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Abstract: ABC transporters, a family of ATP-dependent transmembrane proteins, are responsible for
the active transport of a wide range of molecules across cell membranes, including drugs, toxins, and
nutrients. Nematodes possess a great diversity of ABC transporters; however, only P-glycoproteins
have been well-characterized compared to other classes. The ABC transport proteins have been
implicated in developing resistance to various classes of anthelmintic drugs in parasitic nematodes;
their role in plant and human parasitic nematodes still needs further investigation. Therefore, ABC
transport proteins offer a potential opportunity to develop nematode control strategies. Multidrug
resistance inhibitors are becoming more attractive for controlling nematodes due to their potential to
increase drug efficacy in two ways: (i) by limiting drug efflux from nematodes, thereby increasing
the amount of drug that reaches its target site, and (ii) by reducing drug excretion by host animals,
thereby enhancing drug bioavailability. This article reviews the role of ABC transporters in the
survival of parasitic nematodes, including the genes involved, their regulation and physiological
roles, as well as recent developments in their characterization. It also discusses the association of ABC
transporters with anthelmintic resistance and the possibility of targeting them with next-generation
inhibitors or nutraceuticals (e.g., polyphenols) to control parasitic infections.

Keywords: ABC transporters; P-glycoproteins; parasitic nematodes; physiology; anthelmintic
resistance; multidrug resistance inhibitors

1. Introduction

ATP binding cassette (ABC) transport systems, one of the largest protein superfamilies,
are found in all three domains of life (prokaryotes (archaea and bacteria) and eukaryotes).
Eukaryotic ABC transporters typically consist of two conserved domains, a transmembrane
domain (TMD) and a nucleotide-binding domain (NBD) [1]. Based on genomic analysis,
eukaryotic ABC transporters have been categorized into seven sub-families from A to
G [2–4]. Two of the ABC transport protein families (ABCE and ABCF) lack TMDs, and thus
do not act as transporters, and are associated with other cellular processes, for example,
ribonuclease inhibition and translational control [5,6]. ABC transporters have diverse
structures depending on different domain compositions and ATP binding sites; thus, ABC
transporters are classified as full transporters (complete structure with two NBDs and two
TMDs) containing two ATP-binding sites and the half transporters (half structure with
one NBD and one TMD) with one ATP-binding site. Some transporters carry only a single
NBD or TMD are termed single-domain structures. In contrast, only NBDs are present at
the N- and the C-terminus in non-transporter ABC proteins [7]. Based on the functional
classification, ABC transporters are divided into three major classes; Classes 1 and 2 are
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involved in the translocation of substrates across the cell membrane, and Class 3 is mainly
associated with DNA repair and regulation of gene expression in cells [8].

ABC transporters transport a wide range of chemical entities, including lipids, proteins,
sugars, amino acids, xenobiotics, drugs and inorganic ions. Most of the family members
act as transport proteins in which the ATP-binding domains bind and hydrolyse ATP to
provide energy to translocate a variety of solutes across the biological membrane; however,
the energising module is also involved in non-transport processes, for example, cellular
processes [9,10]. In mammals, ABC transporters have been associated with the active efflux
of drugs across membranes. This is often reflected by altered gene expression at the cellular
level, for example, overexpression of ABC transporter genes leading to the increased drug
efflux, which may occur in response to exogenous drug exposure. P-glycoproteins (P-gps)
were the first active pump described for their overexpression in tumor cells responsible for
multi-drug resistance [11]. Some ABC transporters that are associated with active efflux of
anticancer drugs include ABCB1 (P-gps, MDR1), ABCC1 (Multidrug-resistance-associated
protein; MRP1), ABCC2 (MRP2), ABCC3 (MRP3) and ABCG2 (breast cancer resistance
protein; BRCP) subfamilies [12].

The involvement of ABC transporters in the development of anthelmintic resistance
has also been identified in animal parasitic nematodes [13,14]; however, there is little
information about the role of ABC transporters in plant parasitic nematodes. The ABC
transporters have been associated with non-specific mechanisms of resistance, as they
modulate the concentration of different drugs at drug target sites irrespective of the drug
class. Although attempts have been made to investigate the domain and functionality of
ABC transporter systems in parasitic organisms, only the mechanism of ABC transporters
is well understood in nematodes. For example, ABC transporters reported in the free-living
nematode Caenorhabditis elegans [4] act as efflux pumps and facilitate the ATP-dependent
movement of xenobiotics, including drugs. Therefore, ABC transporters might be involved
in the active efflux of anthelmintic drugs away from their target sites, resulting in decreased
drug concentration and increased parasite survival (Figure 1). This has been shown by
the increased efficacy of anthelmintic drugs in nematodes using multidrug resistance in-
hibitors (MDRIs), which inhibit the activity of ABC transporters [14,15]. In addition, it
has been suggested that anthelmintics such as ivermectin (IVM), levamisole (LEV) and
thiabendazole (TBZ) are substrates of ABC transporters [12,16], and there is considerable
evidence that exposure to anthelmintics also modulates the expression patterns of different
ABC transporters in nematodes [17,18]. In contrast, IVM treatment showed no effects on
the expression patterns of ABC transporters in IVM-resistant Haemonchus contortus and
Cooperia oncophora worms collected from treated animals compared to those collected from
untreated animals [19,20]. This indicates that the expression patterns of ABC transporters in
nematodes seem to be variable, with some studies linking them to anthelmintic resistance
and other reports finding no association. Therefore, this review article provides a compre-
hensive overview of the current state of knowledge on the role of ABC transporters in the
survival of parasitic nematodes, including the repertoire of ABC transporter genes, regula-
tion of transporter expression, their physiological roles and the recent advancements in
identifying and characterizing ABC transporters in parasitic nematodes. Additionally, the
review will discuss the association of ABC transporters with anthelmintic resistance and the
potential for targeting these transporters as a strategy for controlling parasitic nematodes.
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Figure 1. Multidrug resistance transporter-mediated efflux of anthelmintic drugs and their associa-
tion with anthelmintic resistance. (A) The constitutive expression of MDR transporters in cell mem-
branes indicates the basal efflux of anthelmintic drugs. (B) Overexpression of MDR transporters in 
response to substrates, such as anthelmintic drugs, leads to increased efflux of drugs and the devel-
opment of resistance. 

2. ABC Transporters in Helminths 
Helminths possess a larger number of ABC transporter genes than mammals, which 

have only a few multidrug resistance (MDR) transporters [21]. In contrast to mammals, 
only P-gps and multidrug resistance proteins (MRPs) are the members of ABC transport-
ers that have been implicated in the development of resistance against anthelmintic drugs 
such as macrocyclic lactones (MLs) in parasitic nematodes [22–24], whereas the role of 
other members of the ABC transporter family is still unclear. Genes that are homologous 
to the mammalian ABCB1 subfamily encode P-gps in nematodes. Other MDR transporter 
genes include ABCC, which encodes MRPs, but half transporters are more closely related 
to the ABCB subfamily in nematodes than the ABCG2 subfamily in mammals [25]. 

Nematodes possess a greater diversity of ABC transporters compared to mammals; 
for example, C. elegans is known to have 15 P-gp genes (pgp), eight MRP (mrp) and nine 
Half transporter genes (haf) [4]. Table 1 summarizes the diversity of ABC transporter genes 
that have been reported in parasitic nematodes. The reason for this diversity of ABC trans-
porters in helminths is still not clear; however, it was opined that these might be essential 
for the protection of neurons in the worm body from a broad range of toxins [21]. 

Table 1. Summary of reported ABC transporter genes in parasitic nematodes. 

Parasites ABC Transporter Genes References 
Brugia malayi 8 pgps, 5 mrps, 8 haf genes [26] 

Bursaphelenchus xylophilus 106 ABC transporter genes [27] 
Cooperia oncophora 7 pgps, 3 mrps and 5 haf genes [17] 

Cyathostomins 2 pgps genes [28] 

Dirofilaria immitis 

3 pgps, 2 ABC-B (Dim-haf-1, and Dim-haf-4) and 2 ABC-C (Dim-haf-5.1 
and Dim-haf-5.2), 1 pseudogene 

[29] 

3 pgps, 2 ABC-A (Dim-abt-2, Dim-abt-4), 5 ABC-B (Dim-haf-1 Dim-haf-4) 
and 5 ABC-C (Dim-mrp-1, Dim-mrp-5, Dim-mrp-7, Dim-haf-5.1 and Dim-
haf-5.2), 2 ABC-G transporters (Dim-wht-4, Dim-wht-4), 1 pseudogene 

[30] 

Figure 1. Multidrug resistance transporter-mediated efflux of anthelmintic drugs and their association
with anthelmintic resistance. (A) The constitutive expression of MDR transporters in cell membranes
indicates the basal efflux of anthelmintic drugs. (B) Overexpression of MDR transporters in response
to substrates, such as anthelmintic drugs, leads to increased efflux of drugs and the development
of resistance.

2. ABC Transporters in Helminths

Helminths possess a larger number of ABC transporter genes than mammals, which
have only a few multidrug resistance (MDR) transporters [21]. In contrast to mammals,
only P-gps and multidrug resistance proteins (MRPs) are the members of ABC transporters
that have been implicated in the development of resistance against anthelmintic drugs such
as macrocyclic lactones (MLs) in parasitic nematodes [22–24], whereas the role of other
members of the ABC transporter family is still unclear. Genes that are homologous to the
mammalian ABCB1 subfamily encode P-gps in nematodes. Other MDR transporter genes
include ABCC, which encodes MRPs, but half transporters are more closely related to the
ABCB subfamily in nematodes than the ABCG2 subfamily in mammals [25].

Nematodes possess a greater diversity of ABC transporters compared to mammals;
for example, C. elegans is known to have 15 P-gp genes (pgp), eight MRP (mrp) and nine
Half transporter genes (haf ) [4]. Table 1 summarizes the diversity of ABC transporter
genes that have been reported in parasitic nematodes. The reason for this diversity of
ABC transporters in helminths is still not clear; however, it was opined that these might be
essential for the protection of neurons in the worm body from a broad range of toxins [21].

Table 1. Summary of reported ABC transporter genes in parasitic nematodes.

Parasites ABC Transporter Genes References

Brugia malayi 8 pgps, 5 mrps, 8 haf genes [26]

Bursaphelenchus xylophilus 106 ABC transporter genes [27]

Cooperia oncophora 7 pgps, 3 mrps and 5 haf genes [17]

Cyathostomins 2 pgps genes [28]

Dirofilaria immitis

3 pgps, 2 ABC-B (Dim-haf-1, and Dim-haf-4) and 2 ABC-C (Dim-haf-5.1 and
Dim-haf-5.2), 1 pseudogene [29]

3 pgps, 2 ABC-A (Dim-abt-2, Dim-abt-4), 5 ABC-B (Dim-haf-1 Dim-haf-4) and 5
ABC-C (Dim-mrp-1, Dim-mrp-5, Dim-mrp-7, Dim-haf-5.1 and Dim-haf-5.2), 2

ABC-G transporters (Dim-wht-4, Dim-wht-4), 1 pseudogene
[30]
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Table 1. Cont.

Parasites ABC Transporter Genes References

Echinococcus granulosus 5 pgp genes [31]

Teladorsagia circumcincta 11 pgps genes (partial sequences) [32]

Fasciola gigantica 4 ABC transporters (MDR1, MRP1, BCRP, and BSEP) genes [33]

Fasciola hepatica 1 P-gp orthologue gene [34,35]

Haemonchus contortus 11 pgps, one haf, two mrps and 2 abcf genes [36,37]

Onchocerca volvulus 2 pgps and 1 haf genes [38,39]

Opisthorcis felis 4 ABC-A, 8 ABC-B (including 4 pgps), 6 ABC-C, ABC-D, 2 ABC-F, 3 ABC-G
transporter genes [40]

Schistosoma mansoni 20 ABC transporter genes, including pgps and mrps [41]

Toxocara canis 1 ABC-B and 1 ABC-C transporter genes [42]

All the stages of helminths do not express all ABC transporters, and their expression
patterns may vary in different developmental stages. For example, Sarai et al. [43] described
life-stage differences in expression patterns for various P-gp genes within isolates of H.
contortus and the difference between the isolates. Therefore, the transport mechanism medi-
ated through MDR transporters may vary in different developmental stages of nematodes.
For example, Kerboeuf and Guegnard [16] reported that IVM failed to stimulate P-gps in
eggs of resistant H. contortus isolate compared to other MLs. In contrast, Godoy et al. [44]
showed that IVM was as effective as abamectin and more effective than moxidectin in
inhibiting rhodamine-123 (R-123; a fluorescent substrate) transport through P-gps from
adult worms of H. contortus expressed in mammalian cells. The difference in the inter-
action of anthelmintics across various life stages in nematodes also proposes that there
might be variation in expression patterns of ABC transporters between developmental
stages of nematodes. These studies suggest the important roles of ABC transporters for
helminth survival; however, further work is required to better characterize these roles in
the development of different helminth parasites.

3. Physiological Roles of ABC Transporters

As described earlier, ABC systems are divided into three major classes based on their
functions; Classes 1 and 2 are involved in the translocation of substrates across the cell
membrane and are found in prokaryotes and eukaryotes. Class 3 ABC systems do not
function in the membrane and are mainly associated with cellular processes, for example,
DNA repair, translation, and regulation of gene expression in cells [8]. Class 1 systems
found in membranes act as importers, which were initially described in prokaryotes;
however, recent studies have shown that these importers may also be found in protozoan
parasites such as Toxoplasma gondii [45]. Class 2 systems are also present in membranes
but function as exporters in prokaryotes and eukaryotes [46], reviewed by [47]. Although
the ABC transport proteins in Class 3 do not act as transporters, they share a common
structural component with ABC transporters, specifically the ATPase domain (also known
as ABC-2), which utilizes the energy derived from ATP hydrolysis to recognize and bind
mismatched DNA bases or DNA insertion loops [48]. Mammalian ABC transporters export
several groups of molecules, for example, lipids, retinoic acid derivatives, cholesterol and
sterols, bile acid, iron, nucleosides and peptides [49,50].

In nematodes, P-gps (ABCB1), one of the most studied ABC transporters, have been
reported to play an important role in protecting nematodes against environmental tox-
ins. The protective functions of several of these ABC transporters have been reported
previously. For example, Pgp-3 protects C. elegans worms against natural toxins [51]. In
addition, Issouf et al. [52] described the specific induction of pgp-3 in H. contortus exposed
to sheep eosinophil granules, suggesting a role in the detoxification of host immune cell
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products. Similarly, the expression of some P-gp genes (including pgp-3 and pgp-9) in
intestinal excretory cells of the closely related model organism C. elegans further suggests
a role for them in protecting worms against toxic substances [13]. Similarly, in plant par-
asitic nematodes, upregulation of ABC transporter genes in Bursaphelenchus xylophilus
was reported in response to α-pinene, a monoterpene produced by plants in response to
attack [53]. In addition, the increased sensitivity of different P-gp knock-out strains of C. ele-
gans to some anthelmintics, particularly IVM, provides evidence for their role in protection
against anthelmintics [13,54]. Moreover, Luo et al. [55] suggested that tissue transcription
and expression pattern of Tc-abcg-5 may indicate an essential role for this transporter in
the reproduction of Toxocara canis. Previously, we observed relatively higher expression
levels of ABCF transporters (abcf-1 and abcf-2) compared to many of the other genes in
H. contortus [18]. ABCF transporters lack the transmembrane domains (TMDs) present in
other transporter proteins, and their function as transporters is currently unclear. It has
been suggested that ABCF transporters are involved in cell physiology (ribosome assembly,
translational control and mRNA transport) in arthropods [56]. The absence of ABCF trans-
porters in arthropods results in physical abnormalities, as shown by Broehan et al. [57],
who observed the death of third-stage larvae (L3) and arrested growth, as well as the death
as pharate adults in RNA interference studies with L3 and pupae of Tribolium castaneum,
respectively. In Schistosoma mansoni, disruption of egg production following knockdown
of SMDR2 or SmMRP1 expression using RNA interference further indicated an important
role of ABC transporters in parasite reproduction [58]. However, the physiological role of
these transporters in parasitic nematodes needs further investigation.

4. Methods of Studying ABC Transporters

Of the various ABC transporters found in nematodes, ABCB1 (previously known as
P-gp) has been of particular interest due to its role in drug resistance and its potential as
a therapeutic target. However, the identification/localization of ABCB1 in nematodes is
challenging due to the complex nature of these organisms, with different life stages and
protective structures. Confirming ABCB1 expression in different body tissues of nematodes
requires a laborious and careful approach, and differentiation between ABCB1 and other
ABC transporter proteins can be difficult. Sometimes, differentiation between P-gps and
other proteins of the ABC transporters family is difficult due to the nature of methodologies
employed or the abundance of other ABC transporters that may be found in every selected
location [59]. Furthermore, ABCB1 isoforms that have not yet been characterized add to the
challenge of identifying ABCB1 in nematodes [60]. Various methods, including molecular
biology techniques, localization using monoclonal antibodies, biochemical assays and
in vivo models, have been employed to detect ABCB1 proteins in nematodes. There
have been various reports describing the presence of genes that encode different ABC
transporters in nematodes, including H. contortus [26], C. elegans [4], Brugia malayi [29],
T. circumcinta [32] and O. volvulus [38,39].

Several studies have reported the use of specific monoclonal antibodies for the detec-
tion of P-gps in nematodes. Different localisation studies have shown that ABC transporters
are expressed in excretory cells, the intestine, amphids, neurons, muscles, pharynx, hypo-
dermis, and other tissues, including the vulva in female worms [61]. The use of C219 and
UIC2 monoclonal antibodies for detecting human and mouse mdr-1 gene products has been
documented, while in H. contortus, UIC2 also confirmed both the presence and activity
of P-gps, as it was reported earlier in tumor cells [62,63]. Furthermore, P-gp expression
has been shown to predominate in the gastrointestinal tract, particularly the posterior
pharynx and anterior intestine in H. contortus [64], while anti-human mdr1 monocloncal
antibody staining showed that P-gps are also present in the eggshells [63] and cuticle of
adult and larval stages of H. contortus [65]. In addition, David et al. [66] recently reported
that Hc-pgp-13 was expressed in pharyngeal, neuronal and epithelial tissues. Similarly,
Chelladurai and Brewer [67] revealed the expression of Peq-P-gps in the intestine, body
wall, nerves, lateral cords, and reproductive tissues of adult male and female Parascaris
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equorum worms. In T. canis, detection of tissue distribution and transcription of TcABCG-5
showed that this ABC transporter was predominantly expressed in the reproductive tract of
female worms, suggesting an essential role of ABCG-5 in the reproduction of this parasitic
nematode [55].

Certain biochemical assays are available to detect P-gps that are based on measurement
or inhibition of the activity of trans-membrane transport proteins and are classified as
functional assays. Accumulation studies are based on the uptake of a radiolabeled or
fluorescent probe into the cell in the presence of ABC transporter inhibitors, which block the
efflux proteins leading to increased accumulation of the probe and evidence of the presence
of these transport proteins. The studies in mammalian cells have been conducted using
transfected cell lines that over-express a specific transporter protein of interest compared to
wild-type cells [68]. Rhodamine-123 (R-123) is one of the most commonly used P-gp probes
in mammalian tumors and transfected cells. Several agents identified as inhibitors of the
transport proteins using efflux/accumulation assays have potential applications in drug
resistance to chemotherapy in human cancers and livestock parasitic nematodes [16,69]. In
nematodes, R-123 accumulation/efflux has been studied using eggs of H. contortus in the
presence of P-gp inhibitors, especially verapamil. The results showed that P-gp inhibitors
increase the accumulation of R-123 in the eggs of H. contortus, indicating partial or complete
inhibition of drug efflux by these inhibitors [70,71]. ATPase assay is another biochemical
tool capable of identifying the presence of specific transport protein channels by detecting
the specific ATPase activity. The binding of ATP at a nucleotide-binding domain on the
P-gps is crucial for substrate transport, followed by hydrolysis of ATP by P-gp-specific
ATPase [72]. This assay requires a prepared cell membrane enriched with the efflux protein
of interest, ATP, an analytical method to detect inorganic phosphate liberated from ATP
hydrolysis and a mechanism for discriminating between general and P-gp specific ATPase
activity. Some general ATPases, including Ca-ATPases, Na+ ATPases, K-ATPases and
mitochondrial ATPases are inhibited by specific ATPase inhibitors [68]. Currently, ATPase
assay has been most widely used for determining P-gp-mediated drug efflux transport
in mammals, while no information is available about its use in nematodes. Studies in
mammalian cells showed that various compounds, including verapamil, cyclosporine A,
vinblastin and loperamide were able to stimulate P-gp ATPase activity [73,74].

Somechanged, in vivo methods are currently being used in mammalian studies to
detect the presence of specific transport proteins. Transgenic animal models are a well-
established means of evaluating genes and their protein products. Animals can be genet-
ically modified such that a specific protein can be over-expressed or blocked by adding
or deleting a gene(s). The phenomenon of the removal or silencing of a gene is called
homologous recombination or, more commonly, gene knockout [68]. The role of P-gps
in drug absorption and elimination has been studied by silencing single or both MDR
genes (mdr-1 and mdr-2) that encode P-gps in mice. The results showed increased ab-
sorption/accumulation of various drugs in different body tissues of mice lacking P-gps
compared to the control group of mice [75,76]. The use of gene silencing to study the
role of P-gps in nematodes is still limited and no success has been reported with parasitic
nematodes. In the free-living nematode C. elegans, genetic modification has also been used
as a tool to study the role of P-gps in anthelmintic sensitivity. Deletion of some P-gp genes
in C. elegans resulted in increased sensitivity of the worms to IVM compared to wild-type
worms [13]. However, this technique has not yet been successfully adapted for use with
parasitic nematodes and needs further work.

5. ABC Transporters and Drug Resistance in Nematodes/Evidence for a Role
in Resistance
5.1. Are They Substrates?

The absorption, distribution and elimination of the anthelmintics, especially MLs
in hosts and parasites, are influenced by multidrug resistance transporters, including P-
gps [59,77]. The combined effects of these efflux proteins have a considerable impact on the
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bioavailability and efficacy of the drugs by interfering with the absorption, distribution
and elimination of anthelmintics [78]. The efficiency of drug elimination is higher with
the increased affinity of anthelmintics for P-gps; therefore, anthelmintic drugs, including
MLs, are eliminated from the organism more rapidly in relation to the relatively shorter
resident time [77], which ultimately reduces the drug efficacy. There is accumulating
evidence that anthelmintics act as a substrate for P-gps, and the interaction of MLs with
P-gps is considerably better than the other anthelmintic groups [21]. Ivermectin was the
first member of MLs reported as a substrate for P-gps when a recommended antiparasitic
dose resulted in signs of toxicity and death of genetically engineered mice lacking the gene
coding for P-gps [75]. The concentration of IVM was 100-fold higher in the brain of mutant
mice than in wild-type mice. Apart from strong interaction with P-gps, MLs also interact
with MRPs (MRP1, MRP2 and MRP3), suggesting that the efflux of MLs is influenced by
multiple transporter proteins [79]. Likewise, the same mechanism of resistance might be
inferred for other anthelmintic classes. Some evidence suggested that P-gps also utilize
imidothiazole as their substrate, but LEV do not show any stimulatory effects; however,
BZ derivative albendazole shows very slight stimulatory effects on the mammalian P-
gps [80,81]. On the other hand, in nematodes, it has been shown that LEV and MLs
other than IVM are the most P-gps-stimulating anthelmintics in eggs of a resistant isolate
of H. contortus [16], as suggested by the poor transportation of IVM compared to other
MLs. However, it was recently described that IVM markedly inhibited the rhodamine-123
transport through PGP-2, PGP-9.1 and PGP-16 from adult worms of H. contortus expressed
in mammalian cells [44,82,83], whereas moxidectin showed lesser inhibitory effects on
R-123 efflux. The authors concluded that IVM is a better substrate of nematode P-gps than
moxidectin, and this may help to explain the slower rate of development of resistance to
moxidectin compared with other avermectins in H. contortus. Similarly, our previous studies
have shown that multidrug resistance inhibitors significantly increase the in vitro toxicity
of IVM and LEV in H. contortus; and exposure to IVM and LEV induces transcription of
various ABC transporter genes in H. contortus larvae [14,18]. In addition, pre-exposure of
H. contortus larvae to IVM and LEV also increased the efflux of rhodamine-123, suggesting
the stimulatory effects of these anthelmintics on ABC transporters.

5.2. Constitutive Expression of ABC Transporters and Anthelmintic Resistance

P-gps have been implicated in resistance to anthelmintics, with several studies describ-
ing an increased transcription of specific transporter genes in drug-resistant nematodes
compared to their counterparts (Table 2). For example, studies on H. contortus have shown
that multi-drug resistance is associated with increased P-gp mRNA expression levels in
IVM-resistant strain [64]. Williamson et al. [84] reported significantly increased expres-
sion levels of pgp-2 and pgp-9 in a multi-drug resistant isolate compared to a susceptible
isolate of H. contortus. Our previous studies also showed that pgp-1, pgp-9.1 and pgp-9.2
expressed at significantly higher levels in drug-resistant larvae of H. contortus compared
to the susceptible larvae [18,43]. Similarly, in T. circumcincta, pgp-9 showed significantly
higher transcription in multidrug-resistant isolate compared to susceptible isolate [29]. In
addition, expression levels of haf-9 and mrp-1 were also higher in the eggs of IVM-resistant
C. oncophora [17]. In addition, Figueiredo et al. [85] recently reported that IVM-resistant C.
elegans isolate showed upregulation of pgp-12 and pgp-13 with downregulation of all other
P-gp genes, whereas Yan et al. [86] reported that mRNA levels of five ABC transporters
were significantly higher in IVM resistant isolate of C. elegans compared to the wild-type
susceptible isolate. On the other hand, Williamson and Wolstenholme [37] observed no
significant changes in P-gp mRNA expression levels in a rapidly selected IVM-resistant
isolate as compared to the drug-sensitive parent isolate. This suggests that the expression
patterns of P-gps in nematodes seem to be variable, with some reports linking them to
anthelmintic resistance and other studies finding no association.
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Table 2. A summary of the selected studies reporting the constitutive expression patterns of ABC
transporters in parasitic helminths.

Parasite/Helminth Differential Expression of ABC Transporters Life Stage References

C. oncophora Constitutive overexpression of Con haf-9 and mrp-1 in resistant isolate as
compared to susceptible Eggs [87]

D. immitis A significant lower level of DimPgp-11 constitutive expression in the
ML-resistant JYD-34 isolate compared to the ML-susceptible Missouri isolate MF [88]

H. contortus

Significantly higher transcription level of P-gp-9.1 in Ivermectin resistant
strain as compared to the susceptible isolate Adults [89]

Higher expression of pgp-16 in resistant isolate Eggs [90]

Higher expression of pgp-2 and pgp-10 in resistant isolate L4

[91]Higher expression of pgp-1, pgp-9, pgp-12, pgp-14, and pgp-16 in resistant
isolate Adults

Constitutive overexpression of pgp-1, pgp-9.1 and pgp-9.2 in multi-drug
resistant isolate compared to susceptible isolate. L3 [18]

Significant overexpression of Hco-pgp-3, Hco-pgp-9.2, Hco-pgp-11 and
Hco-pgp-16 transcripts in L4 and adults as compared to free living stages

L3, L4 and
Adults [52]

Significantly increased transcription of Hco-pgp-2, and Hco-pgp-9 in resistant
and Hco-pgp-1 in susceptible cattle L3 [84]

P. equorum
No difference Eggs

[92]
Significant overexpression of pgp-11 in resistant worms L3

S. mansoni Transient increase in transcription levels of SMDR2 in schistosome isolate
with reduced praziquantel susceptibility

Adult
worms [93]

T. circumcincta

Constitutive overexpression of Tci-pgp-3, Tci-pgp-a and Tci-pgp-9 in
multidrug-resistant isolate compared to susceptible isolate. Eggs

[32]Constitutive overexpression of Tci-pgp-9 and Tci-pgp-e in multidrug-resistant
isolate compared to susceptible isolate. xL3

Constitutive overexpression of Tci-pgp-9 and Tci-pgp-d in multidrug-resistant
isolate compared to susceptible isolate. Adults

L3 = third-stage larvae, xL3 = ex-sheathed third -stage larvae, L4 = fourth stage larvae, ML = Macrocyclic lactone,
MF = Microfilariae

5.3. Effect of Anthelmintics on ABC Transporters Expression

Since anthelmintics are substrates of P-gps, they may regulate the expression level
of P-gps through transcriptional or post-transcriptional mechanisms [94]. Ardelli and
Prichard [13] studied the effects of IVM on the expression patterns of P-gps and they
found that IVM induces changes in both the amplitude and occurrence of 15 P-gp genes in
C. elegans, whereas the inactivation of certain pgps (pgp-2, pgp-5, pgp-6, pgp-7, pgp-12 and
pgp-13) resulted in increased sensitivity to IVM compared to the wild-type C. elegans. There
is also accumulating evidence that exposure to anthelmintics increases gene transcription
for ABC transporters in parasitic nematodes (Table 3). For example, previous studies
reported overexpression of pgp-11, pgp-16 and mrp-1 in C. oncophora recovered from animals
treated with IVM [17,95]. Similarly, in vitro exposure of H. contortus larvae of resistant
and susceptible isolates to IVM, LEV, and monepantel increased the expression patterns of
multiple ABC transporters [18,24]. This up-regulation of P-gps and other ABC transporters
in nematodes due to anthelmintics exposure may lead to multiple-drug resistance in the
nematode population. For example, the in vitro studies demonstrated that monepantel
exposure resulted in increased tolerance of a proportion of the larval population to IVM
and LEV. Similarly, Lloberas et al. [96] reported that treatment of infected lambs with IVM
increased the transcription levels of pgp-2 in resistant H. contortus compared to the worms
collected from untreated control animals. In addition, the combination of P-gp interfering
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or MDR-reversal agents with IVM potentiated sensitivity to IVM in adults and microfilariae
of B. malayi following overexpression of multiple ABC transporter genes in response to IVM
exposure [97]. Recently, Diao et al. [98] reported that the expression of multiple Bx-MRP
genes increased in the pine wood nematode, Bursaphelenchus xylophilus, with increasing
concentrations of emamectin benzoate, avermectin and matrine, suggesting a potential role
in the regulation of multidrug resistance.

Furthermore, De Graef et al. [17] also reported a significant increase (3–5 fold) in
transcription levels of pgp-11 in C. oncophora adult worms 14 days after treatment with
IVM or moxidectin compared to unexposed adults. The authors further described a 4-fold
transcriptional up-regulation of pgp-11 in L3 of resistant isolate compared to susceptible
L3 after 24 h in vitro exposure to different IVM concentrations (8.7 ng/mL and 87 ng/mL).
In contrast, no significant differences were observed between the expression patterns of
P-gp genes before and after IVM treatment in Parascaris univalens, C. oncophora and H.
contortus [19,37,99]. Therefore, the role of these trans-membrane proteins as a drug efflux
mechanism in nematodes is still unclear and needs further investigation.

Table 3. A summary of the selected studies reporting the induced expression patterns of ABC
transporters in parasitic helminths in response to anthelmintics exposure.

Parasite/
Helminth

Drug
Selection

Significantly Differential Expression of ABC Transporters
Life Stage References

Resistant Isolate vs. Susceptible Isolate

B. malayi
IVM Higher expression of multiple P-gp and MRP genes in

response to IVM exposure
Microfilariae
and Adults [97]

MOX Higher expression of multiple ABC transporter genes in
response to moxidectin exposure Adult Worms [100]

C. oncophora
MLs

Increased transcription of Con pgp-11 in resistant isolate only
L3

[87]
IVM L3 and adults

Cyathostomins IVM Higher expression of pgp-9 in resistant isolate as compared
to the susceptible population L3 [101]

D. immitis IVM Increase in gene expression for Dim-pgp-10 and DIM-pgp-11 Adults [102]

E. granulosus Amiodarone
Loperamide

Eg-pgp1 and Eg-pgp2 transcripts were up-regulated in
response to in vitro drug treatment

Protoscoleses
&

metascoleces
[31]

F. gigantica
Taurocholate Increased expression of MDR1 and MRP1

Adult flukes [33]
Triclabendazole Increased expression of MRP1

H. contortus

IVM In-vivo IVM exposure significantly increased pgp-3 and
pgp-9.2 transcription in resistant isolate Adults [90]

IVM
In-vivo IVM exposure significantly decreased pgp-3 and

pgp-9.1 transcription, whereas pgp-2 expression was
progressively increased in IVM-resistant isolate

Adult worms [103]

IVM Resistant isolate: Increased expression of pgp-1, pgp-2,
pgp-9.1, pgp-10, pgp-11 and haf-6. L3

[18]

LEV
In resistant isolate: Upregulation of pgp-1, pgp-2, pgp-9.1,

pgp-10, pgp-11, abcf-1 and haf-6 genes. No significant changes
in susceptible isolate

L3

MPL
250 µg/mL

In both MDR and susceptible isolates, expression of multiple
ABC transporter genes increased at 3, 6 and 24 hrs. Some

pgps were also decreased.
L3 [24]

MPL
2.5 µg/mL

MDR isolate: Expression of multiple ABC transporter
genes decreased.

Susceptible isolate: pgp-11 increased at 3 hr, while pgp-9.1
and pgp-11 decreased at 24 hr.
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Table 3. Cont.

Parasite/
Helminth

Drug
Selection

Significantly Differential Expression of ABC Transporters
Life Stage References

Resistant Isolate vs. Susceptible Isolate

IVM No changes in P-gp expression levels in IVM-resistant isolate
compared to drug-susceptible parent L3 [37]

S. mansoni

PRAZ Transient increase in transcription levels of SMDR2 in
schistosome isolate with reduced praziquantel susceptibility Adult worms [93]

PRAZ
Transient increase in transcription levels of SmMRP1

following exposure of worms to sub-lethal concentrations of
praziquantel

Juvenile adults [104]

L3 = third-stage larvae, L4 = fourth-stage larvae, MDR1 = multidrug resistance protein 1, MRP = multidrug
resistance-associated protein, MLs = Macrocyclic lactones, IVM == Ivermectin, MOX = Moxidectin, LEV = Lev-
amisole, MPL = Monepantel, PRAZ = Praziquantel.

5.4. Polymorphism in ABC Transporters and Anthelmintic Resistance

In addition to transcriptional upregulation, allelic polymorphisms in ABC transporters
can potentially increase drug efflux from the cells, thus changing the drug distribution
within the parasite’s tissue and moving anthelmintics away from target sites [21]. Table 4
summarizes the studies reporting constitutive and induced genetic polymorphisms in ABC
transporters in parasitic helminths. For example, MLs select for certain alleles of P-gps as
evidenced by changes in genetic polymorphism in P-gp A of H. contortus following selection
with IVM and moxidectin [22]. Similarly, benzimidazoles have also been reported for select-
ing specific alleles of P-gps (allele P) in H. contortus [105]. Furthermore, polymorphism in
Tci-pgp-9 has also been reported in multidrug-resistant T. circumcincta [29]. Choi et al. [106]
also described alternative splicing and four non-synonymous, exonic SNPs in Tci-pgp-9 in a
multidrug-resistant T. circumcincta strain compared to the “near-isogenic” drug-susceptible
sister strain. Recently, Turnbull et al. [107] supported the previous findings and reported
that the non-synonymous nucleotide substitutions in Tci-pgp-9 sequence variants shared
by the multiple-resistant UK and New Zealand isolates were not observed in their drug-
susceptible counterpart. These studies suggest that increased expression of Tci-pgp-9, as
well as higher sequence polymorphism may play an essential role in anthelmintic resistance
in T. circumcincta.

Furthermore, specific SNPs have also been reported in D. immitis resistant populations
with reduced efficacy to MLs [30]. The authors suggested that a few of these SNPs may affect
protein expression or function, substrate specificity and resistance development. Similarly,
in human parasitic nematodes, polymorphisms associated with IVM selection have been
reported in ATP binding sites of two ABC transporter genes in O. volvulus. However,
the samples collected in 2002 showed less genetic variability than those collected in 1999,
and the reasons for this still need to be clarified [108]. The authors suggested that the
widespread use of IVM in Ghana for the control of onchocerciasis may be exerting selection
pressure and reducing genetic variability. Although further studies are required to confirm
the association of allelic polymorphism in ABC transporters with anthelmintic resistance,
the previous studies indicate that anthelmintic selection pressure leads to increased genetic
variability in ABC transport proteins.
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Table 4. Constitutive and induced genetic polymorphisms in ABC transporters in parasitic helminths.

Parasite/Helminth Anthelmintic Drug
Genetic Polymorphism in ABC Transporters

Life Stage References
Resistant Isolate vs. Susceptible Isolate

C. oncophora
Multiple SNPs led to different amino acid

sequence variations in resistant isolates compared
to susceptible isolates.

L3 [87]

D. immitis MLs

The alternate allele frequency of the D. immitis
pgp-11 SNP marker ranged from 36% to 40% in

resistant isolate and from 0% to 12% in
susceptible isolate

MF [88]

75 SNPs and 89 SNPs in 15 ABC transporter genes
of resistant and susceptible isolates, respectively MF [30]

H. contortus

BZs
Multiple allelic polymorphisms in pgp-A were

detected against the cambendazole-selected strain
of H. contortus, derived from the sensitive strain

L3 [105]

IVM and MOX Multiple allele variation in P-gp locus between
the drug selected and susceptible strains L3 [22]

O. volvulus IVM

Resistant isolate: Reduced polymorphism in
OvPLP, OvMDR-1, OvABC-1, OvABC-3 and

OvPGP
Susceptible isolate: Polymorphism not detected

Adult [109]

P. equorum MLs
Three SNPs causing missense mutations in the

PeqPgp-11 were correlated with reduced
sensitivity to MLs

Eggs [92]

T. circumcincta

IVM
Nine non-synonymous SNPs in Tci-pgp-9 in the

MDR isolate sequences relative to the susceptible
isolate

L3 [107]

IVM

Alternative splicing and four non-synonymous,
exonic SNPs in Tci-pgp-9 gene in MDR isolate

compared to susceptible “near-isogenic” sister
strain.

L3 [106]

L3 = third-stage larvae, L4 = fourth-stage larvae, MDR = multidrug resistant, MF = Microfilariae.

6. ABC Transporters as Potential Targets to Control Nematodes

ABC transporters are critical in maintaining cellular homeostasis and essential for
many physiological processes. Due to their broad substrate specificity and importance
in cellular function, ABC transporters have become an attractive target for developing
new antiparasitic drugs. For example, the characterization of ABC transporter genes
may contribute to identifying gene targets for silencing and provide novel strategies for
nematode control. In addition, the efficacy of existing drugs can be enhanced to overcome
drug resistance in nematodes by modulation of ABC transporters.

6.1. Genetic Manipulation/Gene Silencing

Gene silencing at the gene expression level of ABC transporters using anti-sense
oligonucleotides or double-stranded small interference RNAs (siRNA) to regulate mRNA
levels or target the signaling pathways that induce ABC transporters expression has been re-
ported to counter multi-drug resistance in mammalian cancer research [110,111]. Similarly,
in nematodes, there have been reports describing the use of gene silencing; for example,
mrp-1 and pgp-1 knock-down in C. elegans led to increased sensitivity to drugs or heavy
metal ions compared to the wild-type [112]. Furthermore, silencing of some P-gp genes
in C. elegans increases the sensitivity of genetically modified worms to MLs compared to
wild-type worms [13,54]. The use of RNAi to knock down some specific genes has had
limited success with H. contortus, as described by some of the previous studies [113–115].
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In addition, no information is available as to whether it can silence transporter genes in
parasitic nematodes. Therefore, further research is required to elucidate the use of these
high-throughput techniques to counter anthelmintic resistance in parasitic nematodes.

6.2. Modulation of ABC Transporters

The studies reporting non-specific mechanisms of anthelmintic resistance in nematodes
show that P-gps are the only member of the ABC transporter family that is well understood
for its role in anthelmintic resistance. The research directions to overcome the MDR in
nematodes are still less advanced, and further work is required to counter this mechanism.
Increased efficacy of anthelmintics against parasites could result from modifying the
pharmacokinetics in the host or by blocking the resistance-conferring transport mechanism
in parasites [25]. Therefore, the approach more commonly adopted in mammalian and
nematode research is identifying and developing an effective MDR inhibitor (MDRI) or
reversal agent [12]. The idea of the modulation of P-gps in nematodes to reverse drug
resistance partially or completely is based on the principal mechanism of action of these
transporters. These transport proteins reduce drug toxicity by transporting the drug
away from its target site. Therefore, reducing the activity of transporters by using such
compounds, which either block these channels or compete with anthelmintics, would
increase drug toxicity (Figure 2).
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Figure 2. Schematic diagram of inhibition of ABC transporter/MDR transporter-mediated efflux of
anthelmintic drugs in helminths with the addition of MDR reversal agent, which results in increased
drug concentration and toxicity into the target cells.

Ideally, an effective MDRI would be a non-toxic, potent and specific inhibitor of the
relevant ABC transporters and would have no adverse effects on the pharmacokinetics of
anthelmintic agents [12]. Several compounds have been evaluated in vitro and in vivo in
mammals, while some of them have also been studied in nematodes. These compounds
are classified into three different generations of ABCB1 inhibitors. Previous studies which
have reported the effects of MDR inhibitors on the sensitivity of parasites to anthelmintics
are summarized in Table 5.
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Table 5. Effects of multidrug resistance inhibitors on the sensitivity of parasites to anthelmintics.

Nematode spp. Inhibitors Used Study Design Effect on Anthelmintic Efficacy Reference(s)

A. pegreffii Valspodar, MK-571 In vitro Increased toxicity of LEV, Nerolidol
and Farnesol [116]

B. malayi
Verapamil, cyclosporin A,

vinblastine, and
daunorubicin

In vitro
motility assay

Increased susceptibility of adult and
microfilariae to IVM [90]

C. oncophora Verapamil In vitro
LDA, LMIA

Completely restored sensitivity of
IVM-resistant isolate [97]

Cattle nematodes Verapamil In vitro
EHA, LDA, LMIA Increased IVM sensitivity [117]

Cattle nematodes Loperamide In vivo Increased IVM and MOX efficacy in
terms of reduced FEC [118]

H. contortus

Verapamil, Limonene and
other phytochemicals

In vitro
LDA, AMT

Verapamil and Limonene
completely restored IVM sensitivity

in resistant isolate
[119]

Verapamil In vitro
LDA

Increased the susceptibility of
wild-type and ML-selected isolates

to IVM and MOX
[120]

Crizotinib In vitro
LDA and LMA

Increased IVM toxicity to resistant
isolate in LMA, and both resistant

and susceptible isolates in LDA
[15]

Verapamil. valsopodar,
elacridar, zosuquidar,

tariquidar

In vitro
LDA and LMA

Increased the sensitivity of both
resistant and susceptible isolates

with comparatively marked effects
in resistant isolate.

[14]

Verapamil In vitro (EHA) Increased sensitivity of resistant
isolate to thiabendazole [71]

Verapamil In vitro (EHA) Increased BZ sensitivity of resistant
and susceptible isolates [70]

H. contortus,
T. circumcincta

Valspodar, verapamil,
quercetin, ketoconazole,

pluronic acid P85
In vitro (LFIA)

Significantly increased IVM
sensitivity of susceptible and

resistant isolates
[121]

H. placei

Cyclosporin A, ceftriaxone,
dexamethasone,

diminazene aceturate,
quercetin, trifluoperazine,

verapamil, vinblastin

In vitro (LMIT)
All inhibitors increased IVM

sensitivity of resistant isolate, except
diminazene aceturate

[122]

S. mansoni Elacridar, tariquidar,
zosuquidar, verapamil

In vitro
(worm motility)

Significantly increased sensitivity of
adult worms to praziquantel [123]

S. mansoni

Cyclosporin A,
dexverapamil, curcumin

derivative (C-4), tariquidar,
MK-571

In vitro and
In vivo in mice

In vitro and in vivo disruption of
egg production in resistant isolate [58]

Sheep nematodes Loperamide In vivo in sheep
Increased IVM efficacy in terms of

reduced FEC, increased plasma and
availability.

[124]

EHA = egg hatch assay; LFIA = larval feeding inhibition assay; IVM = ivermectin; MOX = moxidectin; ML = Macro-
cyclic lactones; BZ = Benzimidazole; LMIT = larval migration inhibition test; FEC = faecal egg count; LMIA = larval
migration inhibition assay; LDA = larval development assay; A = Anisakis; Brugia; C. = Cooperia; H. = Haemonchus;
S. = Schistosoma; T = Teladorsagia.
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6.2.1. First-Generation MDR Inhibitors

The first-generation inhibitors were developed for some other use, such as verapamil
(anti-hypertensive), cyclosporine A (immunosuppressant) and quinine (antimalarial). Ve-
rapamil is a well-studied multidrug resistance inhibitor and has been shown to inhibit
mainly the functions of P-gps in mammalian tumor cells and nematodes [12,59]. However,
in mammals, these inhibitors failed to provide positive effects in clinical studies, despite
their in vitro efficacy in inhibiting ABCB1 transporters. These agents were reportedly toxic
and may induce pharmacokinetic complications (cardiac toxicity in the case of verapamil)
in mammals [125].

In nematodes, it has been shown that verapamil can reverse the anthelmintic resis-
tance either partially or completely when co-administered with anthelmintics [70,71,97].
Verapamil has been studied in various in vitro assays such as egg hatch assay (EHA), larval
development assay (LDA) and larval migration inhibition assay (LMIA) using different
developmental stages (eggs and L3) of trichostongyloid nematodes [13,14,70,97]. The
results showed that co-administration of verapamil increases the sensitivity of both the
susceptible and resistant isolates of H. contortus and C. oncophora to anthelmintic agents by
decreasing the IC50 values compared to anthelmintics alone. Verapamil also increased the
thiabendazole (TBZ) toxicity in EHA and showed a partial reversal of the resistance [70].
Interestingly, Raza et al. [14] showed that in LDA, verapamil increased IVM toxicity to a
resistant isolate of H. contortus only, whereas it increased LEV toxicity to both resistant
and susceptible isolates and showed no effect on IC50 values of thiabendazole. In contrast,
using verapamil in larval migration assay (LMA) did not show any effects on the toxicity of
IVM and LEV. The authors suggested that these patterns could be attributed to variations
in life-stage dependent expression levels of specific P-gp genes between early larval life
stages (examined in LDA) compared to later infective-stage larvae (as examined in LMA).
Furthermore, some in vivo studies showed that verapamil, when co-administered with
anthelmintic agents, increased the bioavailability of IVM in jirds and sheep [126,127]. In
addition, verapamil and cyclosporin A increased the IVM sensitivity of H. placei-resistant
isolate in LMIA [122]. The investigations of verapamil toxicity are still in the early stages
in livestock; for example, Pérez et al. [128] reported that the co-administration of vera-
pamil/IVM in pregnant sheep increases the bioavailability of IVM not only in maternal
blood but also in fetal blood which may lead to IVM toxicity. Therefore, further research
is required.

6.2.2. Second-Generation MDR Inhibitors

This group of MDR inhibitors were designed to counter the major drawbacks of first-
generation inhibitors (reduced specificity and increased toxicity). Valspodar, a derivative of
cyclosporine A, is characterized by higher in vitro specificity and potency than its precursor
and no immunosuppressive effects, but it failed to improve the outcome of phase II clinical
trials when administered with anticancer agents. Valspodar also inhibited cytochrome
P450 (CYP450), which led to higher systemic concentrations of both the inhibitor and
the therapeutic drug resulting in increased toxicity [129,130]. Biricodar, derived from
piperidine was also a more potent ABCB1 inhibitor than the first-generation compounds
and showed the ability to inhibit the ABCC1 transporter family. However, biricodar showed
no efficacy in phase II clinical trials when co-administered with doxorubicin or vincristine
in addition to the significant complication of neutropenia [131].

Information on the role of second-generation inhibitors in nematodes is limited. Bartley
et al. [121] reported that using valspodar in combination with IVM significantly increases
the in vitro sensitivity of drug-susceptible and -resistant isolates of H. contortus and T. cir-
cumcincta in larval feeding inhibition assay. The authors also suggested that the combination
of P-gp inhibitors with drugs could be useful to counter the emergence of anthelmintic
resistance either by increasing the drug’s efficacy or by shortening the course of treatment
in livestock. Valspodar has also been reported to reverse the resistance in IVM-selected
C. elegans (free-living nematode) isolate. This isolate also showed increased expression of



Pathogens 2023, 12, 755 15 of 23

P-gps and MRPs following IVM selection, and reversal of resistance on the addition of
valspodar clearly suggested that it interferes with the functions of ABC transporters, thus
ultimately reversing the resistance [132]. In addition, valspodar also showed increased
IVM, LEV and TBZ toxicities to H. contortus larvae in LDA and increased IVM toxicity
in LMA. This increased efficacy of valspodar was more marked in LMA for IVM with
both resistant and susceptible isolates (up to 4.5-fold increased IC50 values) [14]. However,
studies with adult parasites would be required to assess the practical applicability of the
ML-resistance reversing ability of this compound since this is the target life stage of most
chemotherapeutic approaches to worm control.

6.2.3. Third-Generation MDR Inhibitors

The third-generation MDR inhibitors were specifically designed to counter the lim-
itations of first two generation inhibitors; therefore, inhibitor development was focused
on the compounds that avoided the inhibition of CYP450 and did not alter the pharma-
cokinetics of the drugs. The members of third-generation inhibitors include tariquidar
(an anthranilamide, XR9576), elacridar (an acridone caroxamide), zosuquidar (LY 335979),
CBT-1 (quinolone derivative) and laniquidar (piperidine) [12]. They have higher potency
and selectivity and lower toxicity than the agents of the previous two generations. However,
the combination of zosuquidar and tariquidar with anticancer drugs (athricycline, taxanes,
or docetaxel) showed little additional benefits [133,134], but these compounds did not show
any toxicity.

There are limited reports available on the use of third-generation inhibitor tariquidar in
pathogenic parasites. Kasinathan et al. [58] showed that tariquidar reduces egg production
in Schistosoma mansoni in vitro and in vivo. It eliminated egg production in vitro at a
concentration of 12.5 µM. The reduction in egg production was due to the association
of MDR transporters with normal cellular physiology, evidenced by the disruption of
parasite egg deposition in worms due to SMDR2 and SmMRP1 genetic knockdown. In
H. contortus, the use of third-generation inhibitors, zosuquidar and tariquidar rendered
the resistant larvae more sensitive to IVM than susceptible larvae [14]. Interestingly,
though, while tariquidar significantly affected the IVM IC50 for both susceptible and
resistant isolates, zosuquidar only reduced the IC50 for resistant larvae. These inhibitors
resulted in a 5–6-fold increase in IVM toxicity, highlighting the potential usefulness of
combination therapy (anthelmintics and MDRIs) in restoring the sensitivity of resistant
worms (resistant-breaking strategy) and reducing the recommended dose of an anthelmintic
while maintaining 100% efficacy against susceptible worms.

6.2.4. Nutraceuticals as MDR Inhibitors

Rising levels of anthelmintic resistance stimulated significant research into the princi-
ple of integrated parasite management to complement regular drug treatment. One alter-
native control option is the use of nutraceuticals or bioactive forages containing bioactive
compounds which can antagonize enteric nematodes [135]. Such active compounds may
include sesquiterpene lactones, found in chicory, as well as polyphenolic compounds such
as flavonoids or condensed tannins (proanthocyanidins) found in numerous plants such as
sainfoin or birdsfoot trefoil [136–138]. The mode-of-action of these natural compounds is
thought to mainly derive from the pharmacological-like binding of these bioactive plant
metabolites to the worms, resulting in mortality and expulsion, but more indirect effects
through boosting of the host immune system or modulation of the host gut microbiome
have also been proposed [139,140]. It is becoming increasingly appreciated that drug phar-
macokinetics can be markedly influenced through interactions with diet and gut microbiota
factors [141]. Thus, it has been suggested that some of these plant metabolites may be able
to modulate P-gp or other ABC transporters and thus influence anthelmintic drug pharma-
cokinetics and/or efficacy. For example, many bioactive plants, such as sainfoin are rich in
polyphenols with a similar structure to quercetin-a well-known P-gp inhibitor [142]. Many
polyphenols have been investigated for their health benefits in humans, e.g., by modulating
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transporter activity and thereby overcoming MDR in cancer [143–145]. Dupuy et al. [146]
proposed the use of dietary quercetin to lower the rate of moxidectin metabolism and
excretion by the host, and thus result in prolonged bioavailability and hence exposure of
parasites to the drug. Furthermore, direct interactions between polyphenols and worm P-gp
could result in drug accumulation within the parasite and reversal of drug resistance, which
arises from increased P-gp expression. Direct evidence of this is still lacking, although
in vitro evidence has shown that H. contortus and Ascaris suum may be more susceptible
to IVM and LEV following exposure to polyphenols [147,148]. Whether this results from
altered transporter activity (and hence higher drug concentrations in the worm) or other
mechanisms, such as reduced cuticle integrity, is not clear and warrants investigation.
Interestingly, in vivo evidence also exists that IVM treatment against nematode infection in
lambs is more effective when the animals consume polyphenol-rich redberry juniper [149].
However, Gaudin et al. [150] reported that IVM treatment was less effective in lambs fed
sainfoin, emphasizing the complexities of these drug-nutraceutical-parasite interactions in
the in vivo situation. However, given that bioactive dietary additives are a rapidly growing
tool to promote animal health and reduce enteric infections, opportunities to leverage the
bioactivities of natural dietary compounds to modulate nematode drug transporters should
be further explored.

7. Conclusions and Recommendations

ABC transporters play a crucial role in regulating the transport of various chemical
entities in nematodes. The ABC transporter superfamily is diverse in structure and func-
tion, with some members acting as transporters for a wide range of substrates, including
anthelmintic drugs, while others are associated with cellular processes such as DNA repair
and gene regulation. In nematodes, ABC transporters have been implicated in developing
anthelmintic resistance by functioning as efflux pumps, reducing drug concentration at
their target sites. The activity of these transporters can be inhibited by MDRIs, leading
to increased efficacy of anthelmintic drugs. Repurposing of existing drugs can save sig-
nificant time and resources in drug development and may lead to the discovery of novel
mechanisms that can be exploited in combination with existing anthelmintics. Although
numerous MDR inhibitors have been developed, most of these have limited efficacy, high
toxicity or have shown poor efficacy in vivo. Therefore, developing novel MDR inhibitors
with improved potency and safety profiles is essential for improving clinical outcomes
against parasitic nematodes. For example, natural products/nutraceuticals have been
considered as important sources of new drugs due to their high biodiversity, oral bioavail-
ability, and relatively low intrinsic toxicity. Therefore, natural products/nutraceuticals are
appealing candidates for combining with chemotherapy to increase the cytotoxic effects
of chemotherapeutic agents and reverse MDR. However, further research is required to
fully understand the role of ABC transporters in parasitic nematodes and their potential as
targets for controlling parasitic nematodes.
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