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Abstract: Dendrobium officinale is an important traditional Chinese medicine (TCM). A disease causing
bud blight in D. officinale appeared in 2021 in Yueqing city, Zhejiang Province, China. In this paper,
127 isolates were obtained from 61 plants. The isolates were grouped into 13 groups based on collected
areas and morphological observations. Four loci (ITS, LSU, tub2 and rpb2) of 13 representative
isolates were sequenced and the isolates were identified by constructing phylogenetic trees with
the multi-locus sequence analysis (MLSA) method. We found the disease to be associated with
three strains: Ectophoma multirostrata, Alternaria arborescens and Stagonosporopsis pogostemonis, with
isolates frequencies of 71.6%, 21.3% and 7.1%, respectively. All three strains are pathogenic to
D. officinale. A. arborescens and S. pogostemonis isolated from D. officinale were reported for the first
time. Iprodione (50%), 33.5% oxine-copper and Meitian (containing 75 g/L pydiflumetofen and
125 g/L difenoconazole) were chosen to control the dominant pathogen E. multirostrata, with an EC50

value of 2.10, 1.78 and 0.09 mg/L, respectively. All three fungicides exhibited an effective inhibition
of activities to the growth of the dominant pathogen E. multirostrata on potato dextrose agar (PDA)
plates, with Meitian showing the strongest inhibitory effect. We further found that Meitian can
effectively control D. officinale bud blight disease in pot trial.

Keywords: bud blight; Dendrobium officinale; MLSA; Meitian

1. Introduction

Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicine, which
contains many bioactive components, such as polysaccharides, alkaloids, flavonoids and
phenanthrene phenols [1,2]. D. officinale has been found to have functions related to
immunity enhancement, the lowering of blood sugar, blood lipids and blood pressure,
anti-oxidation, anti-tumor and cancer cell inhibition [3].

In nature, D. officinale grows in shady and humid rock crevices, and grows symbi-
otically with lichens, mosses, ferns and other plants [1]. It has been cropped in several
provinces in China, such as Zhejiang, Guizhou and the Yunnan Province [4]. D. officinale
is mostly cropped in greenhouses using pine scales, sawdust, wood and rocks as me-
dia, with drip and spray irrigation systems supplying water and fertilizer. Greenhouses
maintain suitable temperature and humidity levels for the growth of D. officinale, as well
as pathogens.

Several D. officinale diseases are caused by fungal pathogens, some of them occurring
on leaves, such as black spot disease caused by Alternaria arborescens, A. alternata and Cla-
dosporium oxysporum [5–7]; anthracnose disease caused by Colletotrichum gloeosporioides [8];
or botrytis disease caused by Botrytis cinerea [9]. Leaf spots can be caused by Phoma multi-
rostrata var. microspora, Neopestalotiopsis clavispora and Cladosporium cladosporioides [10–12].

Stem diseases, such as stem dieback, can be caused by A. alternata [13] and Fusar-
ium spp. [14,15], and stem rot can be caused by Lasiodiplodia theobromae, F. kyushuense and

Pathogens 2023, 12, 621. https://doi.org/10.3390/pathogens12040621 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12040621
https://doi.org/10.3390/pathogens12040621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0009-0009-3033-9439
https://orcid.org/0000-0001-9852-6171
https://doi.org/10.3390/pathogens12040621
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12040621?type=check_update&version=1


Pathogens 2023, 12, 621 2 of 15

Sclerotium rolfsii [16–18]. Root rot disease can be caused by F. sambucium and F. chlamy-
dosporum [19]. F. oxysporum causes Fusarium wilt disease [20]. Ring rot disease caused by
Myrothecium roridum has appeared on leaves and stems [21], and soft rot disease caused by
F. oxysporum and Epicoccum can afflict stems and roots [22,23].

D. officinale yield is seriously threatened by the bud blight disease, which has been a
severe problem in many plantation areas since 2021, especially in Yueqing City, Zhejiang
Province, China. The disease incidence was over 50% in some greenhouses. Unfortunately,
there are currently no effective countermeasures available. Little is known about the species
causing the bud blight disease in D. officinale in China or in other parts of the world.
Normally, integrated disease management strategies are employed to reduce the incidence
rate of the disease. Chemical fungicide application is one such method that is common and
effective in controlling disease [24].

Three commonly used fungicides with different inhibition mechanisms, iprodione,
oxine-copper and Meitian, have been chosen to control isolates in this study. Iprodione
inhibits protein kinases and controls intracellular signaling for many cellular functions,
resulting in the inhibition of fungal growth [25]. Oxine-copper releases copper ions to
combine with the protein of fungi, causing the protease denaturation and function loss,
therefore effectively inhibiting hyphal development [26]. Pydiflumetofen, newly created
by Syngenta, is a succinate dehydrogenase inhibitor (SDHI). SDHI fungicides bind to
the succinate dehydrogenase (SDH) complex and block the transport of electrons in the
respiratory chain which are necessary to produce ATP, curtailing energy production and
arresting fungal growth [27]. Difenoconazole is a sterol demethylation inhibitor that inhibits
cell membrane ergosterol biosynthesis [28].

Little is known about D. officinale bud blight disease, the morphological and biological
characteristics of the pathogens, or the control method. This study aims to identify and
characterize the disease and its associated pathogens, and find a way to control D. officinale
bud blight disease.

2. Materials and Methods
2.1. Plant Materials, Pathogens Isolation and Purification

From 2021 to 2022, D. officinale plants (n = 61) with bud blight disease were collected
from a greenhouse in Yueqing City (28.07◦ N, 120.57◦ E), Zhejiang Province, China. The
incidence rate of the disease was assessed by visual observation of the presence or absence
of symptomatic plants in the surveyed greenhouses. Pathogens were isolated according
to the following method: the symptomatic plants were cut with a sterilized scalpel and
rinsed with tap water for 15 min to remove dirt from the surface, then dried on tissue paper.
Afterward, the symptomatic buds were cut into 4 mm2 segments using a sterilized scalpel,
superficially disinfected with 5% sodium hypochlorite solution (0.25% active ingredient of
chlorine) for 1 min and 75% alcohol for 30 s, then washed with sterile distilled water 3 times,
dried on sterile filter papers under aseptic conditions, and finally, the picked segments
were placed onto PDA plates. The plates were subsequently incubated at 25 ◦C; in the dark,
and the colonies were purified by the hyphal tip method [29] and then subcultured on the
PDA and oatmeal agar (OA) media for morphological observation.

2.2. Pathogenicity Tests of Isolates

To test for pathogenicity, the fungal isolates were inoculated on the original host. The
top three leaves were inoculated. The leaves were stabbed gently with sterile needles to
cause tiny wounds, and the mycelial plugs (∅ = 6 mm) from 5-day-old cultures of the
isolates were placed on the surfaces of the wounded leaves and wrapped with cling wrap.
In contrast, the control plants received non-colonized agar plugs. All plants were covered
with plastic bags to maintain moisture and then placed in a light incubator under conditions
of 25 ◦C, 12 h dark/light. Each treatment had 3 replicates. All inoculated plants were
observed for 20 days. Isolates causing necrosis over 4 mm2 were considered pathogenetic.
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Fungal isolates which were re-isolated from inoculated plants were identified by rpb2
sequence data to fulfill Koch’s postulates.

2.3. Identification of Pathogens
2.3.1. Morphological Observation

Purified isolates were grown on PDA and OA media at 25 ◦C in the dark for 7 days,
after which morphological characteristics were observed and photographed. The mi-
crostructures of isolates were observed with a Nikon Eclipse Ni microscope with differential
interference contrast (DIC) optics, equipped with a Nikon DS-Fi2 digital camera [30] and a
jsz6 dissecting microscope. If necessary, near-UV light was used to promote the production
of conidia [31].

2.3.2. DNA Extraction, Amplification and Sequencing

The genomic DNA was extracted using the method described by Pan Li et al. [32].
According to the manufacture’s instruction, the following four loci were amplified us-

ing a 2×Phanta Flash Master Mix kit (Vazyme, Nanjing, China): internal-transcribed spacer
(ITS), ribosome large subunit rRNA gene (LSU), beta-tubulin (tub2) and RNA polymerase II
second largest subunit (rpb2) [33]. Primers for the four loci were ITS5/ITS4 [34,35] for ITS,
LROR/LR5 [36,37] for LSU, BT2A/BT2B [38] for tub2 and RPB2-5F2/fRPB2-7cR [39,40] for
rpb2 (Appendix A).

PCR amplifications were performed in a total volume of 25 µL containing 13 µL
2×PCR buffer (Vazyme, Nanjing, China), 1 µL of each primer, and 1–10 ng genomic DNA.
For LSU, ITS and tub2, the PCR amplification condition were: an initial denaturation for
3 min at 95 ◦C, followed by 35 cycles of 15 s at 95 ◦C, 15 s at 53 ◦C (for LSU and ITS) or
56 ◦C (for tub2), 1 min at 72 ◦C, with a final extension step for 5 min at 72 ◦C [41]. For
rpb2, the PCR amplification condition were: an initial denaturation at 95 ◦C for 3 min,
followed by 5 cycles of 15 s at 95 ◦C, 15 s at 60 ◦C and 1 min at 72 ◦C, then 5 cycles with
a 58 ◦C annealing temperature and 30 cycles with a 54 ◦C annealing temperature, and a
final extension step for 5 min at 72 ◦C [42]. PCR products were observed on 1% agarose
gel. Sanger sequencing was conducted by Youkang Biotechnology Co., Ltd. (Hangzhou,
Zhejiang Province, China). The accession numbers of all generated sequences in this study
were further obtained from GenBank and listed in Table 1.

Table 1. GenBank accession numbers of isolates obtained in this study.

Species Strain
Number

GenBank Accession Numbers

ITS LSU tub2 rpb2

Ectophoma sp. 1 OQ073676 OQ096504 OQ271767 OQ271782
Ectophoma sp. 2 OQ073677 OQ096505 OQ271768 OQ271783
Ectophoma sp. 3 OQ073678 OQ096506 OQ271769 OQ271784
Ectophoma sp. 4 OQ073679 OQ096507 OQ271770 OQ271785
Ectophoma sp. 5 OQ073680 OQ096508 OQ271771 OQ271786
Ectophoma sp. 6 OQ073681 OQ096509 OQ271772 OQ271787
Alternaria sp. 7 OQ073682 OQ096510 OQ271773 OQ271788
Stagonosporopsis sp. 8 OQ073683 OQ096511 OQ271774 OQ271789
Alternaria sp. 9 OQ073684 OQ096512 OQ271775 OQ271790
Ectophoma sp. 10 OQ073685 OQ096513 OQ271776 OQ271791
Ectophoma sp. 11 OQ073686 OQ096514 OQ271777 OQ271792
Ectophoma sp. 12 OQ073687 OQ096515 OQ271778 OQ271793
Ectophoma sp. 13 OQ073688 OQ096516 OQ271779 OQ271794

2.3.3. Phylogenetic Analysis

Phylogenetic constructions were made by maximum likelihood. All obtained se-
quences were compared in the Basic Local Alignment Search Tool (BLAST). Sequences of
related species were downloaded from NCBI and listed in Tables S1–S3. Subsequent align-
ments for four individual loci (ITS, LSU, rpb2 and tub2) were generated with MAFFT v. 7
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(https://mafft.cbrc.jp/alignment/server/, accessed on 10 April 2023) using default set-
tings on a web server [43]. Gaps were considered to be missing data and alignments were
manually adjusted for maximum alignment and sequence similarity. Sequences were cut to
the same length using BioEdit v. 7.2.5. Concatenation and maximum likelihood analyses,
including 1000 bootstrap replicates, were conducted using RAxML GUI v. 2.0.6. A general
time-reversible (GTR) model was applied with a gamma-distributed rate variation. The
resulting trees were viewed using MEGA 11 [33].

2.4. Fungicides Testing for the Control of the Disease Caused by E. multirostrata
2.4.1. Sensitivity Assessment In Vitro

The mycelial growth rate method [44] was used to assess the sensitivity of the pathogen
to the following fungicides: 50% iprodione (FMC, Los Gatos, CA, USA), 33.5% oxine-copper
(Hong Yang Chemical Industry, Lvliang, China), 200 g/L Meitian (containing 75 g/L
pydiflumetofen and 125 g/L difenoconazole, Syngenta, Nantong, China).

Fungicides were added to the PDA plate at final concentrations of 156.25, 31.25, 6.25,
1.25 and 0.25 mg/L for 50% iprodione; 33.5, 6.7, 1.34, 0.268 and 0.0536 mg/L for 33.5%
oxine-copper; and 2, 0.4, 0.08, 0.016 and 0.0032 mg/L for Meitian (containing 75 g/L
pydiflumetofen and 125 g/L difenoconazole). Mycelial plugs of the pathogen were placed
at the center of the fungicide-amended PDA plates and incubated in the dark at 25 °C for
7 d. Plugs placed on water-amended PDA plates served as the control. Each treatment
had three replicates. The colony diameter was measured to evaluate the sensitivity of the
pathogen to fungicide. Variance analysis and calculation of EC50 values were performed
using IBM SPSS Statistics v. 26 [44].

2.4.2. Control Test In Vivo

Healthy D. officinale plants were inoculated with pathogens using the same method in
the pathogenicity tests of the isolates described above. When infective symptoms initially
appeared, plants were removed from sampling bags for hours to dry. Of the Meitian
(recommended minimum concentration in the field), 80 mg/L was evenly sprayed on the
surface of the plants, and then whole pots of plants were put back in the incubator with a
sampling bag to retain moisture. The control treatment was sprayed with an equal volume
of sterile water. Each treatment had 6 replicates. The observation was carried out 20 days
after inoculation.

3. Results
3.1. Field Observation of Disease

In September 2021, D. officinale bud blight disease was found in Yueqing City, Zhejiang
Province, China. It causes young buds to turn yellow and develop blight lesions which can
spread to new leaves. Ultimately, the buds and 3 to 5 top leaves wither and the plants stop
growing (Figure 1). As far as we know, this study is reporting the disease, which we named
Dendrobium officinale “bud blight” according to the symptoms, for the first time.

The disease mostly occurs from June to July, and September to October. During
these periods, high temperatures, high humidity, and poor ventilation are conducive to
the growth and reproduction of pathogens. The disease spreads rapidly in some green-
houses and the disease incidence was calculated to be over 50% using a random sample of
100 plants.

3.2. Grouping of Isolates and Phylogenetic Analysis

A total of 127 fungal isolates were isolated from 61 diseased plants and based on
isolates’ collected area and morphological traits, were grouped into 13 groups. Thirteen
representative isolates were selected for further analysis. Each isolate came from different
infected buds or leaves. Four loci (ITS, LSU, rpb2 and tub2) of the 13 representative isolates
were sequenced and the accession numbers were listed in Table 1. Consistent with their
morphological traits and ITS sequences, these fungi belong to three genera, encompassing

https://mafft.cbrc.jp/alignment/server/
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Ectophoma, Alternaria and Stagonosporopsis, with frequencies of 71.6%, 21.3% and 7.1%
(Table 2), respectively.
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Figure 1. The symptoms of Dendrobium officinale bud blight: (A) healthy plants (white arrows
pointing); (B–F) diseased plants.

Table 2. Sampling details, number of isolates collected, and frequency of fungal species identified in
the present study.

Geographic Origin Species Number of Isolates Isolate Frequency (%)

Yueqing City
(Zhejiang Province)

Ectophoma spp. 91 71.6
Alternaria spp. 27 21.3
Stagonosporopsis spp. 9 7.1
Total 127 100

Further, maximum likelihood, phylogenetic trees were built using the MLSA method
to identify pathogens at the species level. For Ectophoma strains, the final concatenated
DNA sequence dataset comprised 150 isolates and consisted of 2205 characters, including
alignment gaps (gene boundaries ITS: 649 bp, LSU: 680 bp, rpb2: 601 bp, tub2: 275 bp).
Neocucurbitaria quercina (CBS 115095) served as an outgroup (Figure S1). According to the
phylogenetic tree (Figure 2), these 10 isolates were identified as Ectophoma multirostrata. The
topology of the phylogenetic tree is consistent with N. Valenzuela-Lopez’s research [33].
The full phylogenetic tree is in Figure S1.

For Alternaria strains, the final concatenated DNA sequence dataset comprised 113 iso-
lates and consisted of 1748 characters, including alignment gaps (gene boundaries ITS:
466 bp, LSU: 851 bp, rpb2: 431 bp). Cicatricea salina (CBS 302 84) served as an outgroup
(Figure S2). For Stagonosporopsis strains, the final concatenated DNA sequence dataset com-
prised 50 isolates and consisted of 2054 characters, including alignment gaps (gene bound-
aries ITS: 497 bp, LSU: 709 bp, rpb2: 596 bp, tub2: 252 bp). Allophoma piperis (CBS 268 93)
served as an outgroup.
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concatenated alignment of ITS, LSU, tub2 and rpb2 sequences to identify the Ectophoma strains. Ten
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According to the phylogenetic trees, two isolates (isolate 7 and 9) were identified as
Alternaria arborescens (Figure 3) and isolate 8 as Stagonosporopsis pogostemonis (Figure 4).
The full phylogenetic trees of Alternaria arborescens and Stagonosporopsis pogostemonis are in
Figures S2 and S3, respectively.
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3.3. Pathogenicity Assessment

One representative isolate from each strain was selected for the pathogenicity test.
Blight symptoms were observed on buds and leaves 10 days after inoculation. The symp-
toms were consistent with those of the disease observed in the field. The fungal isolates
were re-isolated from infected leaves, which fulfilled Koch’s postulates. No symptoms
appeared in the control group (Figure 5). All three strains were pathogenetic to D. officinale.
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Figure 5. Pathogenicity test. D.officinale plants inoculated with (A) non-colonized PDA plugs;
(B) Ectophoma multirostrata; (C) Alternaria arborescens; (D) Stagonosporopsis pogostemonis.

3.4. Morphological Observation of Pathogens

After incubation of the dominant pathogen colonies, Ectophoma multirostrata, on an OA
medium for 7 days, we observed that the mycelia were brown; the pycnidia were globose
or subglobose, brown to dark brown, solitary or confluent; the conidiogenous cells were
transparent; and the conidia were transparent, nearly olive-shaped, about 1 to 1.5 × 5 to
6.5 µm in size, with one or more rounded protrusions on the surface (Figure 6).
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Alternaria arborescens colonies were typically grayish to dark gray on PDA. Conidia
were septate, slightly constricted near some septa, with few longitudinal septa, obclavate
or ovate in shape (6.5 to 15.0 × 12.2 to 18 µm) (Figure 7).
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(C) and back (D), for 5 days; (E–H) conidia. Scale bars for (E–H) are 10 µm.

Stagonosporopsis pogostemonis colonies were white on PDA, but dark gray on OA.
Conidiomata were solitary and covered with dense hyphae. Conidia were 1 to 1.5 × 5 to
7 µm, olive-shaped, transparent, solitary and aseptate (Figure 8).

3.5. Sensitivity Assessment of Pathogens to Fungicides In Vitro

As E. multirostrata was the dominant pathogen in all obtained isolates, it was used as
the indicator pathogen in fungicide tests.

The diameter of mycelium gradually increased with the decrease in fungicide con-
centration in PDA plates (Figures 9 and 10). The EC50 values of iprodione, oxine-copper
and Meitian were 2.10, 1.78 and 0.09 mg/L, respectively. The 95% confidence intervals (CI)
were 1.36–3.05, 1.43–2.24 and 0.07–0.13 mg/L, respectively (Table 3).
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Table 3. Inhibitory effects of three fungicides on E. multirostrata.

E. multirostrata Iprodione
(mg/L)

Oxine-Copper
(mg/L)

Meitian
(mg/L)

EC50 2.10 1.78 0.09
95% CI 1.36–3.05 1.43–2.24 0.07–0.13
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All three fungicides had an inhibitory effect on E. multirostrata, with Meitian having
the strongest effect.

3.6. Pot Trial of Meitian against Bud Blight Disease

Meitian, as the most effective inhibitor of E. multirostrata among the three fungicides,
was selected for the pot trial. Twenty days after inoculation with E. multirostrata, no
symptoms were present in plants sprayed with Meitian. The disease incidence in the
experimental group was 0 (Figure 11A), while blight symptoms appeared 100% in the
control group (Figure 11B).
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4. Discussion

As a traditional Chinese medicine, D. officinale is widely planted in multiple provinces
in China and its value was over CNY 2.7 billion in 2020 [45]. However, D. officinale fungal
diseases are becoming more serious with the increased scale of cultivation. Bud blight
appeared recently with serious effects in some planting areas, but no pathogens have
been reported yet. This study found that Ectophoma multirostrata, Alternaria arborescens
and Stagonosporopsis could all cause D. officinale bud blight and E. multirostrata was the
dominant pathogen.

Plant pathogen identification includes traditional and molecular methods. Tradi-
tional identification is based on morphological characteristics, growth characteristics, host
range, and biochemical characteristics, etc. Molecular identification focuses on sequencing
and comparison of conserved DNA sequences, such as ITS, but it is difficult to identify
pathogens at the species level with individual steward genes [46]. Multi-locus sequence
analysis (MLSA) is a method of aligning, cutting and joining two or more specific gene
sequences to generate phylogenetic trees, and it has become a widely-accepted method in
taxonomy due to its high resolution and convenience [47].

E. multirostrata has been reported to cause root rot disease in Celosia argentea, chickpea
and green gram (Vigna radiata) [48]. E. multirostrata was originally classified in the genus
Phoma, however, in an article published by N. Valenzuela-Lopez in 2018, it was classified
into a new genus, Ectophoma, based on morphological structure and phylogeny [33]. In
2018, Xie et al. reported that Phoma multirostrata var. microspora can cause D. officinale leaf
spot [10], with lesions appearing only on the back of the leaves and the isolate appearing
white on the PDA plate. The E. multirostrata isolated in this study causes bud blight on
D. officinale and appears brown on the PDA plate. Three loci which were used by Xie et al.
have been sequenced: the sequence of the ITS, ACT (actin gene) and TEF (translation
elongation factor) loci between the two strains share 99, 99 and 98% similarity, respectively.
The difference between the two pathogens should be a topic for further research.

A. arborescens has been reported to cause leaf blotch and fruit spot diseases [49], as
well as moldy core and core rot in apples [50–52]. In addition, it causes leaf spot in the
purple lotus, pineapple sage, Brassica rapa subsp. parachinensis, Symphyotrichum novi-belgii
and rice [53–56]. Additionally, A. arborescens causes early blight in tomato [57] and heart
rot in pomegranates [58,59].

There are only a few existing reports on S. pogostemonis. It belongs to the genus Phoma
and causes leaf spot and stem blight in Pogostemon cablin (Lamiaceae), but it has not been
implicated in any disease of D. officinale. To the best of the author’s knowledge, this study
is the first report of S. pogostemonis isolated from D. officinale causing bud blight disease.

Mirghasempour et al. reported that five Fusarium species can cause D. officinale dieback
disease, with the symptoms appearing as chlorotic, blighted and wilted leaves of the apical
meristem, with the shoot tip showing dark brown necrosis, dieback and eventually shoot
death [14]. The dieback and bud blight could be distinguished easily from each other by
symptoms: dieback disease infects from the shoot tip, while bud blight disease infects from
the bud and new leaves.

Meitian is a fungicide mixed with 75 g/L pydiflumetofen and 125 g/L difenoconazole,
and has the same components as Miravis Duo, which is approved in the US. Pydiflumetofen
is a succinate dehydrogenase inhibitor (SDHI) that disrupts energy production [60]. Difeno-
conazole is a sterol demethylation inhibitor that inhibits cell membrane ergosterol biosyn-
thesis [28]. It has been reported that Meitian can effectively inhibit rose powdery mildew
and cucumber powdery mildew in the field [61,62]. In current study, Meitian was proven to
be effective in controlling D. officinale bud blight. Due to its low-toxicity and high efficiency,
Meitian is a promising tool for controlling D. officinale diseases.

5. Conclusions

Bud blight in D. officinale was reported for the first time in the present study. The
pathogens included E. multirostrata, A. arborescens and S. pogostemonis. A. arborescens and



Pathogens 2023, 12, 621 12 of 15

S. pogostemonis were isolated from D. officinale for the first time. Among these pathogens,
E. multirostrata was the dominant pathogen, with isolates accounting for 71.6% of detected
pathogens. Three fungicides were tested to control E. multirostrata in vitro, with Meitian
displaying the best inhibition effect. Further, through pot trail assessment, we found that
Meitian can effectively inhibit D. officinale bud blight.
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Figure S3. Phylogenetic tree for Stagonosporopsis Strain.
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Appendix A

Table A1. Primers used in this study.

Loci Primer Sequence

ITS
ITS5 GGAAGTAAAAGTCGTAACAAGG
ITS4 TCCTCCGCTTATTGATATGC

LSU
LROR ACCCGCTGAACTTAAGC
LR5 TCCTGAGGGAAACTTCG

tub2
BT2A GGTAACCAAATCGGTGCTGCTTTC
BT2B ACCCTCAGTGTAGTGACCCTTGGC

rpb2 RPB2-5F GAYGAYMGWGATCAYTTYGG
RPB2-7cR CCCATRGCTTGYTTRCCCAT
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