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Abstract: Staphylococcus aureus is an opportunistic pathogen that causes invasive infections in humans.
In recent years, increasing studies have focused on the prevalence of S. aureus infections in adults;
however, the epidemiology and molecular characteristics of S. aureus from Chinese pediatric patients
remain unknown. The present study examined the population structure, antimicrobial resistance,
and virulent factors of methicillin-resistant and -susceptible S. aureus isolated from Chinese pediatric
patients from one medical center in eastern China. A total of 81 cases were screened with positive
S. aureus infections among 864 pediatric patients between 2016 and 2022 in eastern China. Molecular
analysis showed that ST22 (28.4%) and ST59 (13.6%) were the most typical strains, and associations
between different clonal complex (CC) types/serotype types (ST) and the age of pediatric patients
were observed in this study. CC398 was the predominant type in neonates under 1 month of age,
while CC22 was mainly found in term-infant (under 1 year of age) and toddlers (over 1 year of
age). Additionally, 17 S. aureus isolates were resistant to at least three antimicrobials and majority
of them belonged to CC59. The blaZ gene was found in 59 isolates and mecA gene was present in
26 strains identified as methicillin-resistant. Numerous virulent factors were detected in S. aureus
isolated from present pediatric patients. Remarkably, lukF-PV and lukS-PV were dominantly carried
by CC22, tsst-1 genes were detected in CC188, CC7, and CC15, while exfoliative toxin genes were
found only in CC121. Only 41.98% of the S. aureus isolates possessed scn gene, indicating that the
sources of infections in pediatric patients may include both human-to-human transmissions as well
as environmental and nosocomial infections. Together, the present study provided a phylogenetic
and genotypic comparison of S. aureus from Chinese pediatric patients in Suzhou city. Our results
suggested that the colonization of multi-drug resistant isolates of S. aureus may raise concern among
pediatric patients, at least from the present medical center in eastern China.
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1. Introduction

The methicillin-resistant and sensitive Staphylococcus aureus (MRSA/MSSA) is the
most prevalent invasive bacterial pathogen that infects children globally [1,2]. According
to current epidemiological studies in both adults and children, the incidence of MRSA is
declining globally, while the frequency of invasive community-associated MSSA infection
has remained stable or even increased [3,4]. Previous studies in the United States and
China revealed that the median age of children with invasive S. aureus infections was 6.3 to
8.7 years and that MSSA caused 79% of cases in the United States and 36.0% of S. aureus
infections in Chinese pediatric patients [5–8].

Staphylococcus aureus in children may cause a range of infections such as soft tissue in-
fection (SSTIs), pneumonia, primary bacteremia, otitis media, septic arthritis, and others [9].
According to a recent study, 84.2% of S. aureus strains in the stool of Chinese children
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were resistant to penicillin, with blaZ being the main antimicrobial gene of these intestinal
strains [10,11]. Additionally, S. aureus contains several genes encoding virulent factors,
including enterotoxins (SE) sea to see, seg to sei, ser to set, exfoliative toxins (eta, etb), toxic
shock syndrome toxin (tsst-1), Panton–Valentine leukocidin (lukS/F-PV), staphylococcal
complement inhibitor (scn), and hemolysins (hly/hla, hlb, hld, hlgA, hlgB, hlgC) [12–17]. Pre-
vious studies have reported numerous antimicrobial resistance (AMR) and virulent factors
(VF) of S. aureus detected in Chinese adults [18]. Statistically, 92.2% of the MSSA isolates
were penicillin-resistant, whereas 45.3% were erythromycin-resistant. ST398 and ST15 were
the most common enteric MSSA isolates in these adult individuals [18]. However, the
molecular features of S. aureus infections in children in eastern China over the past five
years remain to be investigated.

To characterize MRSA and MSSA in eastern China from 2016 to 2022, a combined
bioinformatics approach was employed to study the relatedness of S. aureus isolated from
pediatric patients. In addition, we examined genotypic antimicrobial resistance profiles and
virulent factor possession for a comprehensive assessment of the potential risks associated
with the presence of MRSA and MSSA in children.

2. Materials and Methods
2.1. Ethics Approval

The experiment was strictly conducted according to the Guide for the Care and Use
from the Research Ethics Committee of Soochow University (20221201). All procedures in-
volving human participants were performed in accordance with ethical standards. Patients’
parents were given informed consent to participate in the study.

2.2. Description of the Medical Center

The current study was carried out at the Children’s Hospital Affiliated with Soochow
University in eastern China (120◦62′ E, 31◦32′ N). A tertiary hospital was established at this
medical facility in 1959. It primarily provides services to the cities of Taizhou, Changzhou,
Nantong, and other places. The hospital witnessed 2,340,727 outpatient and emergency
visits in total in 2022. It has a strong representation and is totally in charge of diagnosing,
treating, and caring for children in Suzhou and the surrounding regions in eastern China.

2.3. Clinic Data of Pediatric Patients

We initially analyzed the clinic data of 864 pediatric patients in the present medical
center from 2016 to 2022. A number of 81 cases were screened with positive S. aureus
infections. For each patient, we collected clinical metadata of age, gender, underlying
diseases, and previous hospitalization. None of the 81 pediatric patients had long-term
hospitalization history and they developed symptoms such as acute infection before being
admitted to the hospital for treatment. Detailed clinic data of pediatric patients were
described in the Results section and Supplementary Table S1.

2.4. Diagnosis of Staphylococcus aureus Infection

The diagnosis was obtained by trained clinical staff from the Department of Infectious
Diseases in the present medical center according to the guidelines for the treatment of
MRSA infection in adults and children issued by the Infectious Diseases Society of America
(IDSA) [19] and strategies for the management of methicillin-resistant Staphylococcus aureus
infections by an expert panel of the Chinese Medical Association (https://www.cma.org.cn,
accessed on 1 October 2016). Taking acute otitis externa as an example, following skin
disinfection with 75% ethanol, clinical staff used a sterile cotton swab to collect purulent
secretions in the child’s ear canal. If the tympanic membrane has not been ruptured and
perforated, then puncture it to absorb the pus and place it in a sterile tube for examination.
Quality control strains were employed to eliminate contamination by miscellaneous bacte-
ria including Staphylococcus aureus (ATCC29213), Streptococcus pneumoniae (ATCCA9619),
Escherichia coli (ATCC25922), Pseudomonas aeruginosa (ATCC27853), and Candida albicans

https://www.cma.org.cn
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(ATCCl0231). Only children diagnosed with S. aureus single or mixed infection by the
Department of Infections were included in this study. The obtained S. aureus strains were
confirmed by 16s rRNA sequencing and MALDI-TOF MS (BioMérieux, Craponne, France).

2.5. Staphylococcus aureus Strains

A total of 81 S. aureus isolates were collected from pediatric patients between 2016 and
2022 in Suzhou, China. Among the 81 isolates, 26 isolates were identified as MRSA, with
the majority of the strains collected from otitis externa (n = 23), otitis media (n = 11), and
soft tissue infection (n = 9).

2.6. Antimicrobial Susceptibility Testing

Confirmed S. aureus strains were sent for antimicrobial susceptibility test by disk
diffusion (Oxoid) according to the guideline of the Clinical and Laboratory Standards
Institute (CLSI 2022). The antimicrobial compounds included ampicillin (10 µg), cefoxitin
(30 µg), ceftazidime (30 µg), cefuroxime (30 µg), chloramphenicol (30 µg), clindamycin
(2 µg), erythromycin (15 µg), gentamicin (10 µg), linezolid (30 µg), penicillin (10 units),
rifampicin (5 µg), and tetracycline (30 µg), with S. aureus ATCC 25923 enrolled as the control
strain. Cefoxitin was used to confirm potential methicillin-resistant S. aureus (MRSA).

2.7. Whole Genome Sequencing

Isolates were cultured for 24 h at 37 ◦C in Tryptone Soya Broth (AOBOX 02-049, Beijing,
China), and genomic DNA was extracted and purified using a HiPure Bacterial DNA Kit
(D3146, Meiji Biotechnology Co., Ltd., Guangzhou, China). The extracted DNA was
tested for quality using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies,
Wilmington, DE, USA) and a 1.0% (w/v) agarose gel. Purified DNA was whole genome
sequenced via Illumina’s NextSeq 500 on the platform of Honsunbio company (Shanghai,
China). EToKi v1.0 was used to generate genome assemblies, and the quality was assessed
using QUAST v2.3 [20,21]. The raw sequencing reads were submitted to the China National
GenBank under the link https://bigd.big.ac.cn/gsa/browse/CRA009709, accessed on
7 February 2023.

2.8. Analysis of MLST and Clone Complexes

The Illumina read files were submitted to MLST 2.0 multilocus sequence typing, and
eBURST v3 analysis was performed to categorize STs into clonal complexes (CCs) [22,23].
CSI Phylogeny v1.4 was used to create a single nucleotide polymorphism (SNP) tree for
all isolates by matching other genomes onto a reference genomic sequence from S. aureus
ATCC 25923 on the Center for Genomic Epidemiology [24].

2.9. Identification of Antimicrobial Resistance Genes and Virulent Factors

The online tools ResFinder, MobileElementFinder, and VFDB were used to screen for
antimicrobial-resistant genes and virulent factors [25–27]. Alignments with a minimum of
60% nucleotide identity were retained in all three algorithms. Grapetree and ITOL were
used to depict the genotypic data [28,29]. GraphPad Prism 7 was used to create the violin
graph, and statistical significance was determined using One-way ANOVA with p < 0.05.

3. Results and Discussion
3.1. Sequence Types and Clonal Complex of S. aureus from Chinese Pediatric Patients

A total of 81 S. aureus were isolated from pediatric patients in this medical center
between 2016 and 2022. Among them, ten strains were isolated from neonates under
one month old, and 28 strains were coming from term infants under one year old. The
remaining 43 strains were all isolated from the toddler age group (12 of them were isolated
from the 2–4 years old subgroup, 15 were from the 5–7 years old subgroup, and the rest
16 isolates were from the 8–10 years old subgroup).

https://bigd.big.ac.cn/gsa/browse/CRA009709
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The diagnosis of infections was obtained by trained clinical staff in the present med-
ical center. Most strains were isolated from the infection of acute/chronic otitis externa
(n = 20/3), acute/chronic otitis media (n = 7/4), soft tissue infections (n = 9), sepsis (n = 4),
acute sinusitis (n = 3), arthritis (n = 3), cellulitis (n = 2), conjunctivitis (n = 2) and other
infections, of which 26 strains were identified as MRSA (Figure 1). However, several strains
were isolated from a mix of infections such as leukemia (n = 3), tumor (n = 3), congenital
disease (n = 1), fungal meningitis (n = 1), neonatal hyperbilirubinemia (n = 1) and other un-
known infections. Detailed backgrounds on the range of ages and infections were described
in Supplementary Tables S1 and S2.
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Figure 1. Sequence types of S. aureus from Chinese pediatric patients. Staphylococcus aureus strains
were isolated from otitis externa(n = 23), otitis media(n = 11), soft tissue infections (n = 9), and other
diseases, of which ST22 (28.4%) and ST59 (13.6%) were the most typical strains.

Notably, 34 strains were isolated from infection of acute/chronic otitis externa and
otitis media. Acute otitis media (AOM) is rarely associated with S. aureus in adults [30].
However, a previous study reported that S. aureus was the second most common cause of
AOM in children in Liuzhou, Southern China [31]. Most of the AOM-associated S. aureus
were MDR strains with a high carriage rate of ermA and ermC genes. This may be due to
the weak immunity in pediatric patients, which makes S. aureus infection more frequent in
AOM cases [32].

The MLST typing of the 81 S. aureus genomes revealed a total of 18 unique ST types,
of which ST22 (28.4%) and ST59 (13.6%) were the most typical strains. MSSA isolates
(n = 78) were detected in the majority of the ST types except for ST30 and ST338, and in
these Chinese pediatric patients, MRSA isolates (n = 14) were found in ST6, ST22, ST30,
ST59, ST88, ST121, ST338, and ST398. A total of 17 clonal complex types were identified
according to eBURST V3, namely CC1, CC5, CC6, CC7, CC8, CC15, CC20, CC22, CC25,
CC30, CC59, CC88, CC121, CC188, CC338, CC398, and CC1281 (Table 1, Supplementary
Table S1).
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Table 1. CC, MRSA/MSSA, ST, spa types, and phenotypic antimicrobial resistance of S. aureus isolates
from this study.

CCtype MRSA/MSSA ST a Spa Type b Phenotypic Antimicrobial
Resistance c

CC1 0/4 ST1 (3) t127 (2), ND (1) AMP (3), ERY (1), PEN (3), TET (1)
CC5 0/1 ST5 (1) t1107 (1) AMP (1), PEN (1)
CC6 1/1 ST6 (2) t304 (1), t701 (1) AMP (1), FOX (1), PEN (1), TET (1)
CC7 0/2 ST7 (2) t91 (1), t19626 (1) AMP (1), ERY (1), PEN (1)
CC8 0/1 ST630 (1) t377 (1) AMP (1), PEN (1)

CC15 0/5 ST15 (5) t84 (1), t393 (1), t774 (1),
t14014 (2) AMP (4), ERY (1), PEN (4)

CC20 0/1 ST20 (1) t14029 (1) AMP (1), ERY (1), PEN (1)

CC22 8/15 ST22 (23) t309 (17), t5763 (1), t13828 (1),
ND (4)

AMP (22), ERY (9), FOX (4),
PEN (22)

CC25 0/3 ST25 (3) t78 (2), t280 (1) AMP (3), FOX (1), PEN (3)
CC30 1/0 ST30 (1) t19 (1) ERY (1), FOX (1), PEN (1)

CC59 9/2 ST59 (11) t437 (6), t441 (2), ND (3) AMP (3), ERY (6), FOX (6), GEN
(2), PEN (8), TET (1)

CC88 1/2 ST88 (3) t2649 (1), t4780 (1), t10777 (1) AMP (1), ERY (2), FOX (1), PEN (1)

CC121 1/4 ST121 (5) t2092 (3), t1425 (1), t2019 (1),
t4780 (1)

AMP (3), ERY (2), FOX (3), GEN
(2), PEN (4)

CC188 0/5 ST188 (5) t189 (4), t2883 (1) AMP (5), ERY (5), FOX (4), GEN
(4), PEN (5), TET (3)

CC338 2/0 ST338 (2) t437 (2) AMP (2), ERY (2), FOX (1), GEN
(2), PEN (2), TET (1)

CC398 3/5 ST398 (8) t34 (3), t571 (3), t1184 (1),
t1456 (1)

AMP (6), CLI (2), ERY (5), FOX (3),
GEN (2), PEN (6), TET (3)

CC1281 0/2 ST1281 (1) t164 (1) AMP (2), ERY (1), FOX (1), PEN (2)
ST2631 (1) t3277 (1)

Not determined 0/3 Not determined (3) t78 (1), t309 (1), t1376 (1) AMP (1), ERY (1), PEN (1)
a Numbers in parentheses are the number of isolates per sequence (ST) type. b Numbers in parentheses are the
number of isolates per spa type. ND: not determined. c Numbers in parentheses are the number of isolates from
each antimicrobial.

ST22 was most prevalent, originating from otitis externa (n = 9), soft tissue infection
(n = 4), myelitis (n = 3), and other pediatric diseases (n = 7). Additionally, ST59 and ST398
were the sources of various infections in this study, indicating the diversity of S. aureus
infections in these pediatric patients.

Another interesting finding of this study is the observed association between different
CC types/ST and the age of pediatric patients. Thus, CC398 was the predominant type in
neonates under 1 month of age (36.36%), while CC22 was mainly found in term-infants
(under 1 year of age, 37.21%) and toddlers (over 1 year of age, 25.00%). Only six ST types
are detected in neonates, but ST types gradually diversified with age, with more than 15 ST
types recorded in toddlers aged 1 to 9 years (Figure 2).

Literally, S. aureus CC398 has been identified as the most predominant clonal complex
worldwide [33]. Since the first report of CC398 colonization in French swine farms in the
late 1990s, this kind has expanded globally, with human and animal infections occurring in
Europe and East Asian countries [34]. CC398 is one of the most common S. aureus lineages
in China, with a prevalence of 5.5% to 26.6%, which shows a lower infection rate compared
to our findings among these pediatric patients [35–37].

Previous studies have reported the wide spread of CC22 in China [38]. A higher
frequency of pvl and toxin encoding tsst-1 for toxic shock syndrome was observed in
Chinese CC22 isolates [38]. However, the high prevalence of CC22 was not the case in
Europe, where only 8% of the invasive infection were caused by this type of strain [39].
Nevertheless, CC22 isolates usually contain 8 to 13 virulent factors, especially in the nasal
cavity of Chinese pediatric patients [40]. In this study, CC22 is the predominant strain in
the full-term and toddler groups. All CC22 isolates carried lukF-PV and lukS-PV factors,
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indicating that CC22 is highly pathogenic in China. As a result, prompt and accurate
screening for hypervirulent MRSA in pediatric patients is critical.
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Figure 2. Distribution of clonal complex types among Chinese pediatric patients. (A–C) CC398 was
the predominant type in neonates under 1 month of age, while CC22 was mainly found in term-infant
(under 1 year of age) and toddlers (over 1 year of age). (D,E) No significance of ARGs and VFs were
observed between these years group of pediatric patients (p > 0.05).

CC59 isolates are primarily responsible for MSSA infections and are one of the most
common clonal complexes among pediatric S. aureus isolates in China [41]. A previous
study on the prevalence of S. aureus in China from 2014 to 2020 revealed that CC59 was
the most common clone complex, accounting for 31.2% of CA-MRSA lineages [38]. Most
CC59 strains in China lack pvl and have a low resistance to conventional antimicrobial
agents [38]. In this study, ST59 was found in both MRSA and MSSA strains, although only
four isolates were pvl-positive, suggesting a low pathogenicity but a high prevalence of
hypotoxic S. aureus infections in children in eastern China.

3.2. Phenotypical and Genotypical Antimicrobial Resistance

All 81 S. aureus isolates from Chinese pediatric patients were screened for phenotypic
antimicrobial-resistant profiles (Figure 3). Among them, 17 isolates were resistant to at
least three antimicrobials and the majority of them belonged to CC59 (n = 11). Specifically,
the current S. aureus isolates were resistant to ampicillin (n = 60), penicillin (n = 67), ery-
thromycin (n = 38), gentamycin (n = 12), cefoxitin (n = 28), and tetracycline (n = 10), whereas
a majority were sensitive to ceftazidime, cefuroxime, chloramphenicol, clindamycin, line-
zolid, and rifampicin, indicating a broad but complex multi-drug resistance of S. aureus
infections in the current pediatric patients (Table 1).
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Given the importance of antimicrobial resistance in pediatric pathogens, we compared
the distributions of antimicrobial-resistant genes (ARGs) in 81 S. aureus strains from dif-
ferent clades (Figure 3). A total of nine ARGs associated with five classes of antimicrobial
agents were present in the isolates from four clades, among which 13.33% (4/30, clade A),
8.33% (2/24, clade B), 72.22% (13/18, clade C), and11.11% (1/9, clade D) of isolates from
the corresponding clades were identified as multi-drug resistance (Figure 3). Notably, the
blaZ gene was found in 59 isolates and the mecA gene was present in 26 strains, which
were consistent with our phenotypical tests. The tet(K) and erm(C) genes were distributed
widely among CC1 (33%, 33%), CC7 (100%, 50%), CC22 (not detect for tet(K), 39.13%), and
other types. CC59 carried several unique genes including erm(B), ant(6)-la, and aph(3′)-IIIa.
Finally, we calculated the prevalence of ARGs among these isolates, with clade C having
the highest numbers of ARGs including strains of CC59, CC121, and CC338. However,
further statics indicated that no significance was observed between these years group
among present Chinese pediatric patients (p > 0.05, Figure 2).

Ampicillin, tetracycline, penicillin, and erythromycin resistance were commonly found
in S. aureus isolates from human infections [18]. Similarly, resistance genes to β-lactam
antimicrobials, tetracycline, and erythromycin were identified in this study. This might
be caused by the common usage of such antimicrobial classes in clinical treatment [42].
Additionally, the blaZ gene encodes β-lactamase, which confers penicillin resistance, and
this gene may be present on transposons, insertion sequences, plasmids, and other mobile
elements [43]. In the current investigation, we discovered that 93.0% of S. aureus isolates
were resistant to penicillin, which is comparable to a previous report from China that 84.2%
of fecal S. aureus in children were resistant to penicillin [11]. In contrast, Spanish research
found that only 40% of S. aureus in neonatal stool was resistant to penicillin [44].

On the other hand, all present S. aureus isolates tested negative for vancomycin and
linezolid, which is consistent with previous isolations from feces from other countries [45–47].
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MRSA isolates have historically been more resistant to antimicrobial treatments than MSSA
bacteria because the SCCmec components of MRSA carry numerous resistance genes [48].
Similarly, MRSA isolates were more resistant to ampicillin, erythromycin, ciprofloxacin, and
tetracycline than MSSA isolates in this study. These findings suggested that the colonization
of multi-drug resistant isolates in pediatric patients may make further clinical treatment of
highly virulent MRSA infections difficult.

3.3. Identification and Distribution of Virulent Factors

Virulent factors were compared to determine the pathogenicity in these S. aureus
isolates. In total, 14 virulent factors were screened among 81 S. aureus strains including
the functional factors of panton-valentine leucocidin, toxic shock syndrome toxin, staphy-
lokinase, exfoliative toxin, and enterotoxin (Figure 3). Remarkably, lukF-PV and lukS-PV
were dominantly carried by CC22 (n = 23), CC59 (n = 4), CC338 (n = 2), CC25 (n = 2), CC88
(n = 2), and CC15 (n = 1) (Figure 3, Supplementary Table S2). However, tsst-1 genes were
detected only in CC188 (n = 2), CC7 (n = 1), and CC15 (n = 1), while exfoliative toxin genes
(eta, etb) were found only in CC121. The current isolates showed a lower prevalence of
enterotoxin (24.7%, 20/81).

Previous studies have reported the low carriage of CC398 virulent factors in Chinese
adults [18]. In our study, CC398 carried only sak (n = 6) and scn (n = 5). However, our study
illustrated the high carriage rate of Panton–Valentine leucocidin in CC22. The pvl gene
might cause hematogenous osteomyelitis (OM) in both children and adults [1]. Previous
studies reported that only 1.6% of MSSA fecal isolates from adults tested positive for
pvl [38]. The overall detection rate of pvl in fecal sample isolates from pediatric patients
in the United States is less than 10% [49]. However, the current high prevalence of pvl in
pediatric patients implies a hypervirulent signature, and further research is needed on the
clinical applicability of these CC types.

The scn gene was observed in 34 of the present isolates including the types CC1 (n = 2),
CC5 (n = 1), CC6 (n = 2), CC7 (n = 2), CC20 (n = 1), CC22 (n = 2), CC30 (n = 1), CC59 (n = 7),
CC121 (n = 1), CC338 (n = 2), and CC1281 (n = 2) (Figure 3, Supplementary Table S2). The
scn gene has been detected at high frequencies from human hosts as a marker of the immune
evasion cluster (IEC), suggesting that the gene can be used to identify strains transmitted
from animals, and environments to humans [50,51]. Adult patients typically have a higher
prevalence of the scn gene. A previous study in China reported a prevalence of 82.8% of
scn in fecal MSSA isolates from adult patients [18]. However, researchers reported that
the scn gene was not detected in S. aureus isolated from the adenoid tissue of 112 children
with adenoid symptoms [52]. In our study, only 41.98% of the isolates possessed the
scn gene, indicating that the sources of infections in children are diverse, including both
human-to-human transmission and environmental and nosocomial infections.

Generally, our study demonstrated that the frequencies of the staphylococcal entero-
toxin sea (7.3%), seb (12.7%), sec (12.7%), seh (5.5%), selk (5.5%), sell (12.7%), and selq (5.5%)
were low in the MSSA isolates compared with Chinese adults [18]. However, a previous
Spanish study reported that none of the S. aureus strains in healthy human feces contained
such an enterotoxin gene cluster [44]. In this study, most of the enterotoxin gene was
dispersed in CC188 and CC59, suggesting that S. aureus infections in infants are still con-
trolled by other virulent factors such as lukF-PV and that enterotoxin-related genes are not
significant in these strains.

4. Conclusions

In conclusion, comparative genomic analyses were enrolled for the molecular charac-
teristics of methicillin-resistant and -susceptible S. aureus from pediatric patients in Suzhou,
China. A total of 18 unique ST types, of which ST22 (28.4%) and ST59 (13.6%) were identi-
fied as the most typical strains. Most strains were from acute/chronic otitis externa(n = 23),
otitis media(n = 11), and soft tissue infections (n = 9), of which 26 strains were identified as
MRSA. The present study also observed an association between different CC types/ST and
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the age of pediatric patients and that CC398 was the predominant type in neonates under
1 month of age, while CC22 was mainly found in other infants. Additionally, 17 S. aureus
isolates were resistant to at least three antimicrobials and the majority of them belonged to
CC59 (n = 11), while numerous virulent factors were screened positive including the func-
tional factors of Panton–Valentine leucocidin, toxic shock syndrome toxin, staphylokinase,
exfoliative toxin, and enterotoxin. Together, the present study provided a phylogenetic
and genotypic comparison of S. aureus from Chinese pediatric patients in Suzhou city. Our
results suggested that the colonization of multi-drug resistant isolates may make further
clinical concern among pediatric patients in eastern China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12040549/s1, Table S1. Clinic data of pediatric patients;
Table S2. Detail background on the range of ages and infections among the infants enrolled in
this study.
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