
Supplementary methods 
 
Cell hashing 
Antibodies used in these experiments are listed in Table S6 below. In all experiments, CFSElow 

population was hashed with TotalSeq™-B0252, CFSEmed, with TotalSeq™-B0253, and CFSEhigh, 

with TotalSeq™-B0254. CFSEhigh population of non-dividing cells was also stained with 

antibodies to differentiate cell maturation subsets (CD45RA and CD62L) and activation state 

(CD69), see Table S6. Following incubation with these antibodies, CFSElow, CFSEmed, CFSEhigh 

cells were pooled together in equal proportions, 10,000 per subset, and 12,000 cells of the pool 

were sampled for scRNA-Seq experiments. Additionally, in experiments 2 and 3, an aliquot of 

CFSEmed cells was hashed with TotalSeq™-B0255 antibody and stained with isotype controls, 

TotalSeq™-B0090 and TotalSeq™-B0092. Five hundred of these control cells were added to 

the sequencing samples. Maturation, activation, and isotype control staining were not used for 

this paper. Cell hashing antibodies were used at dilution of 1:8; all other antibodies were used 

undiluted. 

 

Table S6. Feature barcoding and cell hashing antibodies. 
Antibody Specificity Clone Isotype Barcode sequence cat# 
TotalSeq™-B0063 CD45RA HI100 Mouse IgG2b, κ TCAATCCTTCCGCTT 304161 
TotalSeq™-B0147 CD62L DREG-56 Mouse IgG1, κ GTCCCTGCAACTTGA 304849 
TotalSeq™-B0146 CD69 FN50 Mouse IgG1, κ GTCTCTTGGCTTAAA 310949 

TotalSeq™-B0090 Isotype 
control MOPC-21 Mouse IgG1, κ GCCGGACGACATTAA 400185 

TotalSeq™-B0092 Isotype 
control MPC-11 Mouse IgG2b, κ ATATGTATCACGCGA 400379 

TotalSeq™-B0252 Cell hash LNH-94; 
2M2 Mouse IgG1, κ TGATGGCCTATTGGG 394633 

TotalSeq™-B0253 Cell hash LNH-94; 
2M2 Mouse IgG1, κ TTCCGCCTCTCTTTG 394635 

TotalSeq™-B0254 Cell hash LNH-94; 
2M2 Mouse IgG1, κ AGTAAGTTCAGCGTA 394637  

TotalSeq™-B0255 Cell hash LNH-94; 
2M2 Mouse IgG1, κ AAGTATCGTTTCGCA 394639 

 
 

 
  



Data pre-processing 
1.5 IQR rule. In statistics, the interquartile range (IQR) is a measure of statistical dispersion, 

defined as the difference between the 75th percentile (𝑄ଷ) and the 25th percentile (𝑄ଵ), i.e., 𝐼𝑄𝑅 = 𝑄ଷ − 𝑄ଵ. The interquartile range is a concept that is often used to find outliers in data in 

statistics.  Data points that fall below 𝑄ଵ − 1.5 ∗  𝐼𝑄𝑅 or above 𝑄ଷ + 1.5 ∗  𝐼𝑄𝑅 are recognized as 

outliers. Our IQR function takes two parameters, the data to threshold and the IQR we wish to 

use. 

 
Mixture model rule. A mixture model is a statistical model for identifying the subpopulations in 

an overall population. It is one of the unsupervised learning methods, i.e., it does not require the 

subpopulation identity information. In statistical language, a mixture model models the 

distribution of observed measures to be a mixture distribution composed of the distributions of 

measures in the subpopulations. One of the most commonly used mixture models is a Gaussian 

mixture model, in which the overall population is a combination (mixture distribution) composed 

of more than one different Gaussian distribution (subpopulation). We used the Expectation-

Maximization (EM) algorithm output for mixtures of normal distributions from R package 

mixtools. The identified threshold is the value of natural log-transformed UMI on which the 

probability of the cell coming from subpopulation on the left equals the probability of it coming 

from the right.  
 

Our thresholding function has four parameters, including data to threshold (e.g. natural log-

transformed UMI of hashes); the number of modes/peaks/subpopulations in the data (kkt); the 

vector of initial values for the mean locations of modes/peaks/subpopulations (muv.init); and the 

random seed. The parameters kkt and muv.init are determined visually from the data; however, 

in some cases several combinations of kkt and muv.init should be tried, in order to identify the 

best fit for the data. This happens when some of the modes/peaks/subpopulations are not very 

well defined; however, separate peaks are likely to be present (see examples below). We have 

selected these parameters based on the best model fit, indicated by the largest loglike value in 

the output of the threshold function. Finally, the number of clusters was selected by minimizing 

the Bayesian information criterion (BIC) statistic. The code is available at 

https://github.com/coralzhang/HIV_scRNA. 

 
Identification of thresholds from actual data. To make all the datasets uniform, cells stained 

with TotalSeq™-B0255 were removed from experiments 2 and 3, which contained minor 



populations of control cells stained with isotype antibodies. To do this, we first applied a 

log(x+1,e) transformation on the hash counts. Distribution of these transformed measures was 

generally bi(multi)-modal, indicating that there was more than one subpopulation in the overall 

population. Two major subpopulations were expected since cells exposed (positive) and not 

exposed (negative) to the antibody were mixed together. Thus, we used the mixture model to 

identify thresholds for TotalSeq™-B0255 (see Figure S1 below). 

 

Figure S1. Identification of thresholds to exclude cells stained with isotype antibody 
controls. The grey curve represents the overall density estimation; the black dashed lines 

represent the centers of the subpopulations, and the red dash lines represent the thresholds 

estimated. X axis, the natural log-transformed value of B0255 UMI; Y axis, density, which 

represents the scaled frequency counts for cells in each bin so that the histogram has the total 

area of one. The histogram on the left illustrates experiment 2. Here the expected negative and 

positive populations are present. The positive population has two subpopulations/peaks at log 

B0255 UMI 8 and 9, and the negative population appears to show peaks at both 1 and slightly 

over 2; therefore, we tried both kkt=3 and 4 and chose kkt=4 based on its lower BIC statistics. 

The histogram on the right illustrates experiment 3, where eventually 3 peaks were chosen. 

 

  

Experiment 2: natural log transformed B0255
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Experiment 3: natural log transformed B0255
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After filtering cells on identified thresholds, the next step was to remove dead or dying cells 

based on a high percentage of mitochondria reads. To do this, we first removed cells with a 

percentage of mitochondria reads higher than 40%. The distribution of this variable is generally 

unimodal and right-skewed, i.e., there is only a small number of cells with ultra-high percent of 

reads aligning to mitochondria genes. Given the skewed unimodal data, we used the IQR rule to 

define the thresholds (Figure S2 below).  

 

Figure S2. Identification of thresholds to remove cells with high percentages of reads 
mapping to mitochondria genes. The red dashed lines represent the identified thresholds. X 

axis, percent mitochondria gene reads in each experiment; Y axis, density, which represents the 

scaled frequency counts for cells in each bin so that the histogram has the total area of one. 

 

 

  

Experiment 1: % mitochondria gene reads
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Experiment 2: % mitochondria gene reads
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Experiment 3: % mitochondr ia gene reads
D

en
si

ty
0 10 20 30 40

0.
00

0.
05

0.
10

0.
15



One of the recommendations from the Seurat developers is filtering out cells with a low number 

of detected features (genes), as another measure of getting rid of bad-quality cells. We have 

assessed cell quality following the removal of cells with percentages of mitochondria reads 

above the identified thresholds. This analysis demonstrated that filtering data based on 

percentages of mitochondria reads removed essentially all cells with a low number of detected 

genes (Figure S3). 
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Figure S3. Filtering on cells with a high percentage of reads mapping to mitochondria 
genes results in the removal of cells with a low number of detected genes. Histograms 

depict cell distributions before (left) and after (right) filtering out cells based on a high 

percentage of reads mapped to mitochondria genes. X axis, natural log-transformed number of 

detected genes; Y axis, frequency, which represents the number of cells in each bin. 

 

Next, we identified thresholds for each of the cell hashes, TotalSeq™-B0252, TotalSeq™-

B0253, and TotalSeq™-B0254 in a similar manner as for TotalSeq™-B0255 described above. 

This information was further used to identify ground truth cell multiplets (droplets that contained 

more than one hash). Table S7 below summarizes all thresholds identified during data pre-

processing. 

 

Table S7. Summary of all identified thresholds. 
 B0255 

(log scale) 
% Mitochondria 

gene reads 
B2052 

(log scale) 
B0253 

(log scale) 
B0254 

(log scale) 
Experiment 1 NA 15.986278 5.064453 4.528374 4.5834315 

Experiment 2 5.731278 15.1820739 5.563767 5.039104 5.940909 

Experiment 3 2.924681 13.462866 3.816704 3.990669 4.300492 
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We defined a cell as a doublet if two out of the three hashes (B0252, B0253, and B0254) were 

called positive by the thresholding method. The number and the percentages of doublets in 

each sample are summarized in Table S8.  

  

Table S8. Identification of cells that represent doublets. 
 

Experiment 1 Experiment 2 Experiment 3 
# of doublets 1281 59 270 
Total # of cells after filtering B0255 8715 2813 5924 
Percentage of doublets  14.7 2.1 4.6 
 

 
Permutation technique to validate true differences in identified differentially expressed 
genes 

 

After defining the cell division status (non-dividing cells, cells divided a few times, and cells 

divided many times), we first ran the FindMarkers function in the library Seurat on three cell 

populations to identify genes expressed differentially between HIV-negative and HIV-positive 

cells. For non-dividing cells and cells that divided many times, a total of 386 differentially 

expressed genes were identified, among which 106 (27.46%) were shared by non-dividing cells 

and cells that divided a few times. For cells divided a few times and cells divided many times, a 

total of 483 differentially expressed genes were identified, among which 180 (37.27%) were 

shared by cells that divided a few times and cells that divided many times. For cells divided a 

few times and non-dividing cells, a total of 469 differentially expressed genes were identified, 

among which 138 (29.42 %) were shared by cells that divided a few times and cells that divided 

many times. To investigate the significance of the overlap of the differentially expressed genes 

between cells with the different cell division statuses, we randomly permuted (reassigned) the 

cell division status for each cell, keeping the same population sizes (keeping the number of non-

dividing cells, cells that divided a few times and cells that divided many times the same), and 

ran the FindMarkers function again on these randomly re-assigned cell populations. We 

repeated this process 100 times, and for each iteration, we recorded the number and 

percentage of differentially expressed genes shared by comparing different division levels, 

which constitute the null distributions. We then plotted a histogram of these values and the 



actual observed values from the real data, demonstrating that the effect of cell division status 

was indeed significant (Figure S4, empirical p-value=0).  

 

    

Figure S4. Permutation results. The histograms of the number (left) and percentage (right) of 

markers of the HIV-positive cells shared by cells that divided many times and cells that divided a 

few times (top), cells that divided many times vs non-dividing cells (middle) and cells that 

divided a few times vs non-dividing cells (bottom) in the 100 permutations. The red vertical lines 

represent the actual observed values in the real data. 
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