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Abstract: The opportunistic pathogen Vibrio parahaemolyticus poses a significant food safety risk
worldwide, and understanding its growth in commercially cultivated oysters, especially at tempera-
tures likely to be encountered post-harvest, provides essential information to provide the safe supply
of oysters. The Blacklip Rock Oyster (BRO) is an emerging commercial species in tropical northern
Australia and as a warm water species, it is potentially exposed to Vibrio spp. In order to determine
the growth characteristics of Vibrio parahaemolyticus in BRO post-harvest, four V. parahaemolyticus
strains isolated from oysters were injected into BROs and the level of V. parahaemolyticus was mea-
sured at different time points in oysters stored at four temperatures. Estimated growth rates were
−0.001, 0.003, 0.032, and 0.047 log10 CFU/h at 4 ◦C, 13 ◦C, 18 ◦C, and 25 ◦C, respectively. The highest
maximum population density of 5.31 log10 CFU/g was achieved at 18 ◦C after 116 h. There was no
growth of V. parahaemolyticus at 4 ◦C, slow growth at 13 ◦C, but notably, growth occurred at 18 ◦C
and 25 ◦C. Vibrio parahaemolyticus growth at 18 ◦C and 25 ◦C was not significantly different from each
other but were significantly higher than at 13 ◦C (polynomial GLM model, interaction terms between
time and temperature groups p < 0.05). Results support the safe storage of BROs at both 4 ◦C and
13 ◦C. This V. parahaemolyticus growth data will inform regulators and assist the Australian oyster
industry to develop guidelines for BRO storage and transport to maximise product quality and safety.
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1. Introduction

Sydney rock oysters (SROs) (Saccostrea glomerata) and Pacific oysters (PO) (Magallana
gigas (Thunberg 1793)) account for 99% of Australia’s oyster production (AUD 114M [1],
with farms located in cooler temperate regions of New South Wales, South Australia,
and Tasmania [2]. In contrast, Blacklip Rock Oysters (BROs) (Saccostrea lineage J) occur
naturally in the Indo-Pacific region including across northern Australia [3] and are grown
commercially on a limited scale. There is increasing interest in expanding the production of
BROs in this region, particularly in remote Aboriginal communities, with current research
focused on securing consistent spat supply and optimising production methods [4,5].

BROs grow in warm waters, which also support many species of indigenous aquatic
microbes including Vibrio spp., which is potentially pathogenic to humans [6]. Among
these, V. parahaemolyticus accounts for most seafood borne gastroenteritis [7] and is amongst
the top emerging risks for food safety worldwide [8]. There is considerable global concern
about the increasing incidences of seafood poisoning due to Vibrio blooms and warming
sea temperatures in temperate regions [9–13]. In Australia, Vibrio spp. are recognised
as an emerging food safety risk [14]. This threat to food safety and the emergence of a
tropical oyster market for Australia means that there is an urgent need to learn as much as
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possible about Vibrio—BRO dynamics including the growth rates of potentially pathogenic
Vibrio spp. at temperatures likely to be encountered post-harvest.

Post-harvest storage conditions are informed by recommendations to keep oysters
as cool as possible to limit pathogen growth, while keeping the animals alive since dead
seafood may lead to rapid spoilage and adversely affect microbiological safety [15]. The
Australian Shellfish Quality Assurance Program [16] provides guidelines for postharvest
practices to manage shellfish microbiological quality. The guidelines recommend shell
stock intended for raw consumption to be cooled to 10 ◦C or less, within 24 h of harvest,
unless there is evidence that higher temperatures will not support the unacceptable growth
of human pathogens. POs and other shellfish are generally stored at these temperatures,
but SROs are stored at 25 ◦C or less within 24 h of harvest and then at 21 ◦C or less within
72 h of harvest [17]. These guidelines are based on different responses of SROs and POs
to spoilage at different temperatures, measured using aerobic plate counts and sulphide-
producing bacteria [18] as well as different V. parahaemolyticus growth rates in these oyster
species [18–21]. To calculate V. parahaemolyticus growth rates, researchers have used either
oysters naturally infected with V. parahaemolyticus at the time of collection [22–24] or
inoculated with a culture of V. parahaemolyticus [19,25], and measured V. parahaemolyticus
inactivation or growth at different temperatures over time. The use of naturally infected
oysters is more realistic but the large variability in the V. parahaemolyticus levels that may
be present in individual oysters can make the interpretation of results difficult.

While recommended storage temperatures exist for POs and SROs, they may not be
relevant for tropical oyster species that host a Vibrio community that is adapted to a tropical
climate. The objective of this study was to determine the effect of storage temperature on
the growth rate of tropical V. parahaemolyticus strains in artificially inoculated BROs and
in doing so, provide the necessary foundation for postharvest temperature control plans
for BROs.

2. Methods
2.1. Isolation of V. parahaemolyticus Strains from Oysters and Preparation of Inoculum

V. parahaemolyticus strains were isolated from BROs collected from the Tiwi Islands
(S11.34097 E130.23645) and from milky oysters (Saccostrea scyphophilla) collected in Darwin
Harbour (S12.33779, E130.908103), in the Northern Territory of northern Australia. During
this isolation process, oysters were scrubbed under running potable water and shucked. The
meat and liquor from 3 oysters were pooled, homogenised using an Ultra-Turrax® IKA T18
(IKA® Works, Rawang, Malaysia), diluted 1:1 (w/v) with 1× phosphate buffered saline (PBS;
10 mM phosphate buffer, 137 mM NaCl, 2.7 mM KCl, pH 7.4), and 100 µL was spread onto
CHROMagar™ Vibrio (Dutec Diagnostics, St. Leonards, Australia) before the plates were
incubated overnight at 35 ◦C. Mauve colonies typical of V. parahaemolyticus were picked
and re-streaked onto fresh CHROMagar™ Vibrio twice more to obtain individual colonies.

Colonies were screened for V. parahaemolyticus by qPCR targeting the tlh [26] or
toxR [27] genes using a pick and boil method to extract DNA from the plated colonies.
Briefly, colonies were dispersed into 50 µL of sterile distilled water, boiled for 3 min, cen-
trifuged at 13,500× g/10 min, and a 1 µL template was used in a qPCR assay. Isolates
positive for the tlh or toxR gene were grown in tryptic soy broth (TSB) containing 2% (w/v)
NaCl at 30 ◦C. Glycerol stocks of each isolate were prepared and stored at −80 ◦C. DNA
from overnight cultures was extracted using the DNeasy® UltraClean® Microbial Kit (Qia-
gen, Hilden, Germany). A PCR assay targeting the hsp60 gene [28] was performed on the
extracted DNA, the amplicons purified using the ISOLATE II PCR and Gel Kit (Meridian
Bioscience), and sequenced in both directions at the Australian Genome Research Facility.
The forward and reverse sequences were assembled using MacVector v17.5.6 (MacVector Inc
2020) and the identities confirmed using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 15 June 2021). Four isolates were selected: M51 and M56 from BROs from
the Tiwi Islands, and M116 and M117 from small milky oysters from Darwin Harbour.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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These isolates were also screened for the virulence genes trh and tdh [26], vscC2, vopC, and
vopP [29], but all assays were negative (results not shown).

One day before the inoculation experiments started, bacterial isolates were streaked
onto TSA with 2% NaCl and grown overnight at 30 ◦C. Four mL of sterile TSB/2% NaCl
broth was inoculated with 2–3 individual colonies from each isolate separately and incu-
bated with shaking at 30 ◦C for approximately 4–5 h until visibly turbid. The cultures were
centrifuged at 10,000 rpm for 2 min and resuspended in filtered sterile seawater to give
a final absorbance at 600 nm of between 0.15 and 0.25 units. Two mL from each of the
4 cultures were pooled to give the final inoculum. Serial dilutions were prepared using
1× PBS and 100 µL was plated onto TSA/2% NaCl to calculate the cell numbers, which
were expressed as colony forming units (CFU) per mL.

2.2. Oyster Inoculation, Incubation and Processing

BROs (Saccostrea lineage J) were obtained from a commercial farm in Bowen (Queens-
land Australia) in two shipments of approximately 250 oysters each sent two weeks
apart. Average seawater temperatures ranged from 23 ◦C to 25 ◦C at the time of sam-
pling (https://data.aims.gov.au/aimsrtds/datatool.xhtml, accessed on 10 November 2022).
The oyster shell length ranged from 49 to 74 mm with an average (± standard deviation)
of 60 mm (± 6 mm). The first shipment of oysters was used for experiments at 4 ◦C and
13 ◦C and the second shipment was used for experiments at 18 ◦C and 25 ◦C. There was
no significant difference in the background concentration of V. parahaemolyticus between
shipments (3.56 ± 3.05 log10 CFU/g for the first shipment, 3.30 ± 2.87 log10 CFU/g for
the second shipment; Welch’s t-test, p = 0.22). Oysters were placed in an open plastic bag
in a polystyrene box and kept at 18 ◦C overnight. The following morning, the plastic bag
was closed, ice bricks were added over a thick layer of newspaper, and the box sealed. The
oysters were airfreighted to the Charles Darwin University laboratory in Darwin and the
experiments commenced the next morning. On receipt, the temperature of the BROs was
15 ◦C and 18 ◦C in shipments 1 and 2, respectively.

Oysters were scrubbed and washed under running potable water. A 2–5 mm hole was
made into the oyster lid approximately halfway along the length of the shell and 100 µL of
either the filtered sterile seawater (control) or V. parahaemolyticus suspension was injected
into the adductor muscle using a sterile 1 mL syringe fitted with a 22-gauge needle. The
initial inoculum concentration was 2.0 × 107 CFU/mL for the 4 ◦C and 13 ◦C experiment
and 4.2 × 105 CFU/mL for the 18 ◦C and 25 ◦C experiment. A higher concentration was
used for the cooler temperatures to enable detection, as the levels were expected to decrease
with storage.

Oysters were placed into open plastic bags in trays for storage in incubators set to 4 ◦C,
13 ◦C, 18 ◦C, and 25 ◦C. Temperature loggers were used to record the temperature. The
four storage temperatures were chosen based on literature reviews, storage requirements
in transporters and at seafood retailers, existing storage temperatures at harvest location,
temperatures expected to be experienced during postharvest as well as consultation with
the local BRO industry. Four degrees is within the temperature required (<5◦C) for food
safety practices, with transporter and retail chillers set to 1–5 ◦C. Thirteen degrees is close to
the tipping point reported for V. parahaemolyticus growth and was an important temperature
to determine the response of tropical compared to temperate V. parahaemolyticus isolates.
Eighteen degrees is the temperature currently used by one commercial oyster grower for
the short-term storage of oysters prior to transport, so it was a logical temperature to
test. Finally, 25 ◦C is the approximate ambient dry season temperature for the Australian
tropics and was chosen based on the perception that ambient temperatures, as opposed to
refrigerated storage, are favourable for BROs with the industry aiming for a live product.

Five replicates were used for oysters injected with V. parahaemolyticus, with three
oysters pooled per replicate. For the 4 ◦C and 13 ◦C experiments, the sampling times were
0, 24 h, 72 h, 120 h, 192 h, and 264 h. For the 18 ◦C and 25 ◦C experiments, the sampling
times were 0, 12 h, 24 h, 72 h, 120 h and 168 h. The shorter experiment duration at the
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warmer temperatures was based on the expected reduced oyster viability compared to the
cooler temperatures. The shell width of each oyster was measured, and the total meat and
liquor weight of the pooled oysters recorded at time zero and at each time interval when
the oysters were harvested. Twenty extra control and V. parahaemolyticus injected oysters
were prepared and stored at each temperature to allow for losses during the experiment.

Controls were oysters injected with filtered sterile seawater, in duplicate with 5 oysters
per replicate. Controls were sampled at the beginning, middle, and end of the experiment.
The number of controls per replicate were to account for the expected variability in the
background levels of indigenous V. parahaemolyticus. The controls primarily accounted for
injuries sustained in the injection process and to track V. parahaemolyticus levels during
the experiment. Gaping, non-responsive oysters were assumed to be dead and excluded
from sampling.

At each time point, oysters were shucked, the meat and liquor pooled, and weight
recorded. An equal volume of sterile 1× alkaline peptone water (APW, pH 8.4 (CM1028
Oxoid)) was added and the sample homogenised using an Ultra-Turrax®. The dispersion
element was washed between replicates in the following sequence of solutions: potable wa-
ter, 1% (w/v) Virkon™ disinfectant, potable water, 80% (v/v) ethanol, and sterile high pure
water. On each sampling day, control oysters were processed before the V. parahaemolyticus
injected oysters, and blanks were included (APW) to check for adequate tool disinfection.
Serial dilutions of the homogenate were made in 1× PBS and 100 µL of each dilution plated
in triplicate onto CHROMagar™ Vibrio. Plates were incubated at 30 ◦C overnight and
mauve colonies (V. parahaemolyticus) counted and colony forming units (CFU) per gram oys-
ter homogenate calculated. To confirm identity as V. parahaemolyticus, 50–60 mauve colonies
were randomly picked and assayed by qPCR targeting the tlh gene as outlined above.

2.3. Analyses

Data were imported into Prism 9 for MacOS (GraphPad Software, LLC 1994–2021).
Counts were transformed to log10 values, and lines or curves fitted to the data. Growth
rates (log10 CFU/h) were calculated from the best fit lines at 4 ◦C and 13 ◦C. To calculate
the specific growth rates (µ) and maximum population densities (log10 CFU/g) at 18 ◦C
and 25 ◦C, data were imported into https://foodmicrowur.shinyapps.io/biogrowth/ (ac-
cessed on 14 October 2022) and fitted using a modified Gompertz model. Generalised
additive models (GAMs) were fitted in R (version 3.6.0 2017-06-30; Copyright© 2023. The
R Foundation for Statistical Computing) (library mgcv) to assess the nonlinear changes
of V. parahaemolyticus counts over time. Models were fitted with a separate smooth term
for time (hours) for each temperature group with temperature as an additional categorical
predictor and using a negative binomial distribution (log link). A negative binomial gener-
alised linear model (GLM) was also performed with the outcome V. parahaemolyticus counts
and predictor temperature (categorical with four groups), a second-degree polynomial
function for time (hours) as well as an interaction term between time and temperature. To
evaluate whether V. parahaemolyticus growth significantly varied between different tem-
peratures, the significance of interaction terms was assessed between temperature groups.
Contrasts using the library emmeans were calculated based on the polynomial GLM to
compare the estimated V. parahaemolyticus levels between temperature groups at 48 h and
72 h and using the Tukey method to adjust p values for multiple testing. To account for the
nonlinear growth of V. parahaemolyticus at 18 ◦C and 25 ◦C, a second-degree polynomial
function was fitted for time. All tests were 2-tailed and considered significant if p values
were less than 0.05.

3. Results
3.1. V. parahaemolyticus Growth Rates in Injected Oysters

At the beginning of the experiment, after the initial inoculation of oysters with the
V. parahaemolyticus cocktail, the concentrations and standard deviation of V. parahaemolyticus

https://foodmicrowur.shinyapps.io/biogrowth/


Pathogens 2023, 12, 834 5 of 12

in the BROs were 5.001 ± 0.282 log10 CFU/g at 4 ◦C and 13 ◦C, and 3.567 ± 0.164 log10
CFU/g at 18 ◦C and 25 ◦C.

Changes in V. parahaemolyticus concentrations at 4 ◦C and 13 ◦C were best explained
by a linear relationship (GAM model effective degrees of freedom (edf) 1.9, p < 0.001 for
the latter), while at 18 ◦C and 25 ◦C, a curve best explained the data (Figure 1) (GAM
model edf > 2; p < 0.001). No lag phase was observed in the growth curves. At 4 ◦C,
there was no significant change in the V. parahaemolyticus levels over time (linear regression
on log V. parahaemolyticus levels and GAM model p > 0.050), although the trend was a
gradual decrease (Figure 1). At 13 ◦C, 18 ◦C, and 25 ◦C, there was a significant increase in
V. parahaemolyticus levels over time (p < 0.001 for all models).
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Figure 1. Growth profiles of Vibrio parahaemolyticus in Blacklip Rock Oysters stored at 4 ◦C, 13 ◦C,
18 ◦C, and 25 ◦C. Points indicate the averages of five replicates, bars are the standard deviation, and
the lines indicate fitted curves. The last sample at 25 ◦C consisted of only one replicate.

Estimated growth rates of V. parahaemolyticus in BROs were −0.001, 0.003, 0.032, and
0.047 log10 CFU/h at 4 ◦C, 13 ◦C, 18 ◦C, and 25 ◦C, respectively (Table 1). The highest
maximum population density of 5.31 log10 CFU/g was achieved at 18 ◦C after 116 h.

Change in the V. parahaemolyticus levels over time varied significantly between all
temperature groups (polynomial GLM model, interaction terms between time and tem-
perature groups p < 0.05) except between 18 ◦C and 25 ◦C. At 48 h, there was a significant
difference in V. parahaemolyticus concentrations only between 4 ◦C and 25 ◦C, but at 72 h,
the V. parahaemolyticus concentrations significantly differed between all temperature groups
with the exception of no difference between 18 ◦C and 25 ◦C (polynomial GLM model,
p < 0.05) (Figure 2).



Pathogens 2023, 12, 834 6 of 12

Table 1. Kinetic parameters for Vibrio parahaemolyticus growth measured over 264 h at 4 ◦C and 13 ◦C
and over 168 h at 18 ◦C and 25 ◦C.

Storage Temperature (◦C) Growth Rate (Log CFU/h ± SE) Maximum Population
Density (log10 CFU/g ± SE) Goodness of Fit (RMSE)

4 −0.0013 ± 0.0007 ND 0.390

13 0.0029 ± 0.0009 ND 0.408

18 0.032 ± 0.011 5.31 ± 0.245 0.463

25 0.047 ± 0.021 5.14 ± 0.394 0.652

Growth rates at 4 ◦C and 13 ◦C were calculated from the best fit lines. At 18 ◦C and 25 ◦C, the maximum specific
growth rate (µ) and maximum population density were estimated from the modified Gompertz curves. ND, not
determined. RMSE, root mean squared error.
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Figure 2. Estimated Vibrio parahaemolyticus growth in Blacklip Rock Oysters at each temperature after
48 and 72 h. Black line is the estimated average counts and the grey area is the 95% confidence interval
based on a polynomial generalised linear model. Starting concentrations of V. parahaemolyticus injected
into the oysters were 2.0 × 107 CFU/mL for the 4 ◦C and 13 ◦C experiment and 4.2 × 105 CFU/mL
for the 18 ◦C and 25 ◦C experiment.

3.2. Control (Seawater Injected) Oysters

At the beginning of the experiment, concentrations (and standard deviation) of V. para-
haemolyticus in the control BROs were 3.554 ± 0.136 log10 CFU/g at 4 ◦C and 13 ◦C from
the first shipment of oysters, and 3.285 ± 0.167 log10 CFU/g at 18 ◦C and 25 ◦C from the
second shipment (Figure 3).

Concentrations of V. parahaemolyticus initially decreased at 4 ◦C and 13 ◦C, but then
increased again at the end of the storage period, after 11 days (257 h). Similarly, at 18 ◦C
and 25 ◦C, the V. parahaemolyticus concentration decreased after 3 days (69 h), and then
increased at day 5 (116 h). A final measurement was taken on day 7 (163 h) at 18 ◦C where
the V. parahaemolyticus levels again decreased. The variability in concentrations was greatest
at the warmer incubation temperatures.
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4. Discussion

Vibrio parahaemolyticus seafood risk management is supported by implementing cold
chain temperatures that minimise pathogen growth. Here, we present the first Vibrio risk
data for BROs, which are the focus of a burgeoning aquaculture industry in northern
Australia. Following injection into BROs, V. parahaemolyticus did not grow at 4 ◦C but
grew at temperatures ≥13 ◦C. The tipping point for V. parahaemolyticus growth in oyster
species is in the temperature range of 10–15 ◦C [19,22,25,30,31]. The low growth rate for
V. parahaemolyticus in BROs reported in this study at 13 ◦C fits within this range and is
notable given that the Vibrio strains used here were isolated from warm tropical waters.
V. parahaemolyticus growth in BROs was minimal at 13 ◦C and significantly lower than the
growth at warmer temperatures.

Our results show that storage of BROs at 4 ◦C will prevent the growth of V. para-
haemolyticus, but since this storage temperature may also kill or impair these tropical
oysters, the shelf life and quality at this temperature needs to be assessed in the event
death accelerates spoilage by psychrotolerant microorganisms. At 13 ◦C, very low V. para-
haemolyticus growth rates were measured in BROs, which may be a better temperature
for BRO survival, however, this is not a standard commercial refrigeration temperature.
Our study showed no significant difference in V. parahaemolyticus growth or maximum
population densities in BROs at 18 ◦C or 25 ◦C, possibly because the oysters and their
microbiome that adapted to these warmer temperatures are able to ‘manage’ introduced
V. parahaemolyticus levels.

Compared with other oyster species, V. parahaemolyticus growth rates at 25 ◦C in
Eastern oysters (Crassostrea virginica) and artificially inoculated Pacific oysters (PO) were
higher than those measured in BROs (current study), which had similar rates to Asian
oysters (C. ariakensis) (Figure 4). In addition, V. parahaemolyticus growth rates in POs, Eastern
oysters, and Asian oysters increased with higher temperatures (25 ◦C compared to ~20 ◦C)
(Figure 4), but this was not the case for BROs where there was no significant difference
between growth at 18 ◦C and 25 ◦C. In contrast, V. parahaemolyticus did not grow in SROs
stored at temperatures up to 28 ◦C [19–21], with growth only observed over 30 ◦C [20,32].

Variations in V. parahaemolyticus growth are often attributed to oyster immunology and
their responses to substantial changes in their surrounds, the interaction of the introduced
pathogen to resident oyster microbes, or the use of different experimental bacterial strains.
Sydney rock oysters are considered a hardy species [15] and it has been suggested that lower
microbial counts measured in SROs stored at 15 ◦C compared to 8 ◦C could be due to a
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more active immune system at the warmer temperature [18]. Intertidal molluscs have phys-
iological and immunological adaptations to deal with conditions that can change quickly
over a tidal cycle where they tolerate periods of emersion characterised by extremes in
oxygen availability and temperature [33,34]. The type and extent of these responses [35,36]
may influence their ability to cope with these stressors and subsequently impact their
interaction with microbes [37,38]. Wild BROs are intertidal and are also considered a hardy
species and may be better able to cope with substantial changes in their surrounds.
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A recent study showed that virulent V. parahaemolyticus strains injected into C. gigas
grew faster at 15 ◦C than the non-virulent strains [25]. In contrast, other studies using
broth and C. gigas oyster slurry reported the more rapid growth of V. parahaemolyticus
strains lacking the virulent trh gene compared to strains without trh [39]. Such comparisons
between studies can be complicated by the use of different matrices as well as the use of
different strains. In our study, a mix of four strains isolated from tropical rock oysters
was injected in BROs to account for potential differences in growth between the strains.
These four strains lacked both the trh and tdh genes, however, since vibriosis has been
reported from trh-/tdh- strains [40], these markers are no guarantee of the capacity to cause
disease. What constitutes a pathogenic strain is still the subject of much debate and whole
genome sequencing is revealing new virulence factors [41,42] that contribute to infection.
It is also possible that pathogenic strains respond differently in tropical BROs and the
investigation of those strains in BROs will further our understanding of the behaviour of
V. parahaemolyticus in stored tropical oysters.

Maximum V. parahaemolyticus population densities in oysters can vary by several
orders of magnitude when stored at warmer temperatures. For example, maximum V. para-
haemolyticus densities were higher in Eastern oysters stored at 20–25 ◦C [22] and PO injected
with V. parahaemolyticus, but lower in natural POs and SROs [19] compared to BROs (current
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study). The maximum population densities for V. parahaemolyticus or any pathogen may de-
pend on the type and density of other resident microbiota [43,44] including non-pathogenic
environmental Vibrio species that may inhibit pathogenic Vibrio species [45,46]. Work is
currently underway to measure the whole microbial community (total bacteria and Vibrio
species) in stored BROs from this study to assess the impact of inoculated V. parahaemolyticus
on the resident oyster microbiome compared to the seawater inoculated controls.

Due to the large natural variability in the V. parahaemolyticus levels in oysters, as
evidenced by the seawater injected BRO controls and other reports [47], the approach used
in this study was to inject a known number of cells into the oysters to avoid highly variable
measurements between replicates and enable an accurate growth rate to be calculate. This
also allowed for measurements of the V. parahaemolyticus levels at cooler temperatures
following inactivation. Inoculation of oysters by filtration would better represent ingestion
under natural conditions and be less invasive, however, because this can lead to variable
uptake [25], the injection of bacteria was considered the most suitable inoculation method
for this study.

Concentrations around 3.29–3.55 log10 CFU/g were measured before inoculating the
BROs, which were at the higher end of the range reported in the temperate species POs and
SROs [18,20,21,48]. V. parahaemolyticus is present almost year-round in the coastal seawater
of northern Australia [6], with higher levels than more southern Australian locations [49].
There are periods of higher density in seawater, often related to season [6,50–52] or locations
influenced by freshwater run-off [53], so it is therefore not unexpected that filter feeding
organisms in the tropics may contain higher natural V. parahaemolyticus levels than their
temperate counterparts. Storage at 18 ◦C and temperatures during transit may also have
increased the natural levels of existing V. parahaemolyticus in the BROs in this study.

The oyster condition varies with season and is impacted by environmental factors
such as algal blooms and oyster reproduction cycles in northern Australia [54]. These major
physiological changes in oysters and their microbiome throughout their life cycle and sea-
sons may alter their response to bacterial challenges, so the behaviour of V. parahaemolyticus
in oyster tissue at various storage temperatures may vary depending on the oyster age and
condition, which needs to be further explored.

5. Conclusions

In conclusion, these results support the storage of BROs at both 4 ◦C and 13 ◦C
to minimise V. parahaemolyticus growth and set the foundation for regulators and the
Australian oyster industry to develop storage and transport guidelines appropriate for
tropical rock oysters to maximise product quality and food safety. Further post-harvest
storage trials using pathogenic strains are required to determine if they respond differently
to the non-pathogenic strains used in this study to further our understanding of the
behaviour of V. parahaemolyticus in stored tropical oysters.
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