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Abstract: The early identification of the spreading patterns of an epidemic infectious disease is
an important first step towards the adoption of effective interventions. We developed a simple
regression-based method to estimate the directional speed of a disease’s spread, which can be easily
applied with a limited dataset. We tested the method using simulation tools, then applied it on a real
case study of an African Swine Fever (ASF) outbreak identified in late 2021 in northwestern Italy.
Simulations showed that, when carcass detection rates were <0.1, the model produced negatively
biased estimates of the ASF-affected area, with the average bias being about −10%. When detection
rates were >0.1, the model produced asymptotically unbiased and progressively more predictable
estimates. The model produced rather different estimates of ASF’s spreading speed in different
directions of northern Italy, with the average speed ranging from 33 to 90 m/day. The resulting
ASF-infected areas of the outbreak were estimated to be 2216 km2, about 80% bigger than the ones
identified only thorough field-collected carcasses. Additionally, we estimated that the actual initial
date of the ASF outbreak was 145 days earlier than the day of first notification. We recommend the
use of this or similar inferential tools as a quick, initial way to assess an epidemic’s patterns in its
early stages and inform quick and timely management actions.

Keywords: Asfaviridae; carcasses; early detection; regression models; disease surveillance; Sus scrofa;
wild boar

1. Introduction

The early identification of an epidemic infectious disease is an important first step
towards implementing effective interventions and to reduce the resulting mortality and
morbidity in target populations [1]. Early detection strictly depends on the surveillance
methods put in place, particularly when a disease affects wild populations rather than
livestock animals [2]. In such cases, animal host movements and social structures are also
crucial in disease transmission and spatial dynamics [3,4]. Often, epidemics are well under
way before the authorities are notified and epidemic control measures are put in place.
On the other hand, implementing adequate surveillance activities is neither simple nor
inexpensive. Thus, the robust and cost-effective estimation of a disease’s spreading patterns
in term of distance, speed, and directionality is necessary for successful early detection and
to have a chance of stopping the disease’s spread.

African swine fever (ASF) is considered the most serious animal disease that the
world has had for a long time, not only for its high mortality and animal health conse-
quences [5] but for the measureless economic losses reported in all countries where the
virus is present [6]. This disease, caused by a large, double-stranded DNA virus (ASFV),

Pathogens 2023, 12, 812. https://doi.org/10.3390/pathogens12060812 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12060812
https://doi.org/10.3390/pathogens12060812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0003-3045-3150
https://doi.org/10.3390/pathogens12060812
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12060812?type=check_update&version=1


Pathogens 2023, 12, 812 2 of 14

currently affects both domestic and wild pig populations [7]. Some differences, though,
have been reported in ASF spreading patterns between Europe and Asia. In the Asian
continent, the disease mainly affects domestic pigs, and its introduction in farms is mostly
attributable to human behaviour [8]; in Europe, the current spread of ASF genotype II
mainly affects the wild boar population, which subsequently represents the main risk
factor for disease introduction in domestic pig farms, given the low biosecurity [8]. Even if
most European countries seem to manage ASF outbreaks in pig farms reasonably well, the
gradual ASFV spread in wild boar populations at the local scale is very difficult to control
and often persists over long periods [1].

After its introduction in Georgia in 2007, ASFV genotype II reached the territory of
the European Union in 2014 [9]. Despite intensive awareness campaigns against ASF
and continuous control efforts based on studies of the infection’s dynamics, ASFV has
progressively spread in a western direction, affecting several EU countries [8,9]. Among
them, in December 2021, ASF genotype II also reached northern Italy [10] and, in particular,
Liguria and Piedmont, where the virus continues to cause multiple cases in wild boars;
in May 2022, a second introduction of ASF—likely independent—was recorded in the
municipality of Rome, where wild boars again acted as an epidemiological reservoir for
the virus, which was also detected in an outbreak in domestic pigs (June 2022) [11].

As was previously demonstrated, the long-term persistence of ASF at low wild boar
densities is strictly related to direct and carcass-mediated infection [12,13]. Thus, the early
detection of ASF during the initial spread of the virus in a susceptible population, as
well as the early detection and removal of infected wild boar carcasses, can be crucial
in influencing the evolution of the epidemic. Moreover, when ASF is identified for the
first time in a European country, several control measures must be put in place following
the European Commission’s (EC) legislation. Specifically, target actions on both domestic
pig and wild boar populations are managed based on the identification of an infected
zone and a surveillance zone, which define the spatial context in which movement and
hunting restrictions, active surveillance in domestic pig farms, the search and removal of
active wild boar carcass, the installation of fences, and intensive wild boar depopulation
are enforced [13,14]. The borders of the infected area are generally defined by the spatial
distribution of all ASF cases (mostly infected wild boar carcasses) reported since the
initial disease outbreak [15]. One limitation of this approach is that there is often a delay
between the epidemiological evolution of the disease and the ability for a surveillance
system to detect new cases in previously unaffected areas [9]. Therefore, the estimated
infected area is suspected of being an underestimation of the actual area at any given
point in time. Moreover, the ASF spatial dynamics in the landscape are not static. The
ASF front changes and expands over time, and the speed of such an expansion process
is usually not the same in all directions because of local variations in wild boar density
or the presence of geographical barriers to animal movement [16]. The most widespread
methods for estimating the speed of a disease outbreak are usually based on either the
evaluation of the frequency distribution of all case-to-case distances in space and time or
on a linear regression between the linear distance and the timespan of each case from the
initial outbreak location. While simple to implement, these methods provide just a single
estimate of the outbreak speed, failing to reveal the differential dynamics in the different
directions in space. On the other hand, more mechanistic approaches, such as the ones
using spatially explicit individual-based models, can predict the spatial evolution of a
disease in different directions and reveal the underlying causes of disease spreading. In
a recent review [17], Hayes et al. reported 34 scientific studies using mechanistic models
to explore ASF spatial dynamics. These approaches, though, are characterised by a high
level of structural complexity and require many input parameters, which are, in most cases,
unavailable, especially in the early stages of an outbreak. More recent works [18] have used
the principles of diffusion models, which are traditionally applied to the exploration of
expansion processes in gases and other physical systems by means of Brownian motion
theories. These approaches have the advantage, with respect to mechanistic approaches,
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of requiring a rather limited number of parameters. On the other hand, the applications
presented so far did not explore the directional component of the diffusion process.

In this work, we present a generic, regression-based method that allows for the esti-
mation of the directional speed of ASF expansion in its early epidemiological phases, using
data from passive surveillance, particularly the location and date of the field identification
of all ASF-infected carcasses in a newly affected area. We assessed the performance of our
method through a simulation design. Then, the real data on notified ASFV cases in the
first Italian cluster of Piedmont and Liguria (PL hereafter) were used in a case study to
validate the model, providing a practical example of its potential applicability to manage-
ment purposes. The scope of this study was not to reach the same level of insight and
understating of ASF spatial dynamics that can be produced by more complex, mechanistic
approaches, but to present a simple predictive tool that could inform decision makers and
support them in zoning processes. Typically, a simple model of the directional spreading of
ASF could help define where restrictions and surveillance efforts should be focused during
the early phases of an ASF outbreak, thus increasing the chances of early detection and
early eradication.

2. Materials and Methods

The rationale behind our analytical design was to choose a simple statistical approach
that could be applied with a limited dataset and that had enough flexibility to improve the
understanding of ASF spreading patterns in its early stages, thus providing guidance in
surveillance and control efforts. To this aim, we developed a simple protocol for collecting
the necessary temporal and spatial variables from the data; then, we selected a subset of ASF
cases suitable for the estimation of ASF speed; finally, we applied a generalised additive
model (GAM, [19]) to produce the directional estimates of ASF spreading. This method is
especially suited to making use of data derived from passive surveillance programs, i.e.,
the spatial and temporal distribution of ASF-positive carcasses.

2.1. Model Building and Evaluation through Simulations

To produce the necessary simulated dataset, we used a spatially explicit, individual-
based model of wild boar demography and ASF epidemiology, which allowed us to
generate a realistic spatial and temporal distribution of the ASF-positive carcasses from an
initial outbreak location. The model is described in detail in [12]. We ran the model on a
population of 24,300 wild boar, distributed on a simulated 8100 km2 area, corresponding to
a density of three wild boar/km2. A single infected individual was placed in the centre
of the simulated area on day zero. To generate a differential speed of the ASF front in the
different directions, we defined transmission rates as a function of the angle between the
location of a potential transmission event and the initial outbreak location, according to the
following function:

logit(βx) = β0 + β1 × cos(x) + β2 × sin(x)

in which βx was the directional transmission rate corresponding to angle x, β0 was the
average transmission rate, as defined in [12], while β1 and β2 were the two direction-specific
correction factors, related to the sine and cosine of angle x, expressed in radians. At each
simulation, the values of β1 and β2 were randomly and independently selected in the
range 0–1, to allow for all the possible combinations of strength and directionality in the
ASF spread.

We ran the individual-based model for 250 days, during which we also simulated
the probability for each ASF-infected carcass to be detected by the passive surveillance
system. We simulated four scenarios of increasing detection rates, ranging from 10% to
40%. At the end of the simulated period, we extracted the location and day of detection
for all the ASF-infected carcasses retrieved by the surveillance system, thus mimicking
the typical dataset available in the field. For each data point, we calculated the distance
and the angle, with respect to the initial outbreak location. Then, we identified a subset
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of all the retrieved carcasses, to be used for the actual estimation of the ASF directional
speed. Not all transmissions, in fact, correspond to an advancement of the disease front. In
each direction and for each day, only those transmissions occurring farther from the initial
outbreak than any other, contribute to increase the disease front. All the transmissions
occurring behind the front should be, therefore, disregarded. To this aim, we divided
the 360◦ range into 20 bins, each covering a 18◦ angle. Such choice was subjective and
corresponded to a compromise between the resolution of the directional estimates and the
requirement to have enough data points in each bin. Any other choice could be applied to
other applications of the method, depending on the number of data points available. After
assigning each data point to its respective bin, we kept only those carcasses whose distance
from the initial outbreak location was larger than those of any other carcass detected inside
the same bin at an earlier date. This assured that all the data points used for subsequent
analyses represented a step forward in the advancement of the disease front.

Once the dataset was defined, we used the distance from each carcass to the initial
outbreak location as a response variable in the GAM model after checking its normal
distribution; to explain the variation in the response variable, we applied three smoothing
factors to the cosine and sine of angle x and to the number of days between the initial
outbreak and the day of carcass detection. The use of additive modelling allowed us to
capture non-linear relationships between the variables and to identify local minima and
maxima in the effects, thus providing additional flexibility for the model’s application in
the real-world, where local spatial factors (such as geographical barriers or corridors) can
strongly limit or favour the possibility of the epidemic front moving towards a certain
direction. We performed the statistical modelling in R 4.2.1 [20]. For each simulated
scenario, we ran 100 iterations and summarised the resulting parameter estimates.

After running all models, we used the estimated regression coefficients of all iterations
to generate the predicted ASF spreading speed in each of the 20 directions and to predict
the distance from the initial outbreak location to the ASF front at 250 days in each direction.
The resulting minimum convex polygon (MCPmodel) corresponded to the model-based
estimate of the ASF-affected area at 250 days from the outbreak start. To assess model
performance, for each scenario and iteration we also constructed two additional MCPs:
(i) one derived from all the ASF-infected carcasses (detected and non-detected) in the
simulated study area during the 250-day study period (MCPreal), whose size corresponded
to the real ASF-infected area; (ii) one derived only from the detected carcasses, whose
size corresponded to the estimated size of the ASF-infected area resulting from the raw
field data (MCPfield), without the use of any modelling approach. The relative bias of
the modelling approach in estimating the ASF-affected area was calculated as (MCPmodel
− MCPreal)/MCPreal, whereas the bias associated with the field data was calculated as
(MCPfield − MCPreal)/MCPreal. A comparison of these two quantities among the different
scenarios allowed us to evaluate the advantages of using a modelling approach with respect
to the simple identification of an affected area based on field data.

2.2. Application to the ASF Outbreaks in Northern Italy

After evaluating the method on simulated data, we applied it to the real case of the
first ASF outbreak on wild boar in northwestern Italy (Figure 1). Field data were collected
using the Veterinary Information Systems of the Italian Ministry of Health (VETINFO),
and using the national animal disease database for passive surveillance (SINVSA). The
following recorded information was related to all the wild boar tested for ASFV: location
(region, province, municipality, latitude, and longitude); the date of sampling; the date of
notification if the presence of ASFV was confirmed by PCR+; the age and sex of the tested
animal; the type of sample (i.e., spleen, blood, tonsil, kidney, or lymph node); and whether
the sample arose from breeding, carcasses, or wild boar killed by road traffic. Carcass
condition was established during sample collection based on the stage of conservation, and
it was recorded as fresh, in decomposition, or in advanced decomposition according to the
FAO manual on ASF in wild boar [5].
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Figure 1. Spatial distribution of the ASF-infected carcasses detected in northwestern Italy between
29 December 2021 and 28 February 2023, used to estimate the directional spread of ASF. The two
locations of the first ASF notifications are highlighted in light blue, whereas the average location
between these two initial carcasses is shown in red.

The ASF outbreak in northwestern Italy emerged through two distinct infected car-
casses, identified on the same day (29 December 2021) about 25 km from each other
(Figure 1), as previously described in [11]. From a spatial point of view, we considered the
average location between these two carcasses as the potential centroid of the ASF spread
and analysed the spatial and temporal dynamics of the disease using all ASF-positive
carcasses detected between 29 December 2021 and 28 February 2023 (426 days). As one
of the main issues when using passive surveillance data is the potential bias related to
carcasses’ different statuses of conservation (i.e., fresh, in decomposition, mummified),
we included in the analysis only the ASF PCR+ carcasses noted as fresh during sample
collection, which amounted to 232 carcasses [11].

As was performed for the simulated dataset, for each wild boar carcass we extracted
the distance, time difference and angle with respect to the cluster initial location, and
removed those carcasses detected behind the disease front, thus obtaining the final dataset
for analysis (n = 90). One potential issue when calculating the number of days between
the detection of each carcass and the initial outbreak day was that the actual outbreak day
was likely to have been earlier than the day of first notification (29 December 2021). This is
suggested by the presence of very large apparent speed values for a few carcasses in the
dataset (Figure 2a), and by the fact that all the extremely high apparent speed values were
concentrated in the first few days after the first two ASF notifications (Figure 2b).
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Figure 2. Frequency distribution of the apparent speed associated with all the fresh, ASF-infected
carcasses detected in northwestern Italy between 29 December 2021 and 28 February 2023 (a); the
relationship between apparent speed and the number of days since the first ASF notification is
also illustrated in (b). The corrected speed of the ASF notifications is also illustrated in (c), after
accounting for the potential bias induced by the use of a midpoint as a possible initial location of the
ASF outbreak.

To correct for such possible bias, and to try and estimate the most likely day of actual
disease outbreak, we built a generalised linear model (GLM) with a Poisson distribution
between the apparent speed associated with each carcass and the number of days since
the first ASF notification. We removed one outlier from the dataset, corresponding to
an apparent speed of about 2 km in a single day (Figure 2b). After estimating model
parameters, we projected the model back in time and estimated on which day the model
predicted an apparent speed equal to that of the first carcass. This provided us with an
estimate of the most likely day on which the ASF epidemic started. Then, we used this
estimate to recalculate the number of days between each carcass’ notification and the
estimated start of the outbreak. The histogram of the recalculated speed of propagation
for each case is reported in Figure 2c, and it shows that, after accounting for the distortion
effect, the distribution became unimodal and normal in its shape. Finally, similar to what
was done for the simulated datasets, we ran a GAM model using two smooths for the sine
and cosine variables and applied a third smooth on the number of days since the start of
the outbreak.

As a preliminary validation of the selected models, we visually examined the linear
relationship between the fitted and response values and evaluated the ratio between the
effective degrees of freedom (EDF) and the basis dimension k. When EDF and k had
similar values, the model exhibited a low ability to describe emerging trends in the data.
Additionally, we performed a k-fold cross validation [21] as a more formal way to assess
the predictive power of the two models. We selected 80% of the dataset from each cluster
to estimate regression parameters based on the best selected model; then, we generated
predicted values for the remaining 20% of the data and assessed the Pearson’s correlation
index between observed and predicted values. We repeated the validation randomly over
100 iterations and calculated the accuracy score as the median correlation index over all
iterations of each of the two models.

3. Results
3.1. Model Evaluation through Simulations

As expected, the use of field-collected carcasses in a simulated environment produced
an underestimation of the ASF-infected area at 250 days, especially when the proportion of
infected carcasses was low. Field-based estimates of the ASF- infected area were in average
20% smaller than the actual size when carcass recovery rate was set to 0.1 (Figure 3a); the
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average bias was reduced to about 10% when increasing carcass detection rates to 0.4, but
higher detection rates never totally removed the systematic negative bias in the estimation
of the affected area (Figure 3a). As illustrated in Figure 3b, the modelling approach resulted
in an improvement of the estimates in all simulated scenarios. When carcass detection rates
were low (p = 0.1), the GAM model still produced slightly biased estimates of the ASF-
affected aera, with the average bias being around −10%. For higher values of the carcass
detection rate (p > 0.1), the estimator became asymptotically unbiased and progressively
more predictable (Figure 3b); when 40% of all infected carcasses were detected, about 80%
of the estimates had a bias lower than 10%.
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Figure 3. Accuracy in estimating the size of the ASF-infected area using the simple bounding of
all detected locations (a) and using an inferential method based on a regression-based approach
using the date and location of the same infected carcasses (b). The relative bias is shown for a
range of increasing carcass detection rates. Dashed lines indicate the average bias associated with
each scenario.

3.2. Application to the ASF Outbreaks in Northwestern Italy

During the study period, a total of 12,001 wild boar were sampled from the whole
Italian territory, of which 4172 were from the Piedmont-Liguria infected areas (Figure 1). A
total of 419 ASF cases were reported in this study area during the 426-day period. Of these,
299 were from carcasses (Table 1).

As reported in Table 1, 1914 (46%) of the samples collected were females. Through
a dentition evaluation, as described by Matsche in 1967 [22], most of the sampled wild
boar in the PL area were determined to be adults (n = 1896, 45%), and 66% (n = 2745) of
the samples tested for ASF were from passive surveillance, collected during field search
activities (n = 1773) or from road traffic accidents (n = 972), while 34% (n = 1427) of the
samples tested were from active surveillance. In total, 3290 (79%) carcasses had a fresh
conservation status, whereas 17% (n = 729) were in decomposition, and 2% (76) were
mummified. Of the 419 ASF PCR+ wild boar, 50% (n = 209) were adults.

Overall, 232 samples, referred to as PCR+ fresh carcasses, were considered for the
purpose of this work. Only 90 PCR+ fresh carcasses contributed to the advancement of the
disease front and were included in the final analysis. As a test of sensitivity for this choice,
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we also ran a model including all 232 reported carcasses, but the model performed poorly,
as the estimated ASF-affected area was smaller than the observed one, something which
reveals a serious degree of underestimation in model parameters. This confirmed that the
choice of only using carcasses identified beyond the ASF front at any time was correct.

Table 1. Summary statistics of all the wild boar samples collected and analysed in the Piedmont-
Liguria region during the ASF outbreak period. Statistics Refers to culled or hunted animals or those
killed by road traffic accidents. Following the EFSA definition, passive surveillance only refers to
animals found dead and not those culled by road traffic accidents [15].

Feature of the Samples Piedmont-Liguria Infected Area
(n = 4172)

Female 1914 (46%)

Age
Young (0–6 months) 961 (23%)
Subadult (6–18 months) 1153 (28%)
Adult (>18 months) 1896 (45%)
NA 162 (4%)

Source of the sample
Active surveillance 1427 (34%)
Passive surveillance 2745 (66%)

Carcasses conservation stage
Fresh 3290 (79%)
In decomposition 729 (17%)
Advanced decomposition 76 (2%)
NA 77 (2%)

PCR+ samples 419 (10%)
Young (0–6 months) 47 (11%)
Subadult (6–18 months) 101 (24%)
Adult (>18 months) 209 (50%)
NA 62 (15%)

PCR+ fresh carcasses 232 (55%)

The Poisson GLM regression revealed a significant negative relationship between the num-
ber of days since the first ASF notification and apparent speed (β = −0.0049, SE = 0.0004,
p < 0.001). The apparent speed associated with the first carcass was 652 m/day. The model
predicted that such apparent speed was likely to be the result of an initial ASF outbreak
occurring 145 days before the first ASF notification, i.e., on 6 August 2021 (Figure 4). We
used this estimated date as the new ASF outbreak day for all subsequent analyses.

The GAM model, applied to the resulting dataset, revealed that all the smoothers had
a significant effect on the dependent variable, suggesting that the speed of ASF propagation
changed in space and time. For all smoothers, the number of effective degrees of freedom
was lower than the selected k parameter (k = 9), confirming that the choice of k was
appropriate. The model had an R2 = 0.77 and was able to explain 80.9% of the observed
variance. The k-fold cross validation also performed relatively well, with the average
correlation between observed and predicted values being 0.87.

The model produced rather different estimates for ASF spreading speed in the different
directions (Table 2, Figure 5a,b). At its maximum, ASF spreading speed was estimated to be
90 m/day (SE = 71.1; 95% CIs = 71–106); at its minimum, towards west, this was estimated
to be 33 m/day (SE = 4.1; 95% CIs = 25–41).

The resulting ASF-infected area was estimated to be 2216 km2, about 80% bigger than
the one identified only through field data (Figure 6).
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Figure 5. Effects of the sine (a) and cosine (b) of the angle between an ASF+ carcass and the initial
outbreak location on the speed of propagation of the disease front. The effects of the number of days
is also shown (c).
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Table 2. Direction-specific estimates of the ASF speed of propagation and of the predicted dis-
tance between the initial outbreak location and the disease front at the end of the study period
(28 February 2022).

Angle ASF Front after 426 Days (km) Directional Speed (m/Day)

0◦ (eastward) 33.2 79

36◦ 20.3 48

72 16.9 40

108◦ 13.9 33

144◦ 21.5 51

180◦ (westward) 37.9 90

216◦ 33.9 81

252◦ 28.6 68

288◦ 34.9 83

324◦ 32.0 76
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Figure 6. Spatial distribution of the ASF-infected carcasses detected in northwestern Italy between
29 December 2021 and 28 February 2023, used to estimate the ASF directional spread. The two
locations of first ASF notification are highlighted in light blue, whereas the average location between
these two initial carcasses is shown in red. The dashed red polygon indicates the ASF-affected area,
based on the distribution of all detected ASF-positive carcasses. The black, dashed polygon indicates
the ASF-infected area, as estimated through a GAM model.
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4. Discussion

The results of our simulation exercise showed the high performance of the estimation
method, especially when evaluated in relation to the limited amount of information re-
quired to estimate the directional speed of propagation. The model had unbiased behaviour
when carcass detection rates were low, but not extremely low (10–30%). This is the case in
most of the surveillance programs put in place so far for ASF in Europe [23]. On the other
hand, the estimation method becomes less and less justified when detection rates increase
to high values (>40%), as the estimated infected area overlaps more and more with the area
identified by simply connecting all the retrieved carcasses in a certain period.

It should be noted, though, that in our simulations, we did not test the spatial variation
in detection rates or its consequences on the performance of the estimator. In this sense, the
model is not expected to be robust to this type of variation. Hence, if the efforts toward
carcass search and removal are very low in certain areas or directions, the model will
underestimate the speed of propagation for that portion of the infected area. This stresses
the need for keeping efforts in passive surveillance as uniform as possible both in space
and in time. The active search of infected wild boar carcasses should not be driven by the
distribution of those carcasses already found, but it should be a priori determined inside
an area of interest and kept as constant as possible, regardless of the actual number of ASF-
positive carcasses retrieved [24,25]. Alternatively, the effort expended in carcass detection
should be recorded during passive surveillance activities to be used as an additional
covariate in the model and to prevent biased estimates of ASF speed due to local differences
in sampling efforts.

For the specific case of the ASF outbreaks in northwestern Italy, our model performed
reasonably well given the small sample size, as both the R2 values and the results of the
k-fold cross validation were overall satisfactory. Moreover, the analysis of the apparent
ASF speed suggested that the actual start of the outbreak might have occurred up to
5 months earlier than the date of first notification, as supported by evidence that the two
first carcasses, identified on the same day, were 20 km apart. Moreover, it is promising
that the estimator was able to detect large differences in the ASF speed depending on the
geographical direction, despite the limited number of data points available. We should
stress that airborne infection was not involved in disease transmission, because this is not
the case for the ASFV, and that human factors are expected to have played a minor role
in defining the disease front, as no hunting or other forest activity was allowed after the
disease outbreak in all of the affected area.

The estimated infected area was about 80% larger than the one defined by simply
considering the bounding polygon of all the identified carcasses. This result is in line with
the patterns revealed in the simulation exercise, and it confirms that surveillance is often
behind the epidemiological development of the disease. This is a crucial element, because
the early identification of where the disease front lies at any point in time is a fundamental
requirement for acting timely through restrictions and other management actions. We
believe that the application of an inferential approach, although simple, can help reduce
this lag between epidemiology and management, and increase the chances for managers
to act rapidly and timely in the first phases of an outbreak. Modelling studies [26] and
the field experiences of the only two successful ASF eradications in Europe (Belgium and
Czech Republic, [27]) both indicate that the first weeks after an ASF outbreak are the period
during which eradication chances are the highest, if effective actions are implemented when
the infected area is still relatively small. Once ASF has spread into an area large enough to
prevent an effective fencing, its eradication becomes very difficult [27]. In this context, any
analytical tool that can help identify the infected area and the expected spreading patterns
in a quick but accurate way should be used to inform the decision-making process.

It is also interesting to note that the model produced rather different estimates of the
ASF speed of propagation as a function of time (Figure 5c), showing an initial phase of
rapid diffusion in winter 2021/2022, followed by a slower dynamic during summer and
by a new rapid increase during winter 2022/2023. This highlights that such a predictive
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tool, although simple, can provide some insight both in the spatial and in the temporal
component of the ASF spreading process. On one hand, information regarding the speed of
disease propagation in different directions can support managers when they are expected
to produce zoning maps that define exclusions, limitations, and surveillance protocols.
The current homogeneous buffering system does not consider that the disease can move
faster in certain directions than others, thus leaving the management system behind the
outbreak evolution. On the other hand, estimating how ASF speed varies in time can
support the distribution of surveillance efforts during the year, as in some periods of the
year, ASF is expected to generate a significantly higher density of infected carcasses than
in others. Moreover, the results presented in Figure 5c suggest that, in northern Italy, the
period of the year with the highest virus circulation might be winter, which differs from
what has been observed in other countries, such as the Baltic states and Poland. One
possible explanation for such a difference might be the difference in the average seasonal
temperatures between the two geographical contexts. Summer temperatures in southern
European and Mediterranean areas could reduce virus persistence on wild boar carcasses
and in the environment, thus producing a reduction in the overall infection probability,
whereas winter temperatures might be more compatible with a longer persistence and
higher circulation of the ASF virus. This calls for an evaluation of how the epidemiological
dynamics of ASF could differ in the Mediterranean area, with respect to what has been
observed and estimated for the Eastern and Northern European countries, based on the
expected differences in both wild boar density and climate.

The main limitation of a relatively simple analytical approach like the one presented
here, is that it provides no insight into the underlying reasons for the spreading patterns but
just describes it in space and time under the assumption of a flat, homogeneous landscape.
One example of such a limitation is represented in the southwestern corner of the estimated
ASF-affected area in Figure 6. This area, where no ASF cases were found during the study
period, corresponds to the city of Genoa, where, although the number of wild boars present
in the city itself is very high, the virus apparently never arrived. The absence of the virus
could be explained by the fact that the city is separated from the forest system by several
stretches of motorway and highways that slow down or prevent the natural spatial spread
of the virus. More than 300 wild boars were sampled in the area, most of them in active
surveillance, all of which tested ASF negative. While the additive regression approach could
be easily extended with the inclusion of new variables, such as the existence of topographic
barriers in certain directions, local differences in host densities or in search effort, more
mechanistic and data-hungry approaches, such as step selection functions [28], should be
used to couple the estimation of the speed of propagation with a deeper understanding
of the epidemiological dynamics driving the spatial patterns. Additionally, while our
simulation exercise provides evidence of how the model is expected to perform under a
range of sampling conditions, new, real-world applications of existing ASF surveillance
datasets is crucial for testing how such a simple approach, which provided meaningful
information for the northwestern Italian context, could be successfully applied to other
geographical and ecological situations.

Finally, the economic aspects associated with carcass search and removal should also
be considered in effective surveillance. Decision makers should consider the social context
and the resources needed/available in terms of the associated costs. To be successful,
passive surveillance requires the use of an intensive effort for a prolonged period, a scenario
that might be not affordable for all countries currently affected by the ASFV. This partly
represents a limitation in the application of our estimation method, as the data needed
to build and analyse it and to estimate the directional spread of the disease can only be
produced with substantial economic investment in wild boar monitoring and disease
surveillance. Additionally, as ASF has no limitations against moving and spreading across
countries, a lack of international collaboration and data sharing could limit the applicability
of this and other inferential methods in border areas between two or more countries.
Data standardisation and sharing should be seen as a crucial objective to improve our
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ability to understand disease dynamics at a large scale and to respond promptly to new
emerging outbreaks.
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