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Abstract: African swine fever (ASF) is a highly contagious swine disease with high mortality. In many
countries, culling pigs infected and exposed to the ASF virus is mandatory to control the disease,
which poses a real challenge in the disposal of large numbers of carcasses during ASF outbreaks.
Shallow burial with carbon (SBC) Thanks ew mortality disposal method developed from deep burial
and composting. The present study investigates the effectiveness of SBC in disposing of ASF virus-
infected pigs. The real-time PCR results showed that DNA of the ASF virus was still detected in bone
marrow samples on day 56, while the virus isolation test revealed that the infectious ASF virus was
destroyed in both spleen and bone marrow samples on day 5. Interestingly, decomposition was found
to occur rapidly in these shallow burial pits. On day 144, only large bones were found in the burial
pit. In general, the results of this study indicated that SBC is a potential method for the disposal of
ASF-infected carcasses; however, further studies are needed to provide more scientific evidence for
the efficacy of SBC in different environment conditions.

Keywords: shallow burial with carbon; above ground burial; ASF virus; decomposition; inactivation

1. Introduction

African swine fever (ASF) virus (ASFv) has been known as a highly contagious DNA
virus of the Asfarviridae family, causing the most devastating swine disease, which results
in socioeconomic losses for pork chain production [1]. Effective vaccines and treatments
are not available yet for ASF, so the disposal of pigs infected or exposed to ASFv is one of
the necessary measures to prevent the spread of the virus [2–4]. As a result, a large number
of pig carcasses usually need to be disposed of safely during an ASF outbreak, which is a
real challenge. In Europe, since 2017, ASF outbreaks led to the loss of 2.3 millions pigs [5].
In Russia and Eastern Europe, over 800,000 pigs were culled during 4 years (2014–2017)
of an ASF outbreak [2]. In China, a total of approximately 1,193,000 pigs were destroyed
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during the 165 outbreaks that occurred from 2018 to March 2022. Approximately 6 million
pigs were disposed of in Vietnam from February 2019 to May 2020 [6,7]. At present, deep
burial, incineration, and composting are often used to dispose of animal carcasses in many
countries around the world [8]. However, each of these methods has different advantages
and disadvantages [8,9]. Deep burial is capable of disposing of a large number of carcasses,
but the decomposition in the burial pit occurs slowly because oxygen is limited and the
addition of lime inhibits the activity of microorganism community [10]. Likewise, the use
of deep burial requires intensive labor and heavy equipment to dig deep pits and may
also lead to the contamination of groundwater [11]. For incineration, the main advantage
is its ability to rapidly inactivate pathogens by high temperatures, and the disadvantage
is the need for fuel and incinerators [12,13]. Another disadvantage is the application of
incineration may result in the production of dioxins, furan, odor, and aerosolize infective
agents [12,14,15].

Composting is a natural process of decomposition based on the activity of aerobic
microorganisms and has been recognized as a simple and economical method for disposal
of animal mortality [10,16,17]. Therefore, this method has been effectively employed
in many countries including Australia, New Zealand, the United States, and Canada
for both the daily and emergency disposal of animal mortality [8,18]. Previous studies
also demonstrated that composting could inactivate some common animal pathogens
causing Foot-and-Mouth Disease virus (FMD) [10,19] and Porcine Epidemic Diarrhea (PED)
virus [20]. However, there are still some concerns about composting related to the escape
of pathogens and/or the release of odor from compost piles, as the carbon layer covering
the compost piles can be easily disturbed by insects, scavengers, rats, and other animals.
Heavy rain and flooding may also affect the stability of compost piles, thereby exposing
animal carcasses to the environment [21]. In Vietnam, a number of infected pigs have been
illegally thrown into inappropriate places such as rivers, lakes, and roadsides during the
ASF outbreak in 2019, possibly due to the lack of convenient and economical disposal
methods [22]. Therefore, a new disposal method is needed to manage animal carcasses
during outbreaks, especially ASF outbreaks. Shallow burial with carbon material (SBC)
may be an additional tool to assist responders in the disposal of ASF-infected animal
carcasses. SBC is a hybrid between deep burial and composting. It involves digging a
shallow trench, placing a carbon source such as rice hulls or saw dust in the bottom of
the trench followed by a layer of carcasses, covering the carcasses with the excavated
material, and finally seeding the mound. SBC has been implemented successfully at several
sites within the United States and abroad [11,23]. This method has also been shown to be
capable of inactivating several pathogens including the Seneca Valley virus and Swine Pox
virus [21]. The aim of the present study was to investigate the viability of ASFv in swine
carcasses disposed of with SBC.

2. Materials and Methods
2.1. Materials

Forty-eight pigs with typical symptoms of ASF were used for this study (Figure 1).
Prior to burial, lymph nodes were also collected for the real-time PCR test to confirm the
presence of ASFv. Rice hulls were collected from local farms near the experiment location.

2.2. Shallow Burial Pit Construction

In a biosecure area at the Veterinary Hospital, Vietnam National University of Agricul-
ture (VNUA), 11 SBC pits, each containing 4 pigs infected with ASFv, were constructed.
Briefly, SBC pits were dug with dimensions of 2 m wide × 2.5 m long × 55 cm deep
(Figure 1). Approximately 30 cm of rice hulls was placed in the bottom of the pit (Figure 1).
An analog thermometer lead was placed on top of the rice hulls in the center of the pit. Four
market-size swine carcasses (60–80 kg) were then laid in the pit on their sides in a single
layer as close together as possible, facing the same direction (Figure 1). The excavated
soil was then returned to the pit and mounded in the center to shed water. Each SBC
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pit containing 4 pigs was designated for a specific day for excavation and data collection.
Eleven pits corresponded to collection days 1, 3, 5, 7, 14, 21, 28, 35, 56, 144, and 288. The
temperature of the burial pits was monitored daily using a handheld thermometer and
data logger.
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Figure 1. Four swine carcasses were placed in each SBC pit, facing the same direction.

2.3. Sample Processing

On day 0, lymph node and spleen samples were collected from 4 pigs that were
not buried for the detection and determination of ASFv concentration (Figure 2). Lymph
node samples of 44 pigs buried in 11 pits were also collected before burying for the ASFv
detection and isolation under the biosafety level 2 condition. After burial, the SBC pit
was excavated on a specific day and samples (spleen and bone marrow) were extracted
from carcasses and tested by PCR and cell culture to determine the survival of ASFv
(Figure 3). Each sample was thoroughly homogenized in Phosphate Buffered Saline (PBS)
using Retsch MM400 (Retsch, Germany) before it was centrifuged at 3000 rpm for 10 min.
The supernatant was transferred to a new tube and stored at −80 ◦C for virus detection
and isolation.
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Figure 3. Spleen (a) and bone marrow (b) were extracted from buried swine carcasses.

2.4. Detection of African Swine Fever Virus by Real-Time PCR

The DNA extraction of ASFv was performed using the MagMAX™ Viral/Pathogen
Nucleic Acid Isolation Kit (Thermo Fisher, Waltham, MA, USA) following the manu-
facturer’s instructions. A real-time PCR was carried out according to the previously
described method with TaqMan probe (5′-FAM-TTCCATCAAAGTTCTGCAGCTCTT-
TAMRA-3′) and primer pair (forward, 5′-TGCTCATGGTATCAATCTTATCG-3′; Reverse,
5′-CCACTGGGTTGGTATTCCTC-3′) [24]. The PCR mixture (25 µL) contained 5 µL of
nuclease-free water; 12.5 µL of PCR master mix 2X (Invitrogen superscript III qRT-PCR,
Thermo Fisher, Waltham, MA, USA); 2.5 µL of primer—probe mix (forward primer (0.6 µM);
reverse primer (0.6 µM); TaqMan probe (0.3 µM)); and 5 µL of DNA template. The mixture
was then used for a real-time PCR using a CFX96-real-time PCR system under the following
conditions: 1 cycle at 95 ◦C for 2 min, 45 cycles of 95 ◦C for 15 s, and 60 ◦C for 45 s.

2.5. Isolation of African Swine Fever Virus by Cell Culture

For preparation, frozen Porcine Avelolar Macrophages (PAMs) were liquefied in a
water bath at 37 ◦C. After that, the cell suspension was centrifuged at 2000 rpm for 10 min
at room temperature. The supernatant was discarded, and the pellet was rinsed with 5 mL
of PBS buffer. The washed pellet was resuspended in 10 mL of culture medium (RPMI 1640,
10% fetal bovine serum) to obtain the cell concentration of 5 × 106 cells/mL. An aliquot of
cell suspension was transferred into a flat bottom microplate (24 wells) and incubated for
16–24 h at 37 ◦C in 5% CO2. Subsequently, PAMs were infected with 100 µL of 10-fold serial
dilutions of the prepared sample (4 wells for each dilution) and then incubated for 30 min.
Hemadsorbing ASFv was used instead of the prepared sample in the positive control. For
the negative control, wells were not inoculated with the sample. Following the incubation,
suspension was discarded and 200 µL of fresh RPMI supplemented with 10% of fetal
bovine serum, 1% antibiotic and antifungus, and 10% swine erythrocyte was transferred
to each well and incubated at 37 ◦C in 5% CO2. The plate was monitored daily for 7 days
under a microscope for the presence of the cytopathic effect (CPE) or hemadsorption (HAD)
(Figure 4).

2.6. Bioassay

A bioassay was carried out to detect infectious ASFv in samples collected on days
28 and 56 that were PCR-positive but negative for virus isolation. A total of 10 healthy pigs
of 20 kg (8 weeks old) purchased from an ASF-free farm were used for each experiment.
The pigs were divided into a control and a treatment group. Pigs in each group (5 pigs)
were housed in a pen of 9 m2 in a 16 m2 room of the Veterinary Hospital at VNUA. The
rooms were environmentally controlled with an air conditioner and ventilator. Femur
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bone marrow from 4 carcasses from each sample time (day 28 and day 56) was pooled to
make the supernatant. After 3 days of adaptation after arriving to the pen, each pig in the
treatment group received 1 mL of intramuscular injection of the supernatant. Pigs in the
control group were injected with 1 mL of Ringer’s lactate. The pigs were then monitored
daily for clinical signs of ASF. On day 0, 3, 4, 5, 6, 10, and 25 after injection, blood samples
were collected for the detection of ASFv using a real-time PCR as described above.
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2.7. Statistical Methodology

There are some important assumptions associated with statistical methodology. Virus
concentration was assumed to decay in a straight line on the log10-scale over time. While
the observed data above the cell culture detection limit appear to support this assumption,
the true shape of the regression line was difficult to assess with only 3 sampling days
featuring concentrations above the detection limit. Virus concentration below the cell
culture detection limit was also assumed to decay in a straight line on a log10-scale as
a continuation of the model calculated for the data observed above the detection limit.
Violation of these assumptions could lead to a bias in the results presented in this paper,
particularly if there was a curve in the true virus concentration decay as it approached zero.
The 2 and 3 data points below the cell culture detection limit on day 3 for the spleen and
femur samples, respectively, were set equal to 102 HAD50, the cell culture detection limit.
This was a conservative estimate because 102 HAD50 was the maximum concentration
possible without detection by the cell culture test. Setting these data points to a fixed value
artificially reduced the variance of virus concentrations for that sampling day and for the
models. Thus, the average time to reach 1 HAD50 may be artificially increased, while
the prediction interval widths may be artificially decreased. An additional assumption
made in the sampling design was that the variance of virus decay between different pits
was approximately 0, which justified the use of only 1 pit for each sampling day. Factors
held constant in the study design that could affect the virus decay in real-world scenarios
included weight and age of the pig carcasses, soil type, starting ambient soil temperature,
weather conditions, and the quality of the SBC pit construction.

3. Results
3.1. Temperature Profile

Figure 5 reveals the temperature profile of the SBC pits. The soil and core temperature
increased gradually, reaching 34.67 ◦C and 42.70 ◦C after 29 days of SBC pit establishment,
respectively. However, the air temperature recorded on day 29 was 13 ◦C. Overall, the
soil temperature of the SBC pit showed the same trend as that of the core temperature
but was approximately 10 ◦C lower. The core temperature was maintained above 40 ◦C
from day 22 to day 43 before gradually going down but was still higher than the soil and
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air temperature throughout the experiment. The soil temperature remained higher than
the air temperature until day 108. From day 109 to day 144, the soil temperature and air
temperature were quite similar and ranged from 12 ◦C to 20.5 ◦C.
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3.2. Detection and Viability of African Swine Fever Virus

The DNA of ASFv was detected in all 48 pigs in this study on day 0. Pre-burial, the
Ct value of the lymph node samples of 48 pigs ranged from 18.02 to 26.28. The DNA of
ASFv was detected in the spleen and bone marrow samples of all carcasses after burial for
days 1 through 21, and on day 28, DNA of the virus was still detected in all spleen (Ct from
24.15 to 34.31) and bone marrow samples (Ct from 20.92 to 30.29) (Figure 6). However, on
day 35, only one spleen sample had detectable DNA of ASFv (Ct = 32.63), while all bone
marrow samples tested positive for ASFv DNA on day 35 (Ct from 24.12 to 28.34). On day
56, the DNA of ASFv was not detected in any spleen samples. On the contrary, the results
of the real-time PCR test revealed that the DNA of the virus was found in all bone marrow
samples on day 56 with Ct values ranging from 23.46 to 31.52 (Figure 6).

The virus isolation test showed that the titer of ASFv recovered from the lymph node
samples of 48 pigs prior to burial varied from 103.3 to 105.7 HAD50, with the majority
ranging from 104.3 to 104.7 HAD50. The virus concentration from the spleen samples of
four pigs before burial (day 0) varied from 103.7 to 105.5 HAD50. On day 1, the infectious
virus was detected in all four spleen and bone marrow samples (from exhumed pigs) with
the concentration varying from 103.2 to 104 HAD50 for spleen samples and from 102.5 to
103.3 HAD50 for bone marrow samples. By day 3, the infectious ASFv particles were only
detected in two of four spleen samples with titer from 102.5 to 103.3 HAD50 and one of four
bone marrow samples (102.3 HAD50) (Figures 7 and 8). Five days post-burial, ASFv was
found to be completely inactivated in all spleen and bone marrow samples.
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Figure 6. Scatter plot of Ct of post-burial spleen and femur bone marrow samples. Green dots are the
Ct values of femur bone marrow samples. Orange triangles are the Ct values of spleen samples.
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For the spleen tissues, the mean of virus concentration in the population was estimated
to decay to 1 HAD50 in 6.2 days with 999 out of 1000 pigs reaching 1 HAD50 by 11.5 days
(Figure 7; Table 1). For the femur bone marrow, the mean of virus concentration in the



Pathogens 2023, 12, 628 8 of 15

population was predicted to degrade to 1 HAD50 in 5.9 days with 999 out of 1000 pigs
reaching 1 HAD50 by 9.5 days (Figure 8; Table 1).
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Figure 8. Plot of days since burial vs. log10 of the ASFv concentration for femur bone marrow samples
tested with 99.8% confidence and prediction intervals. Green dots are the raw cell culture data. The
green line is the best fit simple linear regression line for log10 of the ASFv concentration regressed on
days since burial. The pink shaded area is the 99.8% confidence interval for the best fit regression
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Table 1. Prediction of ASFv inactivation.

Tissue Mean Number of
Days to 1 HAD50

Prediction Interval
Confidence (%)

Number of
Days to 1 HAD50

Spleen 6.17

95 3.33–9.01

98 2.65–9.69

99.8 0.89–11.45

Bone Marrow 5.88

95 3.94–7.81

98 3.48–8.28

99.8 2.28–9.48

For the bioassay tests, negative virus isolation for samples collected on day 28 and
samples collected on day 56 were each confirmed in 10 healthy pigs. Twenty-five days after
inoculation, typical clinical signs of ASF were not observed in any tested pigs. The result of
the PCR also showed that the ASF virus was not detected in blood samples collected on
day 0, 3, 4, 5, 6, 10, and 25 post-injection.
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3.3. Carcass Decomposition

On day 1, the muscle tissue still looked fresh with color similar to that of day 0
(Figure 9). From day 3 to 7, the color of the muscle tissue started changing to a gray color
and there was a strong smell during the carcass exhumation. On day 14, whole carcasses
were partly degraded, and muscle tissue was easily detached from bones and had turned
white. Organs had turned black by day 14. From day 21 to 56, the carcasses continued to
decompose rapidly, thereby the abdomen and shape of the swine body became difficult to
recognize. In addition, the smell reduced gradually during exhumation between day 21
and 56. On day 144, whole carcasses were almost completely decomposed, and the smell
was not recognized during exhumation. Although large bones still remained, they had
become spongy, especially the rib bones (Figure 9).
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4. Discussion

Despite the advances in vaccine and biosecurity measures, animal diseases still break
out all over the world. In the event of an outbreak caused by contagious pathogens,
the depopulation of infected/exposed animals and management of carcasses play a very
important role in preventing the spread of infectious diseases [8]. The disposal of animal
mortality is a challenge for livestock farming systems in outbreaks but has become routine
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as a large number of animal carcasses are generated daily from a global livestock population
of approximately 1.9 × 1010 birds and 2.31 × 108 mammals [13].

Deep burial and composting are the most-used methods for the disposal of animal
carcasses [8]. The main advantage of deep burial is its capacity to dispose of a vast quantity
of carcasses. However, it requires heavy equipment or excessive labor to dig deep burial
pits [11]. Deep burial is not suitable for the areas that have high groundwater and/or are
close to the water sources as it can cause water contamination and difficulties in digging
burial pits [25]. The pathogens present in carcasses are assumed to be able to survive for a
long time in a deep burial pit due to the suitable environment such as a low temperature
and anaerobic condition. To eliminate the pathogens in carcasses, lime is usually added to
deep burial pits. However, this inhibits microorganism activities, consequently slowing
down the decomposition process of carcasses and limiting future land use [11]. A previous
study showed that the carcass decomposition was not complete even after 3 years [10].
Composting has proved to be effective in destroying some common animal pathogens,
such as Foot-and-Mouth Disease virus (FMD) [10,19], Porcine Epidemic Diarrhea (PED)
virus [20], and ASF virus [26]. However, the need for a large amount of carbon material
hinders the use of this method in some areas during an outbreak. In addition, pathogens
present in carcasses may escape from compost piles via insects, scavengers, rats, and
other animals as well as in some special weather conditions such as heavy rain and/or
flooding [8,13].

SBC is a newly developed carcass disposal method based on the advantages and
disadvantages of deep burial and composting [11]. When compared to deep burial, SBC
facilitates the activities of aerobic microorganisms, thereby accelerating the carcass decom-
position process [23]. The results of our study also support the idea that carcasses rapidly
decompose in an SBC pit. By day 144, most of the tissues were completely decomposed
(Figure 9). Although large bones still remained, they had become spongy, especially the
rib bones. Furthermore, it is much more economical and easier to establish SBC pits in
comparison with deep burial pits [11]. The major advantage of SBC over composting is the
requirement of a smaller volume of carbon material, indicating the cost-effectiveness of
SBC. For SBC, carcasses are placed in the burial pit and covered with soil, while they are
placed on the ground and covered with carbon material for composting. Thus, it is more
difficult for insects, scavengers, rats, and other animals to gain access to carcasses in SBC
pits than in compost piles. SBC has also been considered to achieve a higher biosecurity
level compared to composting during heavy rain and flooding. In general, each disposal
method has different strong points. As a result, selection of the disposal method should be
based on the specific conditions of farms, areas, and country regulation even in specific
cases. With several advantages as mentioned above, SBC is expected to provide a potential
tool for carcass management.

A previous study has demonstrated the effectiveness of the SBC method in man-
aging sheep carcasses infected with Peste des Petits Ruminants virus (PPRv). However,
the survival of the PPRv in sheep carcasses was not investigated [23]. Ebling et al. [21]
determined the viability of Swinepox virus (SPv) in bone marrow during SBC on day 7,
14, 21, 28, and around months 2, 3, 6, and 12 post-burial. Although the SPv DNA was
detected in 93% of 160 bone marrow samples, the viable virus was only recovered from
11 (55%) bone marrow samples collected on day 7. A statistical analysis estimated that
the virus was completely inactivated around day 11 post-burial. Another shallow burial
trial was conducted by Zani et al. [27]. In that study, bone marrow samples were extracted
from wild boar carcasses naturally infected with ASFv in various locations and time points
from 18 to 440 days for virus detection and isolation. The results showed that virus DNA
was found in 17 out of 20 burial sites. However, the virus was not isolated in all samples
tested. Fischer et al. [28] determined the stability of ASFv in carcasses of domestic pigs
and wild boar experimentally infected with ASFv. The findings of that study showed that
ASFv DNA was still detected in bones stored for 3 months at room temperature, while the
infectious virus was not recovered after a week of storage. The results of our study are
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consistent with the previous studies mentioned above. It was found that all spleen and
bone marrow samples tested positive for ASFv DNA on day 28. However, none of the
samples was positive with virus isolation on day 5. The statistical analysis also suggests
that ASFv in the spleen and femur bone marrow was completely destroyed in 6.2 days
and 5.9 days, respectively. It is worth noting that the initial virus titer in the samples may
affect the longevity of the virus. In the present study, relatively high initial virus titers
(103.3 to 105.5 HAD50) were determined in the lymph node and spleen of pigs used for the
experiment. Bioassays were used to examine the infectivity of the virus by administration
of the suspicious samples to healthy pigs. This method is known to be more sensitive than
virus isolation using the cell culture technique [29]. Previous studies demonstrated that
pigs were infected with ASFv after feeding with samples that previously tested negative
in virus isolation [29,30]. In this study, the result of the bioassay was in agreement with
that of virus isolation, confirming that ASFv was inactivated in samples collected on day
28 and 56.

Temperature has been suggested as the main contributor for virus inactivation in
composting. Guan et al. [17] reported that a compost temperature of 50–55 ◦C was enough
to kill both Avian Influenza (AI) and Newcastle Disease (ND) viruses. Elving et al. [16]
obtained similar results, showing that the AI virus was inactivated during composting at
both mesophilic (35 ◦C) and thermophilic levels (45 and 55 ◦C). The study by Guan et al. [31]
revealed that Bovine Viral Diarrhea (BVD) virus was destroyed at a compost temperature
of 41 ◦C. Vitosh-Sillman et al. [20] investigated the survival of the PED virus in swine
carcasses during composting; the findings showed that the PED virus was inactivated at
37 ◦C within 24 h in a compost windrow. As expected, the SBC temperature observed in
this study was not as high as the compost temperature [26]. However, the temperatures
obtained in the study were still higher than those achieved in a previous study conducted by
Ebling et al. [21] on SBC. In our study, temperatures above 40 ◦C were maintained for more
than 3 weeks in a burial pit, while temperatures obtained in the study of Ebling et al. [21]
were less than 37 ◦C throughout the experiment. On the contrary, air temperatures recorded
in this study were lower than those observed in the study of Ebling et al. [21] (Figure 5). It
is important to note that ASFv was considered as a heat-sensitive virus that was destroyed
at 37 ◦C after around 20 days [32]. Therefore, the temperature (>40 ◦C) obtained in our
study could be an important contributor for ASFv inactivation.

Although temperature is often considered a key factor in pathogen inactivation, it
is just one of many factors leading to successful inactivation. Within an SBC system,
pathogen inactivation is likely a result of a combination of factors, including predation
by microbial populations, shifts in pH, or the absence of a living host [28,33,34]. The
specific environmental conditions in each burial site, including air temperature, rainfall, soil
biochemical characteristics, and local worm activity, can be other factors affecting the length
of virus viability [27,28,35]. Additionally, different carcass tissues may influence virus
tenacity [28,34]. Likewise, the inactivation speed may partly depend on the characteristics
of each virus [36]. Among the factors mentioned above, microbial activity seems to be
the most important factor for virus inactivation, and it can be optimized by adjusting the
depth of the SBC pit and carbon layer. As in composting, elevated temperatures have
been recognized as an indicator of the microbial activity which likely plays an important
role in pathogen inactivation [20,37,38]. As seen in Figure 5, the temperatures in our
study increased gradually and reached a peak of 42.7 ◦C on day 29. The temperature
then still maintained above 40 ◦C until day 43 before gradually reducing afterwards.
Furthermore, the temperature in the core of the SBC system in the present study remained
5 to 10 ◦C higher throughout the experiment compared to the ambient soil temperature.
The elevation of temperature and the difference in temperature of the core and soil in
this study can be attributed to the metabolic activity of the microbial population within
the system. This indicates that the SBC pits were well-established in the present study.
Furthermore, the elevation of temperature was not notable in the study of Ebling et al. [21],
suggesting that microbial activities in our study may be stronger than those in the study of
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Ebling et al. [21]. In the present study, the lymph node, spleen, and femur bone marrow
tissues were selected to determine the tenancy of ASFv since it has been previous reported
that these tissues contained high titers of ASFv as well as cells for the replication of
ASFv [21,28]. Moreover, the femur bone was assumed to be able to protect ASFv from heat
and other adverse conditions.

In summary, the findings of our study suggest that SBC is a potential method for
the disposal of ASFv-infected swine carcasses. Interestingly, the ASFv in spleen and bone
marrow samples was rapidly inactivated after 5 days of burial in the specific conditions
of this study. In addition, the whole carcasses were found to be almost decomposed after
144 days. However, further studies are needed to validate the effectiveness of SBC in
managing ASFv-infected carcasses in different environment conditions.
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