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Abstract: (1) Background: Chagas disease is the main neglected tropical disease in America. It is
estimated that around 6 million people are currently infected with the parasite in Latin America,
and 25 million live in endemic areas with active transmission. The disease causes an estimated
economic loss of USD 24 billion dollars annually, with a loss of 75,200 working years per year of
life; it is responsible for around ~12,000 deaths annually. Although Mexico is an endemic country
that recorded 10,186 new cases of Chagas disease during the period of 1990–2017, few studies have
evaluated the genetic diversity of genes that could be involved in the prophylaxis and/or diagnosis of
the parasite. One of the possible candidates proposed as a vaccine target is the 24 kDa trypomastigote
excretory–secretory protein, Tc24, whose protection is linked to the stimulation of T. cruzi-specific
CD8+ immune responses. (2) Methods: The aim of the present study was to evaluate the fine-scale
genetic diversity and structure of Tc24 in T. cruzi isolates from Mexico, and to compare them with
other populations reported in the Americas with the aim to reconsider the potential role of Tc24 as a
key candidate for the prophylaxis and improvement of the diagnosis of Chagas disease in Mexico.
(3) Results: Of the 25 Mexican isolates analysed, 48% (12) were recovered from humans and 24% (6)
recovered from Triatoma barberi and Triatoma dimidiata. Phylogenetic inferences revealed a polytomy
in the T. cruzi clade with two defined subgroups, one formed by all sequences of the DTU I and the
other formed by DTU II–VI; both subgroups had high branch support. Genetic population analysis
detected a single (monomorphic) haplotype of TcI throughout the entire distribution across both
Mexico and South America. This information was supported by Nei’s pairwise distances, where the
sequences of TcI showed no genetic differences. (4) Conclusions: Given that both previous studies
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and the findings of the present work confirmed that TcI is the only genotype detected from human
isolates obtained from various states of Mexico, and that there is no significant genetic variability in
any of them, it is possible to propose the development of in silico strategies for the production of
antigens that optimise the diagnosis of Chagas disease, such as quantitative ELISA methods that use
this region of Tc24.

Keywords: Chagas disease; Tc24; population genetics; DTUs; molecular epidemiology

1. Introduction

Chagas disease is considered the principal neglected tropical disease on the American
continent. Both its incidence and geographical distribution have increased alarmingly in
the last two decades. The disease is caused by a single species of haemoparasitic flagellate,
Trypanosoma cruzi, which is transmitted by several species of blood-sucking bugs of the
Triatominae subfamily. The modification of wild ecosystems, the increase in urbanisation,
and demographic changes due to migration are all key factors for the dissemination of
the disease. The life cycle of the parasite includes a wide range of mammalian hosts,
including humans, in which it generates a wide range of manifestations, including heart
disease, and digestive and/or neurological disorders. It is estimated that around 6 million
people are currently infected with the parasite in Latin America [1], and 25 million live in
endemic areas with active transmission [2]. The disease causes an estimated economic loss
of USD 24 billion dollars annually, with a loss of 75,200 working years per year, and it is
responsible for around ~12,000 deaths annually [1,3]. Additionally, blood transfusions and
organ transplants or congenital transmission constitute new routes that have allowed for
its dissemination to countries of the European Union and Southeast Asia [4,5].

Over the last 30 years, it has been assumed that the clinical manifestations of the disease
depend on factors that are associated with the involved vector and the geographical region
where the transmission occurred. For this reason, strategies have been implemented that
identify the genetic diversity of the parasite, and associate it with virulence and disease
progression. Likewise, it has been postulated that developing a better understanding of the
genetic variability of the parasite is a fundamental factor in increasing the sensitivity of current
diagnostic methods and supporting the possible development of a candidate vaccine.

This parasite has a clonal reproductive pattern that results in low genetic variability.
Consequently, multiple strategies have been proposed for its classification, among which
the use of discrete typing units (DTUs) stands out. This has allowed for the identification
of six DTUs that are present in both animals and humans, where the most recent one,
TcBat, presumably only infects bats [6]. The epidemiology of these DTUs is such that TcI
predominates in human patients with Chagas cardiomyopathy in North America, while
TcII–TcVI is widely associated with cardiomyopathy, megaoesophagus, and megacolon in
South America [7,8].

According to the Ministry of Health of Mexico and the World Health Organisation
(WHO), the country reported 10,186 new cases of Chagas disease during the period of
1990–2017 [9]. Nevertheless, the reliability of these numbers could be sensitive to the
implemented diagnostic techniques and parasitic diversity. The international agency
(WHO) estimates that more than one million people were infected with T. cruzi in 2006
across the country. The diagnostic algorithm of Chagas in Mexico, according to the Mexican
Official Norm NOM-032-SSA2-2014, depends on the phase of the disease, and includes
serological tests and PCR [10].

There have been multiple studies of the vectors of T. cruzi in Mexico, where it is
estimated that there are around 33 species of triatomines, of which 27 were found infected
with T. cruzi [11–13]. The presence of T. cruzi in humans and pets, and their exposure
to it were reported both via serological tests and molecular biology methods, including
quantitative (q-PCR) and conventional (c-PCR) polymerase chain reaction [14–17].
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However, despite the high number of human cases of Chagas disease and the high
richness of vectors reported across the entire country, only 15 studies have been carried out
to identify circulating DTUs, with the confirmation of the presence of 6 of the 7 DTUs in
21 hosts, and 8 vectors from 20 of the 32 states (Tables 1 and 2, and Figure 1). Furthermore,
studies related to the typification of human cases of Chagas disease are even scarcer,
demonstrating mostly the presence of TcI in human patients (Table 2).

Table 1. Triatomine species infected with T. cruzi DTUs in Mexico.

DTU Vector State Reference

TcI
Dipetalogaster maxima Baja California Sur [8,18–20]

Panstrongylus rufotuberculatus Veracruz [20]
Triatoma barberi Jalisco, Michoacán, Oaxaca, Puebla, Querétaro [8,18,21–23]

Triatoma dimidiata Campeche, Chiapas, Michoacán, Quintana Roo,
San Luis Potosí, Veracruz, Yucatán [8,18,20,24–29]

Triatoma longipennis Colima, Jalisco, Michoacán, Nayarit, Zacatecas [8,21,23,30]
Triatoma pallidipennis Colima, Jalisco, Michoacán, Morelos, Yucatán, [8,18,21,23,30]

Triatoma picturata Jalisco, Nayarit, Sonora [8,21,26,30]
Triatoma phyllosoma Nayarit, Zacatecas [8,21]

Triatoma sp. Yucatán [8]

TcII
T. dimidiata Veracruz [20,24,28]

T. pallidipennis Michoacán [23]

TcIII
T. dimidiata Veracruz [24]

T. pallidipennis Michoacán [23]

TcIV
T. dimidiata Quintana Roo, Veracruz [20,24,29]

T. pallidipennis Michoacán [23]

TcV
T. dimidiata Veracruz [24,28]

TcVI
T. dimidiata Veracruz [20,27,28]

Mixed infection

TcI/TcII
T. dimidiata Campeche [25]

TcI/TcII/TcIV
T. pallidipennis Michoacán [23]

Table 2. Mammalian hosts of T. cruzi DTUs in Mexico.

DTU Host/Vector State Reference

TcI
Mammals

Artiodactyla Sus scrofa domesticus Campeche [25]
Carnivora Canis lupus familiaris Campeche [25]
Chiroptera Artibeus jamaicensis Campeche [25]

Carollia brevicauda Campeche [25]
Dermanura phaeotis Campeche [25]

Sturnira lilium Campeche [25]
Sturnira ludovici Campeche [25]
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Table 2. Cont.

DTU Host/Vector State Reference

Didelpimorphia Didelphis marsupialis Yucatán [8]
Didelphis virginiana Campeche, Morelos, Veracruz [8,21,25]

Didelphis sp. Yucatán [8,21]
Philander opossum Veracruz [8,21]

Rodentia Peromyscus yucatanicus Campeche [25]
Peromyscus peromyscus Puebla [22]

Heteromys gaumeri Campeche [25]
Sigmodon toltecus Campeche [25]

Mus musculus Campeche [25]
Primates Alouatta palliata Tabasco [31]

Alouatta pigra Tabasco [31]
Ateles geoffroyi Veracruz [31]

Homo sapiens

Guanajuato, Guerrero,
Hidalgo, Jalisco, Morelos,
Oaxaca, Puebla, San Luis
Potosí, Yucatán, Zacatecas

[8,21,22,26,30,32]

TcII
Artiodactyla Ovis aries Campeche [25]

Carnivora C. lupus familiaris Campeche [25]
Chiroptera Myotis keaysi Campeche [25]

Didelphimorphia D. virginiana Veracruz [21]
P. oppossum Veracruz [21]

Primates A. geoffroyi Veracruz [31]
H. sapiens Yucatán [32]

Rodentia S. toltecus Campeche [25]

TcV
Primates A. pigra Campeche [31]

TcVI
Primates A. geoffroyi Yucatán [31]

Mixed infection

TcI/TcII
Artiodactyla O. aries Campeche [25]

S. scrofa domesticus Campeche [25]
Carnivora C. lupus familiaris Campeche [25]
Chiroptera Artibeus lituratus Campeche [25]
Rodentia S. toltecus Campeche [25]

Due to the public health importance of Chagas disease, multiple drugs and vaccines
were proposed as treatments and/or prophylactic methods [33]. One of the possible vaccine
candidates proposed is the 24kDa trypomastigote excretory–secretory protein, Tc24, whose
protection is linked to the stimulation of T. cruzi-specific CD8+ immune responses [34–36].

Arnal et al. [37] evaluated the genetic diversity of this protein using TcI isolates from
Central and South America. In their study, they found no genetic diversity in the entire
sequence obtained by the whole-genome sequencing of the Tc24 protein. Additionally, they
reported that, according to the conserved epitope of predicted CD8+ T cells, this protein is
under a strong purifying selection model, rendering it an excellent vaccine candidate [34–36].
However, in this study, only strain H1b was used as a representative of the entire Mexican
territory, leaving out information on uncharacterised Mexican T. cruzi isolates.

On the other hand, Mexican isolates of T. cruzi exhibit different degrees of virulence that,
in a murine experimental infection model, showed diverse humoral and cellular immune
responses [38]. Additionally, the genetic diversity of Mexican isolates via isoenzymatic analysis
demonstrates subtle genetic variation among the southern sequences [39]. This information
is suggestive of a certain level of diversification within TcI in Mexico. For this reason, the
aim of the present study was to evaluate the fine-scale genetic diversity and structure of Tc24
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in T. cruzi isolates from Mexico and to compare it with those populations reported in the
Americas, with the aim to reconsider the potential role of Tc24 as a key candidate for the
prophylaxis and improvement of the diagnosis of Chagas disease in Mexico.
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2. Materials and Methods
2.1. Selection, Maintenance, and Proliferation of Isolates

As a part of an ongoing multidisciplinary and interinstitutional project to identify the
ecoepidemiology of Chagas disease in Mexico, we typified the T. cruzi strains isolated from
patients, nonhuman hosts, and vectors from two reference institutions, the Ignacio Chávez
Institute of Cardiology and the Institute of Epidemiological Diagnosis and Reference from
the National Institutes of Health. Additional TC24 sequences were taken from GenBank
(Table 3).

Only parasites isolated from Mexico were grown in an LIT medium (Difco) supple-
mented with inactivated fetal bovine serum (SBF) at 27 ◦C for 7 days. The total obtained
culture volume was centrifuged at 3200× g for 10 min, and the pellet was washed with
PBS to clean and isolate the parasites. Subsequently, DNA extraction was performed using
a High Pure PCR Template Preparation kit (Roche, Mannheim, Germany) following the
manufacturer’s recommended procedures for DNA isolation from tissues. Samples were
eluted with 100 µL of elution buffer. We performed the molecular typing of the strains by
using multilocus sequence typing (MLST) for the identification of the DTUs [40]. As a panel
of positive controls, we used T. cruzi DNA from subpopulations classified as DTUs TcI to
TcVI (clones/strains: Dm28c (TcI), Y (TcII), INPA 3663 (TcIII), INPA 4167 (TcIV), LL014 (TcV)
and CL Brener (TcVI)), donated from Otacilio C. Moreira’s personal collection.
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Table 3. TC24 sequences used in this study.

Sequence ID DTU Host Country State Isolate
GenBank
Accession
Number

009-TCR-NAYA-0I-VE TcI Triatominae Mexico Nayarit NAYARIT OL781152
010-TCR-NI15-0I-HS TcI Homo sapiens Mexico Oaxaca NINOA 1.5 OL781153
012-TCR-R1H8-0I-HS TcI Homo sapiens Mexico Yucatán R1H8 OL781155
013-TCR-CALA-0I-VE TcI Triatoma dimidiata Mexico Campeche CALAKMUL OL781156
014-TCR-ENTO-0I-VE TcI Triatominae Mexico Morelos ENTO OL781157
015-TCR-INC1-0I-HS TcI Homo sapiens Mexico Oaxaca INC-1 OL781158
016-TCR-INC5-0I-HS TcI Homo sapiens Mexico Guanajuato INC-5 OL781159
017-TCR-INC6-0I-HS TcI Homo sapiens Mexico Oaxaca INC-6 OL781160
018-TCR-INC9-0I-HS TcI Homo sapiens Mexico Guerrero INC-9 OL781161
019-TCR-IN10-01-HS TcI Homo sapiens Mexico Guanajuato INC-10 OL781162

020-TCR-CAM7-0I-VE TcI Triatoma dimidiata Mexico Campeche CAM-7 OL781163
021-TCR-CAM8-0I-VE TcI Triatoma dimidiata Mexico Campeche CAM-8 OL781164

022-TCR-HUEY-0I-VE TcI Triatoma barberi Mexico Estado de México HUEYPOXTLA OL781165
023-TCR-NINO-0I-HS TcI Homo sapiens Mexico Oaxaca NINOA OL781166
024-TCR-SONT-0I-TD TcI Triatoma dimidiata Mexico Veracruz SONTECOMAPAN OL781167
025-TCR-TEZO-0I-VE TcI Triatoma barberi Mexico Estado de México TEZONTLALPAN OL781168

6Morelos TcI Homo sapiens Mexico Morelos MORELOS OL781175
7CoculaJALISCO TcI Triatominae Mexico Jalisco COCULA OL781176
9JerboYUCATAN TcI Homo sapiens Mexico Yucatán JERBO OL781177

13Zacatecas TcI Homo sapiens Mexico Zacatecas ZACATECAS OL781178
14PeNaGUERRERO TcI Homo sapiens Mexico Guerrero PEÑA OL781179

15PetaquillasGUERRER TcI Triatominae Mexico Guerrero PETAQUILLAS OL781180
23ProgresoMOLRELOS TcI Triatominae Mexico Morelos PROGRESO OL781181

25Yuc TcI Triatominae Mexico Yucatán YUC OL781182
ENTOMO TcI ND ND ND ENTOMO OL781183

011-TCR-DM22-0I-DM TcI Didelphis marsupialis Brazil ND DM28 OL781154

035-DTUI TcI Didelphis marsupialis Venezuela ND DM28 OL781169
036-DTUII TcII Homo sapiens Brazil ND 000Y OL781170

037-DTUIII TcIII Panstrongylus
geniculatus Brazil Manaus 3663 OL781171

038-DTUIV TcIV Rhodnius brethesi Brazil Barcelos 4167 OL781172
039-DTUV TcV Triatoma infestans Argentina Chaco LL014 OL781173
040-DTUVI TcVI Triatoma infestans Brazil Rio Grande do Sul CL Brener OL781174

002-TCR-MAST-NR-CL ND Canis lupus familiaris US Texas MASTIFF DQ183066
004-TCR-CLBR-VI-HS TcVI Triatoma infestans Brazil ND CLBRENER XM_800482.1
005-TCR-000Y-II-HS TcII Homo sapiens Brazil ND 000Y D87512.1
006-TCR-00Y2-II-HS TcII Homo sapiens Brazil ND 000Y S43664.1

007-TCR-CLB2-VI-HS TcVI Triatoma infestans Brazil ND CL BRENER AF192980.2

001-TCO-025E-NR-RR Trypanosoma
conorhini Rattus rattus Brazil NR 025E XM_029375354.1

2.2. Development of Primers

CodonCode Aligner v.9.0 software was used to generate primers for Tc24 gene am-
plification on the basis of the T. cruzi (Bug2148) reference genome (GenBank accession
number NMZN00000000.1). Forward primer TC24F (5′-CAAGGAAGCGTGGGAGCG-3′)
and reverse primer TC24R (5′-CAGCAAACTCGTCGAACGTC-3′) were used to generate
a 490 bp amplicon using 12.5 µL QIAGEN Master mix (QIAGEN Inc., Hilden, Germany),
1 µL (10 µM) of each primer, 1 µL (1 ng) of extracted DNA, and 9.5 µL of bidistilled sterile
water into a final volume of 50 µL. Additionally, bidistilled sterile water was used as
negative control. The temperature conditions for the polymerase chain reaction (PCR) were
as follows: 94 ◦C for 3 min, 32 cycles of 94 ◦C for 30 s, 59 ◦C for 30 s, 72 ◦C for 1 min,
and 72 ◦C for 10 min; verification was performed via electrophoresis on a 1% agarose gel
stained with Smartglow. Sequencing was performed for the samples with bidirectional
sequencing in a 3730 × L DNA Analyzer.

2.3. Phylogenetic Analysis

ABI files were extracted to be analysed. Sequence data were edited, and global
alignments were performed using the Clustal W algorithm in Mega 10.0. Sequences
generated in this study were submitted to GenBank using the Bankit tool. To corroborate
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the DTU identity of each isolate, phylogeny using the TC24 region was assessed in two
ways, as had previously been described for other vectors and pathogens [41,42]. The first
approach was evaluated in IQ-TREE [43], evaluating the best substitution model with the
ModelFinder algorithm [44], with a full-tree search for all available models according to the
Bayesian information criterion (BIC). The maximum likelihood hypothesis was estimated
using the best previously calculated substitution model; the branch support was evaluated
with 10,000 ultrafast bootstraps and 10,000 additional replicates for the SH-aLRT branch
test, according to the authors [43].

The second approach was using MrBayes 3.2 for Bayesian inference analysis [45]. To
select the best substitution and partition model, we used PartitionFinder 2 with mrbayes
models and the greedy scheme search, also considering the BIC [46]. This analysis was
performed using the Markov chain Monte Carlo (MCMC) algorithm, and the best pre-
viously calculated substitution and partition model. A total of 3 hot and 1 cold chains
in 2 independent runs of 10 million generations, sampling every 1000 generations, were
used [47]. The final topology of the phylogenetic analysis was obtained via a majority
consensus tree with a burn-in of 25%. Convergence and good sampling (ESS > 200) were
evaluated in Tracer 1.7.1 [48].

2.4. Genetic Analysis

To ascertain the genetic diversity, we calculated the number of haplotypes, unique
haplotypes, mutations, segregating sites, and unique sites, and haplotypic and nucleotide
diversity in DNAsp 5.10 [49]. To identify the relationship among haplotypes, minimal
union networks were constructed using the PopArt programme. Lastly, to evaluate the
fine-scale genetic diversity, Nei’s genetic distances were calculated, but only among the
sequences belonging to the TcI clade, using the adegenet R package [50] and considering
the previously calculated K2P substitution model with the ModelFinder algorithm.

3. Results
3.1. Identification of the Isolates

Of the 25 analysed Mexican isolates, 12 (48%) were recovered from humans, fol-
lowed by 6 (24%) recovered from unidentified triatomines, and 5 from identified ones—
Triatoma dimidiata (3) and Triatoma barberi (2) (Table 3). Regarding the geographical distri-
bution, the isolates came from 11 (33%) states of the Mexican Republic. The most isolates
came from the state of Oaxaca, with 16% (4), followed by Campeche, Guanajuato, Morelos,
and Yucatan with 12% (3) each. The states of Jalisco, Nayarit, Veracruz, and Zacatecas
contained the lowest percentages, with just 4% (1) each. For one isolate, we had no data on
the host or state of the republic from which it was recovered.

3.2. Phylogenetic Analysis

The best substitution model for ML analysis was K2P (BIC = 1772.224); for the BI, the
best partition model was the HKY for the first and third positions, and F81 for the second
position (BIC = 1969.107). In both analyses, the same general topology was recovered.
However, the branch support was higher in the BI hypothesis. Both phylogenetic inferences
revealed a polytomy in the T. cruzi clade with two defined subgroups. One subgroup
formed by all sequences of the DTU I, and the second subgroup was formed by DTU II–VI,
with both subgroups having high branch support (Figure 2).
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3.3. Genetic Analysis

For the population genetic analysis, we constructed an alignment with 37 sequences
of T. cruzi (6 available in GenBank and 31 recovered in this study (25 Mexican isolates and
the 6 reference DTUs)). The final alignment consisted of 427 base pairs, with 421 conserved
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and 6 variable sites, 1 singleton (in position 150), and 5 parsimony informative sites (in
positions 57, 82, 164, 124, 153, 325). We detected the presence of five haplotypes. The most
frequently detected haplotype was H3, with 27 sequences (72.9%), followed by haplotypes
H1 with 4 (10.8%) and H2 with 3 sequences (8.1%). Haplotype H2 was the most widely
detected, occurring in four of the six DTUs (TcII, TcIV–TcVI), whereas H3 and H4 were only
detected in two DTUs (TcII/TcVI and TcV/TcVI, respectively). The least frequent haplotype
was H1, which was recorded once (Table 1). Haplotypic diversity (Hd) was 0.458, and
nucleotide diversity was 0.00331.

Minimal union network analysis revealed a separation of populations by DTU, with
an overlap of several haplotypes among DTUs II–VI. Notably, haplotype 1 exhibited a
single (monomorphic) haplotype throughout the entire distribution across Mexico and
South America (Figure 3). This information was supported with Nei’s pairwise distances,
where no sequences of DTU I exhibited genetic differences, but with approximately 10%
of difference when DTUs II, III, and VI were compared to DTU I, and differences ranging
from 6 to 8% compared with the sequences of DTU II–VI (Figure 4).
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4. Discussion

Chagas disease constitutes an increasingly important public health problem in the
American continent. Difficulties related to early diagnosis and timely treatment reduce
the quality of life of infected patients. For this reason, the identification of targets that
increase the sensitivity of the diagnosis and that can be used as vaccine candidates is
imperative [33–36].

For this reason, the findings of the present study strengthen the possibility of using
Tc24 as a molecule that can be implemented as a candidate for prophylaxis and therapy
against this disease. In the present work, we analysed isolates from humans and vectors
from several states of Mexico. The results show that, during the period of 1970–2005, the
recovered strains corresponded to TcI. Population genetic analysis shows that there was
no genetic diversity in this fragment in any of the Mexican TcI isolates or those recovered
from Central America, Peru, and Brazil. A previous study demonstrated that this protein
is under negative selection pressure, probably due to the relevant role of this molecule in
flagellar production, and adhesion to the vector and potentially to the vertebrate host [37].
Historically, only the presence of infected human TcI was demonstrated in Mexico, although
the presence of the six DTUs has been identified in various species of terrestrial vertebrates
and triatomines found across the country. However, a recently conducted study on pregnant
women from the southern state of Yucatan, Mexico demonstrated a high frequency of
TcII, TcV, and TcVI DTUs (non-TcI DTUs), including mixed infections with TcI. Despite
these novel findings, the presence of an infection by multiple DTUs in humans has been
confirmed exclusively in the Yucatan Peninsula, in the southeast of the country, for which
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larger samplings are required in other regions to corroborate the actual prevalence and
magnitude of the phenomenon [32]. For this reason, and in accordance with most of the
demonstrated evidence, TcI is the most frequently reported DTU in humans in the country
up to now.

Previous studies related to the analysis of the genetic diversity of other neglected
tropical parasites have provided important information as to how more effective transmis-
sion mitigation or control strategies may be developed. The identification of the genetic
variants that circulate in a region is essential in order to establish the potential efficiency
of prophylactic vaccines. This was demonstrated in the currently used malaria vaccine
against Plasmodium falciparum in Sudan and other African countries [51]. On the other hand,
previous studies related to the evaluation of the genetic diversity of other neglected tropical
parasites have provided relevant information about the strategies related to the mitigation
of transmission or the effectiveness of the control, as in the case of Plasmodium vivax in the
southeast of Mexico [52].

In this vein, our study reveals the presence of a highly conserved fragment of the
Tc24 protein across TcI isolates from Mexico and from other countries in Latin America,
thus providing a potential target for the development of a regional vaccine that could
protect most of the people in risk areas where TcI is the main circulating genotype. Tc24
was postulated as a vaccine candidate, and was tested on murine [53,54], canine [55],
and nonhuman primate [56] models, showing activity in decreasing the proliferation of
parasites in the blood and decreasing cardiac damage in immunised animals.

Similarly, the analysis of genetic variants that circulate in populations of parasites can also
improve the capacity for regional diagnosis, as serological diagnostic methods increase their
sensitivity by establishing local or regional isolates as antigens [57]. This is relevant for Chagas
disease, in that there is a problem in the serological diagnosis of this disease in both South and
North America [58,59]. Commercial kits have been developed with total lysates of several DTUs
from South America, mainly TcVI; therefore, sensitivity may decrease when screening sera from
human patients infected with other DTUs [60,61]. On the other hand, an overestimation of cases
in some regions is also possible, since some populations could be exposed to different parasitic
variants or even other trypanosomatid parasites, such as Leishmania, and present cross-reactivity
using different serological tests [62]. Therefore, it is imperative to develop new diagnostic tools
that allow for a better understanding of the disease.

Given that historical studies [21,22,26], and the findings of the present work, confirmed
that TcI is the only genotype detected in Mexico from human isolates from various states of
the Mexican Republic, and that there is no genetic variability in any of them, it is possible
to propose the development of in silico strategies for the production of antigens to optimise
the diagnosis of Chagas disease such as quantitative ELISA methods that use this region of
Tc24 without the need for parasitic cultures, and with the possibility of reducing biosafety
requirements in diagnostic laboratories. For this reason, the invariance of the Tc24 fragment
present in the only DTU (TcI) isolated from human patients in Mexico may offer hope for
the production of better diagnostic systems and the potential development of a vaccine.
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