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Abstract: Background: In 2007, Australia introduced a national human papillomavirus (HPV) vacci-
nation program. In 2017, the onset of cervical screening changed from 18 to 25 years of age, utilising
human papillomavirus (HPV) nucleic acid testing. The objective of the study is to describe the HPV
genotypes and HPV16 variants in biopsies from women ≤ 25 years of age with cervical carcinoma
(CC) (cases), compared with those aged >25 years (controls), in a pre-vaccination cohort. Methods:
HPV genotyping of archival paraffin blocks (n = 96) was performed using the INNO-LiPA HPV
Genotyping assay. HPV16-positive samples were analysed for variants by type-specific PCR spanning
L1, E2 and E6 regions. Results: HPV16 was the commonest genotype in cases (54.5%, 12/22) and
controls (66.7%, 46/69) (p = 0.30), followed by HPV18 (36.3%, 8/22 vs. 17.3% 12/69, respectively)
(p = 0.08). Furthermore, 90% (20/22) of cases and 84.1% (58/69) of controls were positive for HPV16
or 18 (p = 0.42); 100% (22/22) of cases and 95.7% (66/69) of controls had at least one genotype targeted
by the nonavalent vaccine (p = 0.3). The majority of HPV16 variants (87.3%, 48/55) were of European
lineage. The proportion of unique nucleotide substitutions was significantly higher in cases (83.3%,
10/12) compared with controls (34.1%, 15/44), (p < 0.003, χ2, OR 9.7, 95%CI 1.7–97.7). Conclusions:
Virological factors may account for the differences in CCs observed in younger compared with older
women. All CCs in young women in this study had preventable 9vHPV types, which is important
messaging for health provider adherence to new cervical screening guidelines.

Keywords: cervical cancer; young women; human papillomavirus; genotyping; HPV vaccine; HPV16
variants; European variant; Asian American lineage; Asian lineage; E6350

1. Introduction

In 2017, Australia changed from biennial cytology screening from 18 years of age to
five-yearly primary human papillomavirus nucleic acid testing (HPV NAT) commencing
from 25 years of age, in line with international recommendations [1]. Just prior to imple-
mentation, surveys of Royal Australian and New Zealand college of Obstetricians and
Gynaecologist affiliates (n = 956), general practitioners and nurse practitioners (n = 191)
and young women (n = 149) demonstrated variable acceptance (50–84%) towards delaying
screening to 25 years of age, particularly in women who were unvaccinated, immunosup-
pressed or had survived childhood sexual abuse [2–4]. Two years after the implementation
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of the revised guidelines, more than 80% of clinicians were comfortable with the extended
screening intervals, increased age of first screening and the screening test used [5]. In 2018,
the United States (US) Preventive Services Task Force (USPSTF) updated their recommenda-
tions for cervical cancer (CC) screening to include the option for primary HPV testing every
5 years for women aged 30–65 years [6]. However, recent reports from the US demonstrate
that women aged 21–39 years have a significantly increased chance of being overscreened
due to concern about the development of CC [7,8]. An understanding of HPV virology
in young women who develop CC prior to the recommended age of onset of screening
would be helpful to verify that there are no additional biological factors contributing to
more aggressive rapid-onset disease at a young age.

HPV has a circular double-stranded genome consisting of an upstream regulatory
region, early genes (E1–E7) and late genes (L1–2). HPV types are classified according to the
L1 nucleotide (nt) sequence [9]. Proteins encoded by the early genes are involved in viral
persistence, pathogenicity and malignant transformation, whereas the late genes encode the
capsid protein [9]. Carcinogenicity of high-risk (HR) compared to low-risk (LR) HPV types
is based on nt sequence changes in the early genes, whereas immunogenicity resides in the
late region [9]. Epidemiological studies have identified 12 carcinogenic HR-HPV types [10],
with types 16 and 18 accounting for 70% of CCs consistently worldwide [11]. HPV16 is
unique in terms of being oncogenic, with an odds ratio for the development of squamous
cell carcinoma (SCC) of 434.5 [12]. In 1997, Yamada and colleagues reported intratypic
HPV16 sequence variations in a sample of 408 cervical cancers from 22 countries and five
continents [13]. In this report, the major groupings of HPV16 variants were designated
according to 6 major lineages: European (E), Asian (As), Asian American (AA), African 1
(Af1), African 2 (Af2) and North American 1 (NA1). Alphabetical naming is now commonly
used for variant lineages/sublineages of HPV, such as A1–3 for the European variants, A4
for Asian lineage, B1–2 for African 1, C for African 2, D1 for North American and D2 for
Asian American HPV16 variants [14]. From a public health perspective, it is vital that HPV
vaccines provide cross-protection against all HPV16 variants.

In Australia, the national school-based quadrivalent HPV (4vHPV) vaccination pro-
gram was introduced in 2007 [15]. In December 2014, the U.S. Food and Drug Adminis-
tration approved the nonavalent HPV (9vHPV) vaccine targeting HR-HPVs 16, 18, 31, 33,
45, 52 and 58, as well as LR-HPVs 6 and 11 [16]. In 2018, a school-based two-dose 9vHPV
program spaced 6 months apart was introduced [17]. In 2020, 80.5% of Australian females
and 78% of males aged 15 years were reported to have received the full course of the HPV
vaccine [18]. Based on the HPV genotypes found in CCs, it is estimated that this vaccine
could prevent over 90% of CCs worldwide [19].

There is limited data available on HPV genotype distribution in women aged≤25 years
or HPV variants in CCs of women in Australia. An understanding of this could shed light
on cervical cancer biology in the young, inform the predicted impact of HPV vaccines in
preventing CC in young women who will not be covered under new screening guidelines
and provide important baseline data for the monitoring of vaccine impact in this age group.

In this study, we aimed to describe all HPV genotypes isolated in cervical tissue from
women ≤ 25 years of age with CCs, compared with those of older women. In the women
positive for HPV16, we aimed to identify HPV variants (in E6, E2 and L1 genes) within the
cancer tissue in women ≤ 25 years of age and compare them with those of older women
and assess if such changes were silent or resulted in amino acid (aa) changes.

2. Materials and Methods

A case-control study was undertaken across gynaecological oncology centres in three
Australian states (Victoria, Tasmania, Western Australia): Royal Women’s Hospital (RWH),
Mercy Hospital for Women, Monash Medical Centre, Victoria; Royal Hobart Hospital,
Tasmania; and King Edward Memorial Hospital, Western Australia. Ethics approval was
obtained at all study institutions (respective HREC numbers 06/22; R07/14; 0815/7B;
H0010222; 1598/EW).
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Participants were diagnosed with CC between 1983 and 2007. Cases were defined as
those aged ≤25 years at diagnosis, and controls were aged >25 years at diagnosis. Cases
and controls were recruited in a 1:3 ratio. To maximise the number of cases, all subjects
who met the case definition were invited as potential participants, while controls were
randomly selected using a random number generator [20] and frequency-matched for
year of diagnosis (within 5 year intervals). Subjects were identified from medical records
databases using International Classification of Diseases codes (Table 1) [21], pathology,
oncology databases and state cancer registries for hospital-specific data, where hospital
data was incomplete. Four case subjects were recruited from the HPV DNA bank located
at the RWH, where purified DNA is stored from fresh CC tissue obtained from 1984 to
1989. The women had given consent for the release of the tissue for research (genotyping
of cancer tissue, storage of tissue in the DNA bank and future HPV-related testing). The
diagnosis of CC was confirmed histologically.

Table 1. Diagnosis codes for identification of subjects with primary cervical cancer.

Year General Diagnosis Code Specific Diagnosis Code

1983–June
1998

180 Malignant Neoplasm of
Cervix Uteri

180.0 Endo Cervix
180.1 Exocervix
180.8 Other specified sites of cervix
180.9 Cervix Uteri, unspecified

July
1998–2007

C53 Malignant Neoplasm of
Cervix Uteri

C53.0 Endo Cervix
C53.1 Exocervix
C53.8 Overlapping lesion of cervix uteri
C53.9 Cervix Uteri, unspecified

Women were posted an information sheet and consent form (apart from those who
had already consented via the DNA bank). Women who were unable to give consent
or who were likely to suffer undue distress were excluded. This included those with
language difficulties requiring an interpreter, intellectual disability, recent diagnosis of a
terminal disease or unstable psychiatric disorders (psychosis, depression with suicidal
ideation). Prior to mail-outs, data was requested from the Australian Electoral Commission
(Canberra) and the National Death Index at the Australian Institute of Health and Welfare
to minimise the risk of inappropriate mail-outs. A waiver of consent was granted by
the ethics committees for the HPV genotyping of tissue of deceased subjects or those
lost to follow-up. Chart review was undertaken to collect demographic, survival and
histopathological CC data. Socioeconomic indices for area (SEIFA) and decile (range
1–10) were determined by the SEIFA data cubes (2006) from the Australian Bureau of
Statistics [22]. The score is derived from census variables, with a lower score indicating an
area of relative disadvantage.

Formalin-fixed paraffin blocks of CC tissue were obtained from repositories at the
anatomical pathology departments of participating institutions. Seven µm sections were
processed for histological analysis by using a sandwich-sectioning method [23]. Detection
and genotyping of HPV in CCs were performed at the RWH molecular microbiology
laboratory, the WHO Regional (Western Pacific) Labnet for HPV testing. The tissue was
deparaffinised according to the manufacturer’s instructions for a Roche DNA Isolation
tissue kit (Roche Molecular Systems), as described previously [24]. The INNO-LiPA HPV
Genotyping Extra assay (LiPA) version 2 (Innogenetics, Ghent, Belgium), using consensus
primers SPF 10 to direct the amplification of a 65-bp region of the HPV L1 gene, was used
according to the manufacturer’s recommendations. The assay allows the identification of
28 anogenital HPV genotypes with the inclusion of a 270-bp human DNA (ß globin) internal
control and two HPV controls. When multiple HPV infections were present, attribution
of the causal agent was made by the a priori risk of cervical cancer and the proportional
attribution method according to previous reports [25].
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HPV16-positive samples were further analysed for variants by type-specific PCR
spanning L1, E2 and E6 regions using primer pairs (Table 2). The 50–100 fmol of puri-
fied amplicons were sequenced using 1.6µM of L1, E2 and E6 sequencing primer with a
CEQ™ Dye Terminator Cycle Sequencing (DTSC) Quick-Start kit (Beckman Coulter, Inc.,
Fullerton, CA) according to the manufacturer’s instructions. Both strands of the amplicons
were sequenced, and a final contiguous sequence was assembled and aligned using the
SeqManProTM. sequence alignment software (Lasergene ®, version 5.07, DNASTAR Inc,
Madison, WI, USA).

Table 2. Sequence of primers, single nucleotide polymorphism position and length of amplicons
generated to identify HPV16 variants.

Gene Primer Pair Nucleotide Position Change Amplicon Length (Base Pairs)

L1
5′-GTTGATACTACACGCAGTAC-3′

6695:6721:6803 1695′-ATGTCATAACGTCTGCAGTT-3′

E2
5′-GCAGTTTGATGGAGACATATGC-3′

3159:3161:3181:3182 1105′-CATAATAGTCAACTTGACCCTCT-3′

E6
5′-TGCAATGTTTCAGGACCCACA-3′

131:132:143:145:178 1185′-AGTAACTGTTGCTTGCAGTAC-3′

E6 T350G 5′-GAATCCATATGCTGTATGTGAT-3′ 350 102

Signature patterns in each gene were used to identify each HPV lineage according
to previously published reports [26–28] as follows: European (E), Asian (As), African
(Af1), African (Af2), North American (NA1) and Asian American (AA). Single nucleotide
polymorphisms (SNPs) were defined as follows: (i) the presence of nt changes confirmed
by both forward and reverse strands in L1, E2 or E6; (ii) the presence of nt changes in the
E6-350 region detected on forward hybridisation alone confirmed the presence of an SNP,
as the T-G change at nt 350 and the C-T change at nt 335 are common subclasses [13]; (iii) if
substitutions in a gene (apart from the E6-350 region) were detected only in one direction
of hybridisation, consistent with a common class or subclass and there were substitutions
in other regions of the genome consistent with the same variant, then it was determined
highly unlikely that the substitutions arose during PCR alone and the SNPs were included
in the analysis; (iv) if substitutions in a gene (apart from the E6-350 region) were detected
only in one direction, and there was no supporting data in other regions of the genome,
then the result was “indeterminate” for that gene, and that subject was excluded from
analysis for that particular gene; and (v) if substitutions in a gene (apart from the E6-350
region) were detected only in one direction but not detected in the other direction, where
hybridisation in both directions was successful, the substitutions were presumed to have
arisen during PCR and were eliminated, and the subject was included as negative for SNP
for that particular gene. Variability in a particular genomic region was defined by the
number of unique nt substitutions divided by amplicon length for that genomic region.
Nucleotide variability was determined by the total number of nt substitutions divided by
the total number of nts examined.

Statistical analyses were performed using STATA IC 11.1 (Statacorp LP, TX, USA).
Associations between categorical variables were examined using the chi-square test (χ2)
or Fisher’s exact test, and interpreted as odds ratios (OR), 95% confidence intervals (CI)
and p values (considered significant if ≤0.05). Associations with continuous variables were
assessed using the Wilcoxon–Mann–Whitney test. Survival was defined as the number
of days from the date of first diagnosis of invasive CC to either the date of death, or for
subjects who were alive, the end date of the study, and was reported in years. Five-year
survival was defined as the proportion of patients alive at 5 years from diagnosis of CC.
Survival rates were compared using Kaplan–Meier curves. Sample size was limited by
the number of cases of cervical cancer diagnosed in those ≤25 years of age that could be
expected to be recruited over the time of the study.
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3. Results
3.1. Recruitment and Demographic Information

Overall, 56 women aged≤25 years and 159 women aged over 25 years were identified,
with 100 women (22 cases, 78 controls) undergoing HPV DNA testing (46.5%). A total of
58 women were HPV16-positive, of whom 56 underwent variant analysis (Figure 1 describes
recruitment). There was no significant difference between non-eligible participants (n = 115)
for mean year of diagnosis (p = 0.6), mean SEIFA decile (p = 0.6), ethnicity (0.7) or cervical
cancer histology (p = 0.6) (data not shown). The background characteristics of subjects
undergoing HPV detection and genotyping are shown in Table 3. Women aged >25 years
with cervical cancer were more likely to be deceased (66.7% vs. 27.3%).
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Figure 1. Recruitment and eligibility for HPV testing of cases (≤25 years of age) with cervical
cancer and controls (>25 years of age) into the study; a cervical intraepithelial neoplasia 2 or less;
b cervical intraepithelial neoplasia 3 or less or adenocarcinoma in situ; c included 4 cases where
human papillomavirus DNA purified and banked from fresh cervical cancer tissue (DNA bank);
d included 1 case from HPV DNA bank; e one case and one control did not have variant testing in
time for the study, one control had invalid results on variant analysis (a substitution in E6 (T-145) was
seen on reverse hybridisation, but forward hybridisation failed).

Table 3. Characteristics of participants with cervical cancer whose samples underwent HPV genotyping.

Case (≤25 Years)
n = 22

Controls (>25 Years)
n = 78 p Value, (χ2) OR [95%CI]

Deceased status n (%) 6 (27.3) 52 (66.7) <0.001. 0.2 [0.1–0.6]

Median age at diagnosis (years) 24.0 50.5 <0.001(rank-sum)
Interquartile range (IQR) 22–25 40–64

Total range 18–25 26–92

Ethnicity n% 20 (90.1) 67 (85.9) 0.83
Caucasian 1 (4.5) 6 (7.7)

Aboriginal, Torres Strait Islander 1 (4.6) 3 (3.9)
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Table 3. Cont.

Case (≤25 Years)
n = 22

Controls (>25 Years)
n = 78 p Value, (χ2) OR [95%CI]

Asian
0 (0.0) 2 (2.6)Other

Median SEIFA decile a 7.5 6.5
IQR 5–9 4–8

range 1–10 1–10

Total 22 (100) 78 (100)
a Socioeconomic index for area, based on postal/ZIP code. Deciles are based on the postal codes and are not
weighted by the population within each postal code. Major city postal codes have, on average, a higher Socio-
Economic Indexes for Areas (SEIFA) level and a larger population than regional postal codes. Consequently, the
population-weighted median SEIFA decile is about 7, not 5.

3.2. HPV Genotyping Results

The ß globin gene, the internal control used to assess sample adequacy, was positive
in all 22 samples from women ≤ 25 years of age and all 22 were HPV DNA-positive. Of
the 78 women aged >25 years, 4 (5.1%) were beta-globin-negative, and thus were excluded
from further analysis, and 5 were HPV-negative (6.4%). HPV positivity was 94.7% (91/96)
in those with valid tests, and all had HR-HPVs.

Overall, 90.8% (20/22) of women aged ≤25 years were positive for HPV16 or 18
compared with 84.0% (58/69) of women aged >25 years (p = 0.42, OR 1.9 [0.4–18.9]),
whereas 100% (22/22) of women aged ≤25 years had at least one genotype targeted by the
9vHPV vaccine compared with 95.7% (66/69) of women aged >25 years (p = 0.3) (Table 4).
There was a non-significant trend for HPV18 to be more common in cases (36.3%) than
in controls (17.3%) (p = 0.06). For the total study population, HPV18 was more common
in adenocarcinoma (AC) (6/16, 37.5%) than in squamous cell carcinoma (SCC) (7/63,
11.1%) (p = 0.01, 4.8 [1.0–20.5]). However, the proportion with HPV16 was not significantly
different between the two morphological types (50.0% (8/16) for AC and 73.0% (46/63) for
SCC) (p = 0.07, 0.4, [0.1–1.3]). In women aged ≤25 years alone, there was no significant
difference in the proportion of SCC (9/12, 75.0%) and AC (6/11, 54.5%) due to HPV16
(p = 0.30); however, HPV18 was less common in SCC (1/12, 8.3%) than in AC (3/5, 60%)
(p = 0.02).

Table 4. HPV genotypes in cases (≤ 25 years of age) and controls (>25 years of age), adjusted for
multiple infections.

HPV
Type

Cases n
(%) SCC a AC b Other c NE d Controls

n (%) SCC a AC b Other c UD e Total n
(%)

p Value, OR
[95%CI]

16 12 (54.5) 9 (75.0) 2 (40.0) 0 1 (25.0) 46 (66.7) 37 (72.6) 6 (54.6) 2 (40.0) 1 (50.0) 58 (63.7) 0.30, 0.6,
[0.2–1.8] f

18 8 (36.3) 1 (8.3) 3 (60.0) 1 (100.0) 3 (75.0) 12 (17.3) 6 (11.8) 3 (27.3) 2 (40.0) 1 (40.0) 20 (22.0) 0.06, 2.7,
[0.8–8.9] g

31 0 (0.0) 0 0 0 0 1 (1.4) 1 (32.0) 0 0 0 1 (1.1)
33 1 (4.5) 1 (8.3) 0 0 0 3 (4.3) 2 (3.9) 0 1 (20.0) 0 4 (4.4)
39 0 (0.0) 0 0 0 0 2 (2.9) 2 (3.9) 0 0 0 2 (2.2)
45 1 (4.5) 1 (8.3) 0 0 0 2 (2.9) 1 (2.0) 1 (9.1) 0 0 3 (3.3)
51 0 (0.0) 0 0 0 0 1 (1.4) 1 (2.0 0 0 0 1 (1.1)
52 0 (0.0) 0 0 0 0 1 (1.4) 1 (2.0) 0 0 0 1 (1.1)
58 0 (0.0) 0 0 0 0 1 (1.4) 0 1 (9.1) 0 0 1 (1.1)

Total 22
(100.0) 12 (54.6) 5 (22.7) 1 (4.6) 4 (18.2) 69

(100.0) 51 (84.1) 11 (15.9) 5 (7.2) 2 (2.0) 91
(100.0)

a squamous cell carcinoma; b adenocarcinoma; c other epithelial cervical cancers (adenosquamous, mucoepider-
moid, adenoid basal); d neuroendocrine cervical cancers; e undifferentiated cervical cancers; f HPV16 in women
aged ≤25 vs. women aged >25; g HPV18 in women aged ≤25 vs. women aged >25.

In cases, five-year survival for those who were HPV18-positive was 57.1% (4/7)
compared with 78.6% (11/14) for non-HPV18-related cases (Figure 2). For those with
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Stage I and II disease, five-year survival was 57.1% (4/7) compared with 100% (10/10) for
non-HPV18 cancers (p = 0.02).
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3.3. Multiple HPV Infections

The proportion of women with multiple infections was 8.8% (8/91). There was a
trend for women aged ≤25 years to have a lower proportion of multiple infections (4.5%,
1/22) compared with women aged >25 years (10.1%, 7/69), but this was not statistically
significant (p = 0.4, OR 0.4 [0.0–3.6]) (Table 5).

Table 5. Cases aged ≤ 25 years and controls aged >25 years with multiple HPV infections.

Subject Histological
Diagnosis Stage Specimen Histology in

Block Tested
Year of

Diagnosis
HPV
Type

HPV
Type

Case mucoepidermoid IB NOS a HPV DNA bank Not applicable 1984 18 b 51
Control SCC IB NOS a Paraffin cancer 2000 16 c 52
Control adenosquamous IIA Paraffin cancer 1988 16 c 52
Control SCC IBI Paraffin cancer 2003 51 d 82
Control SCC IIB Paraffin cancer 1994 16 c 45
Control SCC IAI Paraffin cancer 2001 16 c 45
Control SCC IIIB 2 Paraffin blocks cancer 1987 16 c 52
Control SCC IIIB Paraffin cancer 2005 16 c 18

a not otherwise specified; b the carcinoma was attributable to HPV18; c the carcinoma was attributable to HPV16;
d the carcinoma was attributable to HPV51.

3.4. HPV16 Variant Analysis

Fifty-eight HPV16-positive subjects (12 cases, 46 controls) were eligible for variant
analysis. Of these, testing was not performed in one case and one control in time for the
study. In one control, the variant could not be classified due to an invalid result (a substitu-
tion in E6 (T145) was seen on reverse hybridisation, but forward hybridisation failed). Total
nt variability was similar in cases (0.3%, 12/4330) and controls (0.3%, 49/17,999) (Table 6).
Genomic variability was not significantly different in cases (2.0%, 10/499) compared with
controls (3.0%, 15/499) (p = 0.3, OR 0.6, 95%CI 0.3–1.6). For all subjects tested, genomic
variability was 1.1% (2/169) in L1, 4.5% (5/110) in E2, 5.9% (7/118) in E6 and 3.9% (4/102)
in E6 350. The proportion of unique substitutions was significantly higher in cases (83.3%,
10/12) compared with controls (34.1%, 15/44) (p < 0.003, χ2, OR 9.7, 95%CI 1.7–97.7), which
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translated to a difference in the proportion of unique aa changes between cases (66.7%,
8/12) and controls (27.3%, 12/44) (p = 0.01, OR 5.3, 95%CI 1.1–27.9).

Table 6. Number of single nucleotide polymorphisms (SNPs) in E6, E2 and L1 in cases aged≤ 25 years
and controls aged >25 years associated with variant lineage and amino acid changes a,b.

HPV Gene SNPs Case Control Amino Acid Change

L1
n = 6 n = 23

AAc-C6695 1 3 Thr to Pro (T 353P)
AAc-A6721 1 3 No base change

subtotal 2 6

E2
n = 10 n = 38

AA-G3159 2 Thr to Arg (T 135 R)
AA-A3159 1 2 Thr to Lys (T 135 K)
AA-T3161 1 2 His to Tyr (H 136 Y)
AA-C3181 2 Glu to Asp (E 142D)
AA-A3182 1 4 Ala to Thr (A 143 T)

subtotal 3 12

E6

n = 10 n = 41
E-G131 3 Arg to Gly (R 10 G)

AA-T145 1 5 Gln to His (Q 14 H)
E-C154 1 No base change
E-G162 1 Gln to Arg (Q 20R)
E-A176 1 Asp to Asn (D 25 N)

As-G178 1 Asp to Glu (D 25 E)
AA-G183 1 Ile to Arg (L 27 R)
subtotal 4 10

E6 350 region n = 9 n = 38
AA-T335 2 His to Tyr (H 78 Y)
E-G350 3 14 Leu to Val (L 83V)

As-G350 1 Leu to Val (L 83V)
AA-G350 4 Leu to Val (L 83V)
subtotal 3 21

Total SNPs Total SNPs 12 49
a Of 11 cases and 44 controls, preliminary testing was undertaken in 6 cases and 26 controls for L1, E2 and E6
genes. This revealed little genomic variability in L1 (1.1%), therefore testing for sequence variation in E2 and
E6 was undertaken in the remainder of the subjects; b hybridization or amplification did not occur in all genes
resulting in variable denominators.

The vast majority of isolates (48/55, 87.3%) were characteristic of the European lineage
(Table 7). There was no significant difference in the proportion of European variants
compared with non-European variants in cases or controls (p = 0.7, χ2, OR 1.6, 95%CI
0.6-), nor in the proportion of the T350G variant (3/9, 33.3% compared with 19/38, 50.0%,
respectively) (p = 0.4, χ2, OR 0.5 [0.1–3.8]).

Table 7. HPV16 variant lineages in cases aged ≤25 years and controls aged >25 years.

Variant Class Case n (%) Control n (%) Total n (%) p Value, OR [95%CI]

European 10 (91.9) 38 (86.3) 48 (87.3) 0.7(χ2), 1.6, [0.6–79.8]
Asian American 1 (9.1) 5 (11.4) 6 (10.9) 0.8 (χ2), 0.8, [0.0–8.3]

Asian 0 (0.0) 1 (2.3) 1 (1.8)

Total 11 (100.0) 44 (100.0) 55 (100.0)

The European variant was the most common variant in both SCC and AC (Table 8). AA
variants were seen less commonly in SCC (3/44, 6.8%) compared with other morphological
types (3/11, 27.3%) (p > 0.05) (Table 8).
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Table 8. Description of HPV16 variant lineage and cervical cancer morphology.

Morphology European
Variant n (%)

Asian American
Variant n (%)

Asian Variant n
(%) Total

SCC a 40 (90.9) 3 (6.8) 1 (2.3) 44
AC b 6 (75.0) 2 (25.0) 0 (0.0) 8

Other epithelial c 1(50.0) 1 (50.0) 0 (0.0) 2
NE d 1(100.0) 0 (0.0) 0 (0.0) 1

Total 48 (87.3) 6 (10.9) 1 (1.8) 55
a squamous cell carcinoma; b adenocarcinoma; c other epithelial cervical cancers (adenosquamous, mucoepider-
moid, adenoid basal); d neuroendocrine cervical cancers.

4. Discussion

There is a paucity of research examining early-onset cancers in young women. This
is one of the first studies to examine the genotypes and HPV16 variants in young women
to assess if virological factors contribute to a more rapid progression to invasive cancer.
In this pre-vaccination study, we found a very high proportion of CCs in women aged
≤25 years attributable to HPV16 and 18 (90.8%), suggesting a predilection of these types for
young women. Women aged ≤25 years were found to have restricted HR-HPV genotype
distribution (2 types apart from HPV16/18) compared with controls (7 types apart from
HPV16/18). Although the total nt and genomic variability were similar between cases and
controls, the proportion of unique substitutions was significantly higher in cases (83.5%)
compared with controls (34.1%), which translated to a higher proportion of unique aa
changes found in cases. Further studies are required to determine if these changes may
contribute to differences in viral adaptation, proliferation and, ultimately, early-onset
carcinoma.

In a worldwide study of over 10,000 CCs, the proportion of HPV16/18 genotypes
found in a subset of 170 CCs from Australia was 79%, with the commonest genotypes being
HPV16 (59%), 18 (20%) and 45 (5%), followed by 33, 39 and 53 at 2% each [11]. A study of
pre-vaccination CCs in Australia demonstrated that 77.1% (607/787) contained HPV16 or
18, 15.9% (125/787) contained HPV31/33/45/52 or 58 and 7.0% (55/787) contained another
HPV type [29]. There was a strong correlation between HPV type and age, with younger
women most likely to have HPV16/18 detected, as found in this study.

There is limited data published on HPV variant analysis in young women with CCs.
A strength of our analysis was the blinded histology review. Lagstrom et al. found an
average of 48.3 variants (range 15–82) per whole HPV16 genome in 15 Dutch women
aged 16–29 years; however, the population were women from the community invited for
screening [30]. A population study of 160 Argentinian women suggested that the E6 350G
SNP was associated with high rates of progression to high-grade cervical disease or CC (OR
19.41 [4.95–76.10]); however, it did not include any women aged ≤25 years with CC [31].
This variant was not more common in our case population (33%) compared with controls
(50%), suggesting that it did not play a significant role in causing earlier compared to later
onset disease. We found that cases were more likely to have non-synonymous variations
(resulting in aa changes) than controls, and further research is required to assess if this
may be a mechanism for earlier disease progression. HPV16 lineages were similar in cases
and controls (mostly being European variants). This suggests that performing HPV16
lineage analysis on young women with pre-invasive lesions to predict who is more likely
to progress to early-disease is of little prognostic value. However, a limitation of the study
is the low number of participants with invasive cancer in the case group. Rarer HPV16
polymorphisms could be associated with cancer in younger women and not be revealed by
this study. Nevertheless, efforts were made to increase recruitment by including several
centres from different regions of Australia to increase the power of the study. There was a
trend for HPV16 AA variants to be more common in glandular than in squamous disease,
and a larger sample size may have statistically confirmed the association.
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We chose variant analysis of HPV16 as it is the dominant genotype in cervical cancer. A
limitation of this study is that we did not evaluate the variants of HPV18. There was a trend
for HPV18 to be more common in cases with CCs (36.3%) compared with controls (17.3%),
suggesting an age-related predilection of HPV18 in cervical neoplastic transformation in
younger women. In the absence of other strong biological factors, longer exposure to HPV
through unwanted genital contact at a young age may be an important aetiological factor,
as it has been shown to independently increase the risk of early-onset cervical disease
5–6-fold [32].

The high proportion of CCs due to HPV16 and 18 (90.8%) suggests that a higher-than-
expected proportion of CCs may be prevented in young women with universal vaccination
coverage. It is noteworthy that all CCs in young women in this study had preventable
9vHPV types, thus it is likely a very rare outcome in future cohorts, with the potential
exception of sexual abuse survivors [32]. Such information is important to relay in targeted
education programs to improve adherence to new cervical screening guidelines.

Another limitation of this study is that we found that a significant proportion of CC
specimens only had residual high-grade disease left within the paraffin block and had to be
excluded (Figure 1). This was more likely in cases due to the high proportion with microin-
vasive disease and the cancer being sectioned out of the block onto histopathology slides
during the original diagnosis. Many of these original reports stated the presence of carci-
noma in situ with a small focus of microinvasion of 1–3 mm. Laser capture micro-dissection
(LCM) has proven that CCs are clonal (one virus for one lesion) [33]. Microdissection has
demonstrated that HPV types in tissue flanking CCs are concordant with genotypes in the
lesion [34]. However, the possibility of a separate contiguous preinvasive lesion could not
be ruled out, supporting their exclusion from analysis. Multiple infections were found in
8.8% of women in this study, which is similar to other studies which have found multiple
infections in 7.7% to 11% of Australian CCs after using strict quality control methods to
avoid contamination [29,35]. In our study, adjustment for multiple infections did not make
a significant difference to the total proportion of subjects who were HPV16- or 18-positive.

HPV genotype variation over time in CCs is another important factor in estimating
the long-term impact of vaccines. We demonstrated that the L1 gene was highly conserved
in young women and controls (genomic variability 1.1%), and this together with the knowl-
edge that HPV types have evolved very slowly, and have diverged since the origin of
humanity only by about 5% [36], means that we can be comfortable that currently, HPV
variants in the Australian population are unlikely to significantly affect vaccine immuno-
genicity and efficacy in the longer term. Pastrana and colleagues created pseudovirions
from the five major phylogenetic branches of HPV16 and found that vaccination with
HPV16 114K L1 VLPs generated antibodies against all of the pseudovirion variants. They
concluded that HPV16 variants should be regarded as belonging to a single serotype for
vaccination purposes [37].

5. Conclusions

While HPV genotyping in nationally reported CCs is unknown for this age group,
this study provides important baseline data for the monitoring of 4vHPV and 9vHPV and
predicting the impact of the revised cervical screening guidelines in those aged <25 years.
All CCs in young women in this study had preventable 9vHPV types, which is impor-
tant messaging for health provider adherence to the new cervical screening guidelines.
Accordingly, we advise genotyping surveillance of all CCs diagnosed.
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