main three
pathogenic fungi in humans are Candida, Aspergillus, and Cryptococcus which account for
90% of fatalities in either immunocompetent or immunodeficient people. Pneumocystis,
Coccidioides, and Histoplasma are three other pathogenic fungi that can seriously harm tissues
and even kill people [22]. The species of the infected fungus and the state of the host’s
immune system have a significant impact on the type of infection [23]. For example, nearly
one billion people have superficial fungal infections, which are among the most prevalent
fungal illnesses [24]. Conversely, invasive fungal infections are the most dangerous. These
are brought on by inhaling or injecting fungal spores, or by an imbalance of the host’s
commensal fungi [25,26].

Candida species (spp.) are commensal fungi found on the human skin, mucosa, or
intestinal tract; their growth and proliferation are highly restricted in people with a healthy
immune system. According to previous studies, the most common pathogenic Candida spp.
that cause human infections are Candida parapsilosis, Candida albicans, Candida krusei, Candida
glabrata, and Candida tropicalis. Recent research demonstrates that C. auris has spread around
the world as an MDR fungal infection that significantly increases patient death [27,28].
Furthermore, the CDC’s data show that C. auris most closely mimics infectious, MDR
bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) [9].

Cryptococcus spp. cause cryptococcosis which is a widespread invasive fungal infection
that poses serious therapeutic difficulties and high fatality rates [29,30]. However, due
to advances in molecular science and studies on epidemics, C. gattii was recognized as
a separate species in 2002 [31–33]. Cryptococcal infection can result in pneumonia in
immunodeficient patients and is brought on by the inhalation of cryptococcal spores into
the lungs. However, in immunocompetent hosts, the infection may be latent without any
symptoms. Unfortunately, this cryptococcal infection may spread to any organs, including
the brain, and cause lethal cryptococcal meningitis [34,35].

Aspergillus is a saprophytic fungus that grows in soil and has over 200 species. As-
pergillus spp. is widespread and frequently isolated from cultures of the respiratory tracts of
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asymptomatic individuals. Conversely, invasive aspergillosis leads to chronic obstructive
pulmonary disease (COPD) [36,37]. The most frequent species associated with invasive
infection, especially in an immunodeficient patient, is A. fumigatus A. flavus, A. niger, and A.
terreus also cause invasive infections [38].

Candida auris Infection

The Candida species, a diploid fungus, is regarded as an opportunistic pathogen that
can harm people’s health and cause fatal illnesses. Candidiasis is ranked as the fourth noso-
comial infection with a high mortality rate ranging from 35 up to 100% in immunodeficient
patients [8,39]. C. auris is a newly discovered pathogenic fungus that was first discovered in
Japan in 2009 [40]. Infections with C. auris have been documented in 45 nations in Far East
Asia, the Middle East, Africa, Europe, North America and South America, demonstrating
its worrying rapid evolution worldwide [9]. Moreover, many clinical reports demonstrated
that C. auris outbreaks are linked to the COVID-19 pandemic [41–46].

C. auris has been divided into four major separate genetic clades, the South Asian,
East Asian, South African, and South American clades, based on geographic origin and
genomic data gained by whole genome sequencing and the first isolated locations [28].
Recently, it was revealed that a fifth clade came from Iran [47]. Although C. auris is most
frequently found on human skin, multiple investigations have shown that the organism
may also be isolated from the mucosae of the mouth, esophagus, and gut [28]. Horton
et al. reported that C. auris produced biofilms on pig skin and in synthetic sweat media
that mimicked the physiological circumstances of the axilla [48]. Acquiring infection from
contact with soiled surfaces is significantly more troubling, where C. auris biofilms have
been proven to withstand artificial dehydration [48]. Similarly to other significant Candida
infections, C. auris primarily affects a wide range of vulnerable people, including those
with a deficient immune system, a chronic illness such as uncontrolled diabetes, or those
taking immunosuppressive medications [49]. Currently, it is documented that C. auris can
infect people and cause a wide range of illnesses, including fungemia, wound infections,
urinary tract infections, meningitis, myocarditis, skin abscesses, and bone infections [50,51].

According to the most recent systematic review and meta-analysis study by Chen
et al. [52] over 4733 cases of C. auris were documented in around 33 countries, with
most cases in South Africa, the USA, India, Spain, the UK, South Korea, Colombia, and
Pakistan. The majority of cases were identified between 2013 and 2019, peaking in 2016
and then declining after that. Clades I and III were the most common, with more cases
documented and an expanded geographical range. Furthermore, 32% of the patients had
bloodstream infections which differed based on the clades. The fluconazole, amphotericin
B, caspofungin, anidulafungin, and micafungin resistances in C. auris were 91, 12, 12, 1.1,
and 1%, respectively. The total mortality rate of C. auris infections was 39%. Moreover,
subgroup analysis revealed that the mortality rate was lower in Europe (20%) and greater
in those with bloodstream infections (45%) [52].

C. auris shares virulence features with the majority of other Candida spp., including
C. albicans, C. tropicalis, and C. parapsilosis, which belong to the CTG clade, or species that
translate the CTG codon into serine rather than leucine. [53]. These traits include biofilm
formation, yeast-to-hyphae transition, and phenotypic switching [54–56].

3. Current Conventional Medications

There are roughly five classes of conventional antifungal drugs that can be used
for topical and systemic antifungal therapies, including azoles, polyenes, echinocandins,
allylamines and pyrimidine analogs (Figure 1) [57,58]. Polyenes have been identified as
being produced by Streptomyces spp., in which they play a role as a natural defense
mechanism. This class includes amphotericin B and nystatin. They work by attaching to
the ergosterol present in the fungal cell membrane, generating holes there, and increasing
ion permeability. This alters the ion gradient inside and outside the cell membrane, loss
of cell integrity, and ultimately results in fungal cell death [59,60]. The most effective
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polyene for invasive fungal infections is amphotericin B, which works by generating an
extra-membranous fungicidal sterol sponge that impairs membrane integrity [61]. Another
way by which amphotericin B acts is by the accumulation of reactive oxygen species (ROS),
which in turn disrupt the mitochondria, proteins, DNA, and membranes [62,63].
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Figure 1. Current conventional anti-fungal drugs and their mechanism of action. (Created with
BioRender).

The azole class includes triazole and imidazole [64]. This class acts by blocking the
ergosterol synthesis pathway. They bind to and inhibit the lanosterol 14-α-demethylase
enzyme that is responsible for the rate-limiting step in the conversion of lanosterol to
ergosterol [65,66]. Lanosterol 14-α-demethylase is produced by the genes ERG11 in yeast
and Cyp51 in mold [67].

The echinocandin class mostly includes caspofungin, micafungin, and anidulafungin.
They target the β-1,3 glucan synthase and interfere with the integrity of the fungal cell
wall [68,69]. The FKS family of genes encodes the 1,3-D glucan synthase enzyme [69].
Although the safety profiles of these antifungal drugs are good, the lipid side chains limit
their oral absorption. They are effective against both planktonic cells and biofilm-forming
cells (sessile cells). Similarly, aspergillosis has been treated with this class [70].

Allylamines work by blocking the squalene epoxidase that converts squalene into
lanosterol, thus inhibiting the formation of ergosterol and thereby inhibiting fungal growth.
They have a broad spectrum of activity and low toxicity [71,72].

The antimetabolite, 5-flucytosine (5-FC), is the fifth antifungal class. They enter the
fungal cell via cytosine permeases, where it is deaminated to 5-fluorouracil. This prevents
the synthesis of both nucleic acids (DNA and RNA), which therefore prevents the synthesis
of proteins [73]. Moreover, 5-FC can penetrate the blood–brain barrier to treat fungal
infections of the central nervous system [74].

The main challenge for current conventional drugs is to combat and overcome MDR
fungi such as C. auris, as it is naturally resistant to one or more kinds of commercially
available antifungals. Fluconazole is extremely resistant to most C. auris isolates, but the
minimum inhibitory concentration (MIC) analysis also revealed that certain strains are
also resistant to all kinds of antifungal medications [27]. The best method of combating C.
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auris is not yet established. Echinocandins are recommended as the first line of treatment
since they are effective against most isolates in the US [75,76]. Additionally, isavuconazole
was discovered to be effective against a range of C. auris isolates despite their resistance to
azoles [75].

4. Resistance of C. auris to Conventional Antifungals

C. auris is a recent trend, unlike other candida spp., due to its persistent resistance has
subsequently evolved to be MDR-resistant. Furthermore, C. auris generates chronic and
fatal infections with poor prognoses, especially in susceptible people [77]. According to
a study by Osei Sekyere, nearly half of all C. auris isolates from various studies exhibited
resistance to fluconazole (44.29%), the most commonly used azole antifungal, followed
by amphotericin B (15.46%), voriconazole (12.67%), caspofungin (3.48%), and flucytosine
(1.95%). Fortunately, it seems that the yeast still responds to echinocandin, so this can be
used as the first line of treatment [78].

C. auris uses a variety of different molecular strategies to bypass the effects of antifun-
gals (Figure 2). Briefly, C. auris develops azole resistance by overexpressing or developing a
point mutation of the ERG11 gene, which encodes the lanosterol-14-α-demethylase enzyme,
preventing azoles from binding their target. Additionally, C. auris can reduce the internal
concentration of antifungals by overexpressing the MDR-1 gene, which encodes the major
facilitator superfamily (MFS) drug exporter pump, and the CDR-1 gene, which encodes the
ATP-binding cassette (ABC) drug exporter pump [79–81].
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Figure 2. Development of resistance in C. auris against conventional medication. (a) C. auris develops
resistance to azoles through overexpression and point mutation in ERG11 gene, which encodes the
lanosterol-14-α-demethylase enzyme. (b) C. auris develops resistance to echinocandins through
mutation or substitution in FKS-1 gene, which encodes the β-1,3 glucan synthase enzyme. (c) C. auris
develops resistance to polyenes through mutation in ERG and so impairs ergosterol biosynthesis.
(d) C. auris also can build biofilm and develop resistance to almost all antifungal classes. (Created
with BioRender).

Echinocandin resistance is developed through mutation or substitution in the FKS-1
gene that encodes β-1,3 glucan synthase enzyme, which is a critical component in the
fungal cell wall [80,82,83]. Furthermore, resistance to amphotericin B is developed through
mutation in ERG11 gene, thereby impairing ergosterol biosynthesis [84]. Amino acid
substitution in the FUR-1 gene (F211I), which is involved in 5-FU metabolism, leads to the
development of 5-FC resistance [83].

C. auris also can build biofilm and develop resistance to almost all antifungal classes.
For instance, in a previous study, Sherry et al. demonstrated that sessile C. auris cells
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have higher MICs for several antifungals than planktonic cells [55]. Unfortunately, the
biofilm not only increases the resistance and virulence of inside fungal communities but
also enhances the upregulation of the ABC and MSF exporter pumps by 2 to 4 folds [55,81].

It is essential to find new strategies for fighting C. auris because of the widespread
antifungal resistance and high rates of morbidity and mortality. Nanoparticles appear to
offer a promising replacement for resistant drugs. In addition, nanoparticles can be used
with antifungal medications to create a powerful synergistic impact that can effectively
combat MDR C. auris.

5. Nanoparticles (NPs) and Nanotechnology (NT) to Combat MDR C. auris

To effectively treat fungal infections and circumvent the fungal multi-resistance to
existing medications, the creation of drug delivery systems based on nanoparticles (NPs)
is a potential substitute for creating novel pharmaceutical formulations [85,86]. NPs can
be constructed from lipids, polymers, or metals [87–89]. They offer many advantages
over conventional drugs [90,91]. They are more targeted to the site of infection, possess a
larger surface area, possess fewer toxic effects and side effects, and rarely develop resis-
tance [92–96]. NPs can be divided into three categories: organic, inorganic, or polymeric.
Carbon nanoparticles are further categorized based on their size, shape, chemical com-
position, and physical characteristics [97–99]. Organic NPs are biodegradable, non-toxic,
and sensitive to heat and light. Examples include polymers [100–103], liposomes [104,105],
micelles [106]. and dendrimers [107,108]. This type of NP is the first choice in the biomed-
ical field, especially for medication delivery [97,98]. Inorganic NPs can be constructed
from metal or metal oxide [109]. Metal NPs commonly include Ag [87,110–112], Au [113],
Cu [114–117], Si [118], and Se [119,120]. However, metal oxide NPs are produced when the
characteristics of the metal particles are altered in the presence of oxygen, boosting their
reactivity and effectiveness. Metal oxide NPs commonly include NO [121], ZnO [122–124],
CuO [125], TiO2 [126], and Fe2O3 [127]. Moreover, carbon NPs may include black carbon,
carbon nanotubes, carbon nanofibers, and graphene [97,98].

5.1. Metallic NPs
5.1.1. Silver Nanoparticles (AgNPs)

AgNPs are now recognized to have a strong anti-C. albicans biofilm action. Previous
studies have proven that silver nanoparticles are effective against MDR pathogens and
nosocomial infections [128–131]. Roberto et al. demonstrated that AgNPs can exert promis-
ing antifungal activity against MDR C. auris, whether present in planktonic form or sessile
in biofilm [87]. In their study, they tested different strains from different clades and proved
that AgNPs exhibited strong action against the fully developed and preformed biofilm of
C. auris, regardless of their clade. Additionally, they found that AgNPs have a powerful
effect on preventing the production of biofilm by the various C. auris strains. Moreover,
AgNPs may affect the structure of biofilm in some strains.

In a parallel study, Lara et al. proved the inhibitory effect of AgNPs against the ability
of C. auris to develop biofilm on medical surfaces such as silicon elastomer catheters and
elastic bandage fibers. They synthesized pure and round AgNPs with a size range of 1
to 3 nm and discovered their dose-related activity against C. auris with an altered and
disrupted cell wall. Additionally, they showed that elastic bandage wraps maintained the
fungicidal action of AgNPs even after numerous washings, demonstrating their long-lasting
antifungal potency and efficiency [129].

Sheeanana et al. developed a new coating surface system, consisting of a copper
sheet coated with a cluster of AgNPs, through an ion exchange reaction and a reduction
reaction [132]. This developed surface passed 1 to 7 days of tests for pathogenic C. auris.
Following the prolonged exposure intervals, it was discovered that more than 90% of the C.
auris were no longer viable.

In the most recent study, Reem et al. proved the promising activity of AgNPs to combat
C. auris growth and biofilm formation [133]. In their study, they test the susceptibility of
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eight isolates of C. auris against AgNPs and showed that over 80% of biofilm development
was prevented at a comparatively high AgNPs concentration (6.25 g/mL). In contrast,
Malik et al. synthesized chemically-stable AgNPs (CC-AgNPs) with a green synthesis
method using Cynara cardunculus extract as a reducing and capping agent. They tested the
potency of their AgNP system against C. auris MRL6057 and found that CC-AgNPs can
combat C. auris through direct inhibition of the cell cycle and arrest the cells in the G2/M
phase [134].

5.1.2. Bismuth Nanoparticles (BiNPs)

Vazquez-MunozIn et al. (at 2020) recognized the antibacterial characteristics of ele-
mental BiNPs, especially their anti-candidal activity, particularly against C. albicans [135]. In
the same year, they derived another study and proved that BiNPs also have potent activity
against different strains of C. auris [136]. In a later study, they found a significant anti-C.
auris activity of BiNPs with a MIC ranging from (1 to 4 µg/mL), regardless of their clades.
However, BiNPs seemed to have a moderate inhibitory effect on biofilm. Despite this lower
activity, BiNPs can alter the biofilm structure and, in some cases, the cell morphology of
the cells within biofilms.

5.1.3. Trimetallic NPs

Majid Kamli et al. developed a novel trimetallic NP system (Ag-Cu-Co), using Salvia
officinalis leaves [137]. According to their investigation, C. auris cells exposed to these
trimetallic NPs experienced cell cycle arrest in the G2/M phase, a breakdown of the
mitochondrial membrane, the release of an apoptotic marker, and apoptosis at an MIC
ranging from 0.39 to 0.78 µg/mL. In addition, compared to their monometallic competitors,
Ag-Cu-Co trimetallic NPs have stronger antibacterial characteristics. This is because of the
synergistic impact of the Ag, Cu, and Co present in the as-synthesized nanoparticles.

5.2. Metal Oxide NPs

Levi Cleare et al. created a novel N-acetylcysteine S-nitrosothiol NP (NAC-SNO-
NP) system that promotes a prolonged release of nitric oxide (NO) [121]. Using this
NP model, they want to mimic the natural NO which is considered an important com-
ponent in the innate immune system and possesses cytotoxic activity against a variety
of pathogens [138–140]. They demonstrated that this NP system can perfectly reduce
the growth of C. auris and decrease the development of biofilm by more than 70% at
10 mg/mL [121]. Notably, the NP architecture itself exhibited an intrinsic inhibition of C.
auris, demonstrating that the antifungal activity was a combined consequence of the NP
itself and the released NO. In another study, Vargas-Cruz et al. prepared a nitroglycerin–
citrate–ethanol (NiCE) catheter lock solution and evaluated its efficiency in eradicating
C. auris biofilms in central line lumens by converting nitroglycerin into NO [141]. Addi-
tionally, they compared the effect of the NiCE catheter lock solution with widely accepted
antifungal drugs, such as caspofungin, micafungin, voriconazole, liposomal amphotericin
B, and others, and proved that NiCE possesses a superior effect in eradicating C. auris
biofilms [141].

Moreover, Sherin Philip et al. synthesized iron oxide (Fe2O3) NPs that were stabilized
by supramolecular β-cyclodextrin and evaluated their activity in combatting C. auris. They
showed that Fe2O3 NPs can inhibit C. auris with an MIC of around 500 µg/mL [142].

5.3. Nanofibrous Membrane

Liu et al. generated a novel form of polylactic acid-hypocretin A (PLA-HA) nanofi-
brous membrane. They conducted in vitro and in vivo studies to evaluate the PLA-HA-
based antimicrobial photodynamic therapy (aPDT) effects in combatting C. auris infec-
tion [143]. aPDT is a novel antimicrobial strategy that uses a non-toxic photosensitizer
(PS) and appropriate light sources to stimulate the generation of reactive oxygen species
(ROS), which can destroy pathogenic microbes [144,145]. Hypocrellin A (HA) is a natural
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lipid-soluble pigment that belongs to the perylenequinonoid class and is considered a novel
form of PS [146]. Liu and his colleagues provided evidence that PLA-HA is an effective
antifungal agent for treating superficial C. auris infections. They concluded that this is
because intracellular ROS generation causes yeast cells to die [143].

5.4. NPs Loaded with Commercially Available Antifungal Drugs

In a recent novel study, Henry et al. synthesized chitosan-(poly lactide co-glycolide)
NPs (C-PLGA NPs) as a nanocarrier system and loaded it with fluconazole. The sustained
drug release from this nanocarrier system is pH-dependent. For instance, at a pH of 7.0, 34%
of the release happened and at a pH of 4, 83% of the release happened [147]. Moreover, they
evaluate the efficacy of C-PLGA-loaded NPs versus MDR C. auris and demonstrated that
this nano-formulation significantly increases the antifungal activity up to 64-fold compared
to conventional fluconazole [147]. Fayed et al. synthesized zinc oxide NPs loaded with
caspofungin and demonstrated that these loaded NPs can prevent the phenotypic changes
in C. auris that lead to the development of caspofungin resistance [148].

In another study, Gabriel Davi et al. developed a nano-emulsion system and loaded it
with amphotericin B. Additionally, they tested its antifungal potency against C. auris using
an in vivo model of Galleria mellonella and proved the significant activity of this loaded
nano-emulsion system compared to free amphotericin B [149].

In a similar manner, the same team conducted another trial using micafungin-loaded
nano-emulsion and test its in vitro and in vivo efficacy and toxicity using Galleria mellonella
model [150].

5.5. NPs Loaded with Natural Drugs

Essential oils (EOs) are an effective option for treating fungi and acting as a modulator
of fungal biofilms [151,152]. De Alteriis et al. encapsulated Lavandula angustifolia EOs,
extracted from a lavender plant, in liposomes and investigated their effectiveness against
C. auris persister-derived biofilm. They concluded that this loaded liposome could combat
both primary and persister C. auris biofilm through the production of ROS that may affect
the expression of certain genes involved in biofilms [153].

5.6. Nanotechnology (NT) for Diagnosis of C. auris

Luis et al. constructed a novel system for the selective and sensitive detection of C.
auris in clinical samples using a nanoporous anodic alumina (NAA) biosensor that had been
encapsulated with oligonucleotides. The NAA support is firstly packed with rhodamine B,
a fluorescent reporter dye, and then capped with a variety of oligonucleotide sequences
that precisely hybridize with distinct regions of the C. auris genome. Therefore, the capping
oligonucleotide prevents dye release by obstructing pores. In the presence of C. auris
genomic DNA, the capping oligonucleotide is displaced (due to favorable oligonucleotide–
DNA hybridization), uncapping the pores and permitting dye transportation. Through
this system, C. auris can be detected at concentrations as low as 6 CFU/mL, making it
possible to diagnose clinical samples in just one hour without the need for DNA extraction
or amplification procedures first [154].

6. Expected Mechanisms of NPs to Combat MDR C. auris

The exact mechanism of action of NPs is not known; however, many reports and stud-
ies suggest the general mechanisms of free NPs or loaded NPs to exert their antimicrobial
activity. In general, the size, shape, and coating agents of NPs have a significant impact on
their antifungal activity. Firstly, NPs interact with the outer surface of fungi and form aggre-
gates, leading to the formation of pits in the cell wall. As a result, a decrease in membrane
permeability and loss of membrane fluidity may occur, resulting in a disruption of energy
transmission and cell death (Figure 3). Formed pits let NPs enter the fungal cell. Once
entered, they lead to the accumulation of ROS that trigger and enhance apoptosis. ROS can
disrupt macromolecules in the cell, resulting in lipid peroxidation, protein modification,
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enzyme inhibition, inhibition of the electron transport chain, RNA or DNA damage, and
therefore cell death [155–157].
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Figure 3. Expected mechanism of free and loaded NPs for combatting C. auris infection. In the case
of free NPs, they accumulate at the outer surface of the cell, disrupt the cell wall, and form pits
through which they enter the cell and then disrupt the cell membrane, resulting in a decrease in
membrane permeability, and a loss of membrane fluidity may occur, resulting in a disruption of
energy transmission and cell death. Once NPs enter through formed pits, they bind to and disrupt
vital cell components and interrupt significant intracellular signaling pathways. On the other hand,
NPs increase oxidative stress, which leads to an accumulation of ROS, which have the capacity to
disrupt macromolecules in the cell, resulting in lipid peroxidation, protein modification, enzyme
inhibition, inhibition of electron transport chain, and RNA or DNA damage, thereby promoting
cell death. In case of loaded NPs, they carry antifungal drugs and facilitate their transport to its
specific targets inside the fungal cell. Hence, loaded NPs possess a synergistic activity, transport
antifungal drugs to the target site, provide a large surface area of both NPs and antifungal drugs,
leading to more toxic action on fungal cells, and combat MDR pathogens, such as C. auris. Moreover,
C. auris tends to form biofilm and become resistant to conventional antifungals. Loaded NPs have
the capacity to the penetrate extracellular matrix of biofilm, transport antifungal agents inside the
biofilm, and exert their fungicidal effect. (Created with BioRender).

NPs may bind to and disrupt vital cell components. Furthermore, they may interrupt
significant intracellular signaling pathways [137,156]. They can penetrate the biofilm struc-
ture and may change the cell morphology or disrupt sessile organisms within biofilm [87].

Specifically to AgNPs and splatted Ag+, the essential functions of fungal cells are con-
siderably changed by the modulation of the transcriptome, epigenome, and metabolome.
Moreover, they may cause the down-regulation of the genes involved in the tricarboxylic
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acid cycle, redox metabolism, ergosterol production, and lipid metabolism causing struc-
tural alterations, primarily at the level of biological membranes [158–160].

Synergistic activity may occur when NPs are loaded with antifungal drugs. In this case,
they act by dual mechanisms: they transport antifungal drugs to the target site, provide a
large surface area of both NPs and antifungal drugs, leading to more toxic action on fungal
cells, and combat MDR pathogens [147,161] (Figure 3).

7. Conclusions and Future Perspectives

C. auris is a newly emerged fungus and may cause outbreaks of nosocomial infection.
C. auris infections have become a severe threat to human health across the world because
they are difficult to identify using normal laboratory approaches and certain strains are
resistant to all antifungal classes. Thus, alternative therapies that are both safer and more
effective are urgently needed. Moreover, the increase in MDR fungal infections and the
scarcity of clinically effective antifungal drugs signals the need for the development of
new antifungal approaches to manage these issues in the context of a future that is already
challenging.

NPs seem to be a promising approach to combatting and overcoming MDR fungi,
such as C. auris. Although recent studies demonstrated the promising effect of NPs on
combatting C. auris infection, the applications of NPs will not be ready until future stud-
ies emphasize their pharmacokinetic and pharmacodynamic profiles, physicochemical
interactions, toxicities, and specific mechanisms of action.
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