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Abstract: Changes in the cellular secretome are implicated in virus infection, malignancy, and
anti-tumor immunity. We analyzed the association between transcriptional signatures (TS) from
24 different immune and stromal cell types on the prognosis of HPV-infected and HPV-free head and
neck squamous carcinoma (HNSCC) patients from The Cancer Genome Atlas (TCGA) cohort. We
found that HPV-positive HNSCC patients have tumors with elevated immune cell TS and improved
prognosis, which was specifically associated with an increased tumor abundance of memory B
and activated natural killer (NK) cell TS, compared to HPV-free HNSCC patients. HPV-infected
patients upregulated many transcripts encoding secreted factors, such as growth factors, hormones,
chemokines and cytokines, and their cognate receptors. Analysis of secretome transcripts and cognate
receptors revealed that tumor expression of IL17RB and IL17REL are associated with a higher viral
load and memory B and activated NK cell TS, as well as improved prognosis in HPV-infected HNSCC
patients. The transcriptional parameters that we describe may be optimized to improve prognosis
and risk stratification in the clinic and provide insights into gene and cellular targets that may
potentially enhance anti-tumor immunity mediated by NK cells and memory B cells in HPV-infected
HNSCC patients.
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1. Introduction

Head and neck squamous cell carcinomas (HNSCC) are the most common type of
malignancies that arise in the head and neck. Over 90% of head and neck cancers are
HNSCC that develop from the mucosal epithelium in the oronasal cavity, pharynx, and
larynx. In the past two decades, accumulating studies have revealed the link between
prior infection with oncogenic human papillomavirus (HPV) strains and tumors that
develop in the oropharynx. An estimated 30,000 oropharyngeal cancers were caused by
HPV infection worldwide each year, and HPV has been detected in ~25% of all HNSCC
patients [1]. Despite the progress made in treatments, the prognosis of HNSCC patients
has not improved significantly and HNSCC patients frequently suffer complications, such
as local relapses and metastases [2]. Modulating the secretome in HNSCC and by HPV
infection has recently been implicated in tumor progression, cancer cell invasion and
metastasis [3].

The interleukin 17 (IL17) cytokine family contains six structurally related members
from IL17A to IL17F (encoded by IL17A–IL17F). Five relevant IL17 receptor (IL17R) proteins
have also been described as IL17RA through to IL17RE (encoded by IL17RA–IL17RE, respec-
tively). The IL17 family has pivotal roles in inflammation, autoimmune disease, and cancer.
IL17A (IL17) is the prototypic member produced by RAR-related orphan receptor gamma t
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(RORγt)-expressing cells and predominantly expressed by TH17 cells [4]. IL17A binding
and activation of the IL17RA/IL17RC heterodimer signaling complex induces the expres-
sion of cytokines and chemokines such as tumor necrosis factor (TNF), CXC-chemokine
ligand 1 (CXCL1), CXCL2 and CXCL5, from macrophages and stromal cells that are critical
for defense against extracellular pathogens [5,6]. In contrast, dysregulation of IL17A ex-
pression is implicated in inflammatory disorders, such as psoriasis, ankylosing spondylitis
and psoriatic arthritis [7,8]. The role of IL17A in cancer also remains controversial [9].
IL17A usually indirectly shapes immune suppression and helps tumor cell proliferation
during the early stages of cancer by upregulating phosphorylated ERK1/2, angiogenesis
and self-renewal [10–12], but also shows clinical relevance in anti-tumor immunity since
IL17-secreting cells also co-secrete anti-tumor factors, such as IFN-γ and TNF [9,13,14].

While the knowledge of IL17A has been well established, the immunological roles of
other IL17 family members are less well known. Human IL17B is a monomer that only
shares 21.3% homology with human IL17A in the amino acid sequence [15]. In contrast
to IL17A, IL17B expression has been detected in naïve, memory, germinal center B cells
and chondrocytes as well as neurons, but not in activated T helper (TH) cells [16–18].
IL17B binds to the IL17RB homodimer, which is expressed in the epithelial cells of var-
ious organs [19]. The expression of IL17RB has also been found in TH cells and innate
lymphocytes [20,21]. IL17RB can combine with IL17RA to form a heterodimeric complex
that recognizes IL17E and prevents the binding of IL17B to IL17RB. In inflammatory dis-
eases, the IL17B/IL17RB pathway is protective and might restrict pro-inflammatory by the
IL17E/IL17RA-IL17RB signaling complex [22].

Several reports have shown the association between the IL17B/IL17RB signaling
pathway and tumor development in breast, gastric, lung, pancreas, prostate, brain and
blood cancers, however the precise mechanisms involved remain unclear [23–26]. Like
IL17B, IL17C is frequently detected in non-immune cells. The binding of IL17C and
IL17RA/IL17RE complex plays an important role in inflammation by regulating the innate
immune functions of epithelial cells [27–29]. However, IL17RE has also been found to be
expressed on TH17 cells in addition to stromal cells and IL17RE signaling can amplify
TH17 cell responses in autoimmune disease [30]. In intestinal malignancies, IL17C binding
to IL17RE stimulated TH17 cells to produce pre-tumorigenic cytokines and deficiency of
IL17RE dramatically decreased intestinal tumor growth [31]. Collectively, these studies
implicate the IL17 family of cytokines and receptors in tumor-promoting inflammation.

Following the discovery of the IL17 cytokine family, a gene encoding a novel IL17RE-like
protein (IL17REL) was defined by similarity searches of amino acid sequences [32,33]. Rare
variants of IL17REL with minor allele frequency (MAF) of less than 0.01 have been associ-
ated with inflammatory bowel disease (IBD), ulcerative colitis (UC) and gout. However,
the role of IL17REL in malignancies remains uncertain [33–35].

Accumulating evidence has revealed the role of the IL17 cytokine family members in
regulating the migration and functions of germinal center (GC)-derived B cells [16,36–38].
The GC is a transitory structure consisting of proliferating B cells in primary follicles of
secondary lymphoid organs. The construction of the GC is divided into light and dark
zones, formed by B cells following different developmental and functional patterns. The
centrocytes (CC) in the light zone can differentiate further into memory B cells and plasma
cells, and will go through further selection based on the affinity of the antibodies they
produce [39–41]. It has been demonstrated that IL17A and IL17B were both expressed in the
GC microenvironment, dedicated to B cell recruitment and antibody production [16,36,37].

NK cells are innate lymphocytes with cytotoxic and cytokine-secreting functions that
comprise approximately 10–15% of total lymphocytes in human peripheral blood. They are
known to initiate potent anti-tumor immunity regulated by “missing-self” and “induced-
self” recognition [42–44]. NK cell activation is regulated by the balance of signaling from an
array of activating and inhibitory surface receptors that bind to extracellular ligands [44,45].
In addition to conventional ligands anchored on the target cell surface, secreted molecules
may also play roles in NK cell anti-tumor immunity. For example, one study revealed the
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secreted platelet-derived growth factor (PDGF)-DD as a ligand for the activating NK cell
receptor, NKp44. PDGF-DD binding to NKp44 induces NK cell activation and secretion of
IFN-γ and TNF and the transcription of mRNAs encoding proinflammatory chemokines,
such as CCL3, CCL4, XCL1 and XCL2 [46]. The secretion of IFN-γ and TNF induces tumor
cell growth arrest as well as the expression of ligands for the activating NK cell receptors,
DNAM-1 and CRTAM, which initiate NK cell tumor surveillance [47–50]. In contrast to a
well established pro-tumorigenic role in angiogenesis, high vascular endothelial growth
factor (VEGF) expression in tumor-associated macrophages (TAM)/stroma was found to
be associated with better prognosis in primary colon carcinoma, [51]. These data show that
the tumor secretome may influence anti-tumor immunity and cancer patient prognosis.

Tumor immune infiltration is largely linked to the survival of a variety of HPV-related
cancers. It has been demonstrated that high volumes of tumor-infiltrating lymphocytes
(TILs) is associated with good prognosis in HPV-related cancer [52,53]. In addition to CD8+

T cells, which are a well-established lymphocyte subset associated with improved clinical
outcomes [54,55], B cell markers have also been reported to improve the overall survival
(OS) of HNSCC patients [56] and HPV-specific B cell phenotypes have been defined in the
HNSCC tumor microenvironment [57]. NK cells have also been shown to play a protective
role in HPV-associated cervical cancer immunotherapies [58]. However, the infiltration of
specific immune cell states and their prognostic values remain unclear.

In this study, we set out to test the prognostic values of HPV infection and the expres-
sion of transcripts encoding components of the cellular secretome, such as growth factors,
cytokines, chemokines, hormones, and their cognate receptors in HNSCC patients. We have
applied a 24-cell-type TS and provided an overview of the TIL profiles in HPV-negative
and -positive HNSCC patients as well as their prognostic associations. We find that a high
abundance of activated NK cell or memory B cell TS are associated with good prognosis in
HPV-infected HNSC patient tumors. Moreover, we also find that two genes encoding IL17
receptor family members, IL17RB and IL17REL, are associated with improved prognosis
and may modulate the anti-tumor activity of memory B, NK cells, and T cell subsets in
HPV-infected HNSCC patients.

2. Materials and Methods
2.1. TCGA Data Collection and Viral Load Estimation

We first collected RNA-seq data and clinical results for 500 tumor biopsies in the
GDC Data Portal [59]. According to the study published by Cantalupo’s group, HPV viral
alignments were detected by either RNA-seq or DNA-seq in 88 TCGA-HNSCC tumor
biopsies, which were considered HPV-infected patients, whilst 412 tumor samples were
deemed uninfected without any aligned HPV viral sequences. We took the maximum
aligned viral sequences from HNSCC patients as defined by the Cantalupo group [60] for
measuring HPV viral load.

2.2. Generation of Transcriptional Signatures and Deconvolution

The processes of the generation and benchmark of 24 cell type transcriptional signa-
tures were described in our former publications [61,62]. Briefly, we first collected 592 highly
curated (i.e., for which identity was confirmed in the literature), non-redundant biolog-
ical replicates for 24 different immune and stromal cell types. The expected value and
variability of gene transcription abundance for each cell type was then estimated by a
Bayesian statistical model known as CellSig (github: stemangiola/cellsig), based on a
negative binomial data distribution [63]. Afterwards, the transcriptional markers were
selected by the pairwise comparison of each cell type within cell type categories along
the cell differentiation hierarchy, which together formed the transcriptional signature (TS)
matrix, as described [61,62].
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2.3. RNA-seq Data Manipulation and Differential Expression Analysis

Raw read counts from TCGA-HNSCC RNA-seq data were scaled with the trimmed
mean of M values (TMM) method [64] to compensate for differences in sequencing depth.
Differential expression analysis was performed through edgeR quasi-likelihood dispersion
driven by Rstudio between HPV-infected and HPV-free groups according to the publica-
tion of Cantalupo’s group [60] without other covariates (Supplementary Figure S1). The
threshold log fold change (logFC) ≥ 1.5 or log fold change ≤ −1.5 and false discovery rate
(FDR) ≤ 0.05 defined the differentially significant genes. The significant genes were further
classified and labeled by growth factor, cytokine, chemokine, hormone and their relevant
receptors downloaded from the KEGG database [65].

Single-cell RNA-seq (scRNA-seq) analysis has also been performed to understand
the cell type expressing IL17RB and IL17REL. Four open-access HNSCC single-cell RNA
sequencing datasets from GEO: GSE139324 [66], GSE103322 [67], GSE164190 [68] and
GSE173647. All analysis was performed based on the Seurat [69–72] package under the
R environment.

2.4. Statistical Analysis

We estimated the cell type relative fractions for each biological replicate with our refer-
ence RNA-seq-derived transcriptional signature and the RNA-seq data from TCGA-HNSCC
based on CIBERSORT [73]. Then, Kaplan–Meier (KM) survival curves were estimated from
the median split CIBERSORT-inferred cell type fractions through the R framework tidy-
bulk [74], with progression-free survival information as the measure of outcomes for HN-
SCC patients. The quantity percent survival versus time-to-event statistics was produced
by the log-rank (Mantel–Cox) test [75]. The statistics of KM curves were adjusted using the
Benjamini–Hochberg (BH) procedure. Further, the correlation analysis was performed by
Pearson’s correlation test with default adjusted p-values.

Data analysis and visualization were performed using the R environment in RStu-
dio. Packages include tidybulk [74], tidyHeatmap [76], survminer [77], survival [78], fore-
ach [79], org.Hs.eg.db [80], cowplot [81], ggsci [82], GGally [83], gridExtra [84], reshape [85],
Hmisc [86], and scales [87].

3. Results
3.1. HPV-Infected HNSCC Patients Have Increased Immune Cell TS Expression in HNSCC
Tumors and More Favorable Survival

A previous study has shown that HNSCC patients have significantly lower rates
of metastases with HPV infections, suggesting that viral infection may enhance cancer
immune surveillance and influence HNSCC patient prognosis [88]. To understand whether
HPV-infected HNSCC patients have improved prognosis, we compared the survival of
HPV-positive and HPV-free HNSCC patients from 500 HNSCC tumors with both OS and
last contact day information in the TCGA-HNSCC cohort (TCGA-HNSCC) (Figure 1). We
found that HPV-positive patients (n = 88) had significantly better clinical outcomes than
HPV-free patients (n = 412, Figure 1A).

Previous studies have reported that viral infection may enhance anti-tumor immunity
in cancer patients by activating type-I interferon signaling [89–91]. To estimate the effect
of viral load on tumor immune infiltration, we compared tumor expression of immune
cell transcriptional signatures (TS) [61,62] between 88 HPV-infected and 412 HPV-free
tumors in 500 primary HNSCC tumor biopsies (Figure 1B). Interestingly, the expression
of immune cell TS and the gene encoding the common leukocyte antigen, CD45 (PTPRC),
were significantly upregulated in HPV-infected compared to HPV-free HNSCC tumors,
respectively (Figure 1B,C). Next, we asked whether the abundance of immune cell TS
and PTPRC correlate with HPV viral load in HNSCC patient samples. The expression
of immune TS and PTPRC was positively correlated with HPV viral load in HNSCC
tumors (Figure 1D,E). Moreover, HPV-infected HNSCC patients with high viral load and
high tumor abundance of immune TS had significantly improved prognosis compared
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to the rest of the cohort (Figure 1F). Our results show that HPV-positive HNSCC patient
tumors have more abundant immune cell TS, which is associated with improved prognosis
compared to HPV-negative HNSCC patients. We conclude that HPV-positive tumors are
more immunogenic than HPV-free tumors, which is associated with an improved clinical
outcome in HNSCC patients.
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Figure 1. HPV infection and immune cell transcriptional signature are associated with improved
prognosis in HNSCC patients. (A) KM survival curve comparing HPV-infected (yellow line) and
HPV-free (blue line) HNSCC patients (y-axis, survival probability; x-axis, days). HPV-infected
patients have improved survival compared to HPV-free HNSCC patients. (B) Box plots comparing
HNSCC tumor expression of immune cell TS and (C) PTPRC (CD45). (D) Scatter plots of the
correlation (red line) between HPV viral load (x-axis) and the expression of immune cell TS (y-axis)
and (E) PTPRC (y-axis) in HPV-infected HNSCC patients. The abundance of immune cell TS and
PTPRC is positively correlated with viral load in HPV-infected HNSCC tumors. (F) Combined
KM survival plot (y-axis, survival probability; x-axis, days) of HPV-infection status and tumor
expression of total immune cell TS. The KM curve represents HNSCC patient survival plotted in
all four combinations for each stratum (HPV−/L, HPV−/H, HPV+/L, and HPV+/H) with total
tumor expression of immune cell TS split by the median into L (low) and H (high) patient groups.
HPV-infected HNSCC patients with high expression of immune cell TS have significantly better
clinical outcomes compared to all other groups.

3.2. Increased Tumor Abundance of Memory B and NK Cell TS Are Associated with Improved
Prognosis in HPV-Infected HNSCC Patients

To further understand the immune cell types associated with improved prognosis
in HPV-infected HNSCC tumors, we compared the expression of TS from 24 different
immune and stromal cell types in HPV-positive and HPV-free patients (Figure 2A–C). We
found that TS of monocytes, immature dendritic cells (iDC), memory B cells, resting NK
cells (ReNK) and activated NK cells (aNK) were more abundant in HPV-infected patient
tumors (Figure 2B,C). Memory B cells and NK cells play important roles in anti-tumor
immunity [46,92–97]. We wanted to understand the prognostic values of the cell-type-
specific TS in HNSCC patients. Intriguingly, HNSCC patients with higher abundance
of either memory B or aNK TS had improved prognosis compared to HPV-free patients
(Figure 2D), but not for other immune cell TS (Supplementary Figure S2). NK cells are
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known to be regulated by the missing-self recognition [44]. To understand whether the
downregulation of MHC-I molecules at the transcriptional level was associated with the
aNK TS, we compared the expression and combined survival of six MHC-I molecules
(encoded by HLA-A, -B, -C, -E, -F, and -G) with the aNK TS (Supplementary Figure S3).
Interestingly, we found HLA-E was significantly downregulated, whilst its relevant re-
ceptors CD94 (encoded by KLRD1) and NKG2A (encoded by KLRC1) were significantly
upregulated in HPV-infected patients (Supplementary Figure S3A). The combined KM
survival plot showed that HPV-infected patients with both low MHC-I and high aNK TS
expression had improved prognosis for HLA-A, -C and -F (Supplementary Figure S3B).
Similar trends were also observed for HLA-B, -E and -G. These results indicate that HPV
infection may boost anti-tumor immunity by increasing tumor infiltration of memory B
cells and activated NK cells in HNSCC patients.
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Figure 2. TS of Memory B and activated NK cells are associated with improved prognosis in
HPV-positive HNSCC patients. (A) Box plots comparing the abundance of stromal cell TS (endothelial
cells, epithelial cells, and fibroblasts); (B) myeloid cell TS (M1 and M2 macrophages, monocytes,
neutrophils, eosinophils, mast cells, immature and mature dendritic cells); (C) lymphoid cell TS
(naïve B cells, memory B cells, resting NK cells (ReNK), IL2-primed NK cells (IL2NK), activated NK
cells (aNK), central (Tcm) and effector memory (Tem) CD4+ T cells, naïve CD8 T cells, Tcm and Tem
CD8+ T cells, γδ T cells, Helper T cells and regulatory T cells (Treg) (* refers to p-value < 0.05, ** refers
to p-value < 0.01, *** refers to p-value < 0.001, and **** refers to p-value < 0.0001); (D) KM survival
curves (y-axis, survival probability; x-axis, days) constructed for combinations of HPV infection and
memory B cell and aNK TS expression in HNSCC patient tumors. Each cell’s TS expression was split
by the median into L and H groups. HNSCC patients with both HPV infection and high expression of
either memory B cell TS or aNK TS had significantly improved prognosis compared to other groups.

3.3. Secretome Genes and Cognate Receptors Are Differentially Expressed in HPV-Infected
HNSCC Patients

Given that growth factor pathways may contribute to anti-tumor immunity [46,62], we
were interested in discovering other potential biomarkers in the secretomes of HPV-infected
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patients that may contribute to anti-tumor immunity. Among all the genes that differentially
expressed (logFC ≥ 1.5 or logFC ≤ −1.5 and FDR ≤ 0.05) in HPV-infected HNSCC patients
(Supplementary Table S4), growth factor or relevant receptor genes NGF, CSF2, EREG,
IL1F10, FGF19, and FGFBP2 were downregulated, whereas CSPG5, IGBPL1, IGFALS, and
BMP3 were upregulated in HPV-infected tumors (Figure 3A). As for cytokine, chemokine,
and relevant receptor genes, NGF, IL1RL1, CSF2, IL1F10, CXCL5, and IFNK were down-
regulated, and IL17RB, IL17REL, CCL25, and BMP3 were upregulated with HPV infection
(Figure 3B). The hormone and related receptor genes GAL, RXFP1, and CGB5 were down-
regulated, whilst EHNO, NPPG and TG were upregulated in HPV-infected HNSCC patients
(Figure 3C). In addition, we tested the correlation between the upregulated secretome genes
and immune- and stromal-cell-type TS and HPV infection status to provide insights into
possible pathways or cell responses in HPV-positive and HPV-negative HNSCC patients
(Figure 3D, Supplementary Figure S5). Apart from BMP3, which was positively correlated
with the fibroblast TS in HPV-infected HNSCC patients, most upregulated secretome genes
analyzed were positively associated with immune cells TS in HPV-infected patients com-
pared to uninfected HNSCC patients (Figure 3D). Notable positive correlations for growth
factors and receptors existed between: IGFBPL1 (encoding insulin-like growth factor-
binding protein 1)/Helper T, γδ T cell (GD) T and monocyte TS; BMP3 (encoding bone
morphogenetic protein 3)/fibroblast (Fibro) TS; IGFALS (encoding acid labile subunit)/T
helper cell and GD T TS; CSPG5 (encoding chondroitin sulfate proteoglycan 5)/naive
CD8 T and M2 macrophage TS; and cytokines/chemokines and receptors: IL17REL/Treg,
T Helper, aNK, monocyte, mast cell and memory B TS; CCL25 (encoding chemokine C-C
motif ligand 25)/Treg and GD T, CD8 Tem, IL2NK, monocyte, Mast cells and memory B
cells TS; IL17RB/Treg, GD T, naïve CD8 T, CD4 Tem, aNK, monocyte, M2 macrophage
and memory B TS; and hormones and receptors: ENHO (encoding adropin)/naïve CD8 T.
CD8 Tcm, CD4 Tem, aNK, Macro M2 TS; NPPC (encoding natriuretic peptide precursor
C)/Treg, GD T cell, aNK, monocytes and memory B TS; and TG (encoding thyroglobu-
lin)/GD T cell, CD4 Tem, monocyte, mast cell and memory B TS in HPV-infected HNSCC
tumors (Figure 3D). Overall, the upregulation of secretome genes was correlated with
immune cell TS rather than stromal cell TS in HPV-infected HNSCC patients compared to
HPV-free HNSCC patients, suggesting that secretome-encoded transcripts may play a role
in anti-tumor immunity and improved prognosis in HPV-infected HNSCC patients.

3.4. Expression of IL17RB and IL17REL Are Associated with Improved Prognosis in HPV-Positive
HNSCC Patients

We wanted to understand the relationship between the expression of genes encoding
growth factors (Figure 4A, Supplementary Figure S6A), cytokines and chemokines (Figure 4B,
Supplementary Figure S6B), hormones (Figure 4C, Supplementary Figure S6C) and their
cognate receptors on the prognosis of HNSCC patients and viral load. In HPV-free HNSCC
patients, the expression of all selected secretome genes did not influence prognosis except
for CCL25 (Figure 4B). In contrast, higher expression of IL17REL was associated with
improved prognosis in HPV-positive HNSCC patients, while higher expression of CSPG5,
IL17RB, CCL25, NPPC and TG trended towards improved prognosis and ENHO trended
towards poor prognosis in HPV-positive HNSCC patients (Figure 4B). Moreover, consistent
with upregulation in HPV infection, expression of all secretome genes was positively
correlated with HPV viral load (Figure 4A–C).

We next performed a combined survival analysis using all curated secretome genes
upregulated in HPV-infected HNSCC tumors (Supplementary Table S4) with HPV viral
load in HNSCC patients (Figure 5 and Supplementary Figure S7). Of the secretome genes
analyzed, only higher expression of IL17RB and IL17REL was associated with improved
prognosis in HPV-infected HNSCC patients, which was more marked in those patients
with higher HPV viral loads (Figure 5 and Supplementary Figure S7) compared to HNSCC
patients with lower HPV loads. Finally, higher expression of IL17A, which encodes the
known anti-tumoral cytokine IL17A [9,13,14], was associated with improved prognosis
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(Supplementary Figure S8). These results show that higher expression of IL17RB and
IL17REL are associated with higher viral load and improved prognosis of HPV-positive
HNSCC patients.
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3.5. High Expression of IL17RB and IL17REL and TIL Subset TS Are Associated with Improved
Prognosis in HPV-Infected HNSCC Patients

Since higher expression of IL17RB, IL17REL, and the memory B and aNK TS are associ-
ated with improved prognosis in HPV-infected HNSCC patients, we aimed to understand
whether these IL17 receptor family genes may cooperate with certain immune or stromal
cell types for improved prognosis in HNSCC patients by carrying out a combined survival
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analysis based on tumor expression of either IL17RB or IL7REL and our immune and stro-
mal cell TS in HPV-infected HNSCC patients (Figure 6). HNSCC patients with higher tumor
expression of IL17RB combined with high expression of either the CD4 Tem, memory B cell,
or aNK TS had improved prognosis compared to patients with lower expression of IL17RB
and high expression of either the CD4 Tem, memory B cell, or aNK TS (Figure 6, top panel).
Moreover, HNSCC patients with higher tumor expression of IL17REL combined with
high expression of either the CD8 Tcm, memory B, M1 macrophages, or Helper T cell
TS also had improved prognosis compared to those HNSCC patients with lower tumor
expression of IL17RB and high expression of either CD8 Tcm, memory B, M1 macrophages
or Helper T cell TS (Figure 6, bottom panel). These trends were not observed for any
other immune or stromal cell TS in either HPV-positive or HPV-negative HNSCC patients
(Supplementary Figure S9).
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that were upregulated in HPV-infected HNSCC patients and having a significant correlation with viral
loads in HPV-infected patients. Each gene expression was split by the median into L and H groups.
The scatter plots were constructed to correlate the above genes and HPV viral loads in HPV-infected
patients. High tumor expression of IL17REL was significantly associated with improved prognosis,
while another IL17 family member IL17RB showed the same trend but without significance. The
expression of both IL17REL and IL17RB was significantly positively correlated with HPV viral loads
in infected HNSCC patients.

Pathogens 2022, 11, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 5. The association of IL17 family receptors and survival in HPV-infected HNSCC patients. 
Combined HNSCC patient survival analysis stratified for HPV viral loads and IL17 family mem-
bers, IL17RB and IL17REL, respectively. KM curves (y-axis, survival probability; x-axis, days) dis-
play HPV-infected HSNC patient survival plotted in all four combinations for each stratum (L/L, 
L/H, H/L, and H/H, both L and H groups were split by the median viral load or gene expression). 
For patients with higher HPV viral loads, high expression of either IL17RB or IL17REL resulted in 
enhanced prognosis. 

3.5. High Expression of IL17RB and IL17REL and TIL Subset TS are Associated with Improved 
Prognosis in HPV-Infected HNSCC Patients 

Since higher expression of IL17RB, IL17REL, and the memory B and aNK TS are as-
sociated with improved prognosis in HPV-infected HNSCC patients, we aimed to under-
stand whether these IL17 receptor family genes may cooperate with certain immune or 
stromal cell types for improved prognosis in HNSCC patients by carrying out a combined 
survival analysis based on tumor expression of either IL17RB or IL7REL and our immune 
and stromal cell TS in HPV-infected HNSCC patients (Figure 6). HNSCC patients with 
higher tumor expression of IL17RB combined with high expression of either the CD4 Tem, 
memory B cell, or aNK TS had improved prognosis compared to patients with lower ex-
pression of IL17RB and high expression of either the CD4 Tem, memory B cell, or aNK TS 
(Figure 6, top panel). Moreover, HNSCC patients with higher tumor expression of 
IL17REL combined with high expression of either the CD8 Tcm, memory B, M1 macro-
phages, or Helper T cell TS also had improved prognosis compared to those HNSCC pa-
tients with lower tumor expression of IL17RB and high expression of either CD8 Tcm, 
memory B, M1 macrophages or Helper T cell TS (Figure 6, bottom panel). These trends 
were not observed for any other immune or stromal cell TS in either HPV-positive or HPV-
negative HNSCC patients (Supplementary Figure S9). 

In addition to our investigation, we analyzed four publicly available HNSCC scRNA-
seq datasets, namely GSE139324 [66], GSE103322 [67], GSE164190 [68] and GSE173647, but 
were unable to detect significant read counts for IL17RB or IL17REL (Supplementary Fig-
ure S10). Our results suggest that the expression of IL17RB may influence the anti-tumor 
functions of CD4 Tem, memory B, and activated NK cells, and IL17REL may influence the 
anti-tumor functions of CD8Tcm, memory B cells, M1 macrophages, and Helper T cells in 
HPV-positive HNSCC tumors. 

Figure 5. The association of IL17 family receptors and survival in HPV-infected HNSCC patients.
Combined HNSCC patient survival analysis stratified for HPV viral loads and IL17 family members,
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For patients with higher HPV viral loads, high expression of either IL17RB or IL17REL resulted in
enhanced prognosis.
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and TIL TS expression in HPV-infected HNSCC tumors. KM curves (y-axis, survival probability;
x-axis, days) display HPV-infected HSNC patient survival plotted in all four combinations for each
stratum (L/L, L/H, H/L, and H/H, both L and H groups were split by the median viral load or gene
expression). For patients with high TIL TS expression, higher IL17RB or IL17REL expression was
associated with an improved prognosis.

In addition to our investigation, we analyzed four publicly available HNSCC scRNA-
seq datasets, namely GSE139324 [66], GSE103322 [67], GSE164190 [68] and GSE173647,
but were unable to detect significant read counts for IL17RB or IL17REL (Supplementary
Figure S10). Our results suggest that the expression of IL17RB may influence the anti-tumor
functions of CD4 Tem, memory B, and activated NK cells, and IL17REL may influence the
anti-tumor functions of CD8Tcm, memory B cells, M1 macrophages, and Helper T cells in
HPV-positive HNSCC tumors.

4. Discussion

Head and neck squamous cell carcinomas (HNSCC) are among the most common
cancers worldwide, with over 870,000 new cases and 440,000 deaths in 2020 [98]. Smoking,
chewing tobacco, alcohol and HPV infection are the main risk factors for HNSCC. The
prognosis of HNSCC is known to be implicated by a group of host and tumor characteris-
tics, including pathological differentiation grading, performance status, and tumor node
metastasis (TNM) staging. HPV infection has been described to alleviate distant metastases
and is associated with improved survival of HNSCC patients [88,99–103]. In this study, we
aimed to determine the impact of transcripts encoding secreted factors, such as growth
factors, hormones, chemokines and cytokines, and cognate receptors, and immune cell TS
on the prognosis of HPV-infected and uninfected HNSCC patients to provide insights for
biomarkers and future therapies that may target the secretome in HNSCC.

The immune response has been implicated in the development of HNSCC and
HPV infection [104,105]. We hypothesized that the improved prognosis of HPV-infected
HNSCC patients resulted from enhanced immune responses induced by viral infection at
the tumor site. Tumor abundance of TS representing immune cells and the gene (PTPRC)
encoding the common leukocyte antigen, CD45, were associated with improved prog-
nosis in HPV-infected HNSCC patients compared to uninfected patients and positively
correlated with HPV viral loads, suggesting HPV infection may enhance anti-tumor
immunity in HNSCC patients. Analysis of the tumor abundance of 24 different cell-type-
specific TS [61,62] showed that activated NK cells and memory B cells are associated
with the improved prognosis of HPV-infected HNSCC patients. It has been reported
that the gene expression profiles and tumor microenvironment (TME) in HPV-infected
tumors are different from HPV-free malignancies [106]. Interestingly, we have found
both resting NK cell and activated NK cell TS to be upregulated in HPV-infected patients.
Since the reduction of MHC class I gene expression was identified as a hallmark of
HPV-infected biopsies [107], these results may suggest increased recruitment and activa-
tion of NK cells in HNSCC tumors after HPV infection. Indeed, we found significant
downregulation of transcripts encoding HLA-E in HPV-infected compared to HPV-free
patients, and combined survival analysis showed that HPV-infected patients with low
expression of HLA-A, -C, and -F and high tumor abundance of activated NK cells were
associated with improved prognosis (Supplementary Figure S3). Memory B cells that
initiate rapid immune responses were enriched in HNSCC tumor sites [57,108,109]. It has
been reported that the genital HPV vaccine may help prevent cancers that develop in the
oral cavity [110] and induce long-term protection by developing high-affinity memory B
cells [111,112], indicating the importance of memory B cells in HPV-related cancers.

Interestingly, our study revealed no increase in tumor abundance of T cell subsets, in
HPV-positive HNSCC patients, contrary to previous reports suggesting that favorable prog-
nosis in HNSCC patients was mediated by CD8+ GZMA+ PRF1+ T cells [113]. Moreover,
consistent with T cell exhaustion due to prolonged antigen stimulation in viral infections
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and cancer [114], HPV-infected HNSCC tumors showed significant upregulation of T cell
exhaustion markers in the TCGA-HNSCC dataset [115]. However, our T cell transcriptional
signatures were based on normal T cell subsets, which may have limited our ability to detect
exhausted T cells enriched in HPV-positive HNSCC tumor sites. Proteomic approaches to
identify candidate secreted protein biomarkers of prognostic significance in HNSCC have
been reported, but are limited by small patient cohorts [3,116,117]. In our study, we chose a
computational approach focused on understanding the association of transcripts encoding
secreted molecules and their cognate receptors and the immune system on the prognosis
of HPV-infected patients from the TCGA-HNSCC cohort comprising 500 patient samples.
Taking this approach, we have clarified the prognostic values of two genes encoding pro-
teins from the IL17 receptor family, IL17RB and IL17REL, in HNSCC that were significantly
upregulated in HPV-infected compared to uninfected HNSCC patients. The IL17 signaling
pathway has previously been found to be associated with poor prognosis in cancers, whilst
the role of IL17REL in cancers remains unknown. Interestingly, expression of the gene for
the current known ligand for IL17RB, IL17B, did not show any correlation with immune
cell TS or survival (Supplementary Figure S11).

IL17REL encodes an IL17RE-like protein originally discovered using a similarity search
for novel members of the IL17 receptor family. All IL17 receptor family sequences share the
same conservative intracellular signaling motif named SEF/IL17R (SEFIR) [32]. However,
IL17RE-like proteins lack the SEFIR motif but instead resembles the extracellular domain of
IL17RE [32]. Though IL17REL was found to be highly associated with gout and ulcerative
colitis in genome-wide association studies (GWAS) [33,35], the expression and function
of IL17REL in different cell types remain largely unknown, especially in human cancers.
In contrast, IL17RE is expressed on both epithelial and TH17 cells and recognizes IL17C
as ligand. IL17C binding to IL17RE induces IL17 production from TH17 cells, which
can enhance host innate immunity [118]. We conducted single-cell RNA sequencing
(scRNA-seq) analysis on four publicly available HNSCC datasets to identify the cells
expressing IL17RB or IL17REL. However, in contrast to bulk RNA-seq data, scRNA-seq
data had a lower resolution for detecting IL17RB or IL17REL (Supplementary Figure S10).
Thus, it awaits to be seen whether IL17RE-like has similar immune functions to IL17RE and
how these might influence prognosis in HPV-infected HNSCC patients.

We have also found a positive correlation between IL17RB, IL17REL and memory B cell
and aNK TS expression (Figure 3D). It has been previously studied that in germinal centers,
CXCR4+ or CXCR5+ GC B cells were induced to migrate to CXCL12 or CXCL13 through
the IL17RB signaling pathway [16]. Strikingly, CXCR4 has also been defined as a critical
molecule in NK cell trafficking, and reduced CXCR4 expression significantly impaired NK
cell migration in vitro [119–121]. It may be possible that increased expression of IL17RB
and IL17REL may participate in the recruitment of memory B and activated NK cells in
HPV-infected HNSCC patients.

To summarize, our study set out to uncover a possible role for genes encoding secre-
tome factors or their receptors and their association with immune and stromal cell TS and
HPV infection on the prognosis of HNSCC patients. We have uncovered a novel association
between a higher tumor expression of IL17RB with CD4 Tem, memory B, and activated
NK TS and IL17REL with CD8 Tcm, memory B, M1 macrophages and T Helper cell TS and
the improved prognosis of HPV-infected HNSCC patients. Our results have important
consequences for anti-tumor immunity and reveal potential new biomarkers or targets for
immunotherapy in HPV-infected HNSCC patients.
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logFC ≤ −1.5 and FDR ≤ 0.05) in HPV-infected HNSCC patients; Figure S5: The correlation heatmap
of significantly upregulated secretome genes and all cell TS in all HNSCC patients (both HPV-infected
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