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Abstract: Ink disease, caused by Phytophthora spp., represents a serious threat to sweet chestnuts
throughout their distribution area. Among the control strategies, new perspectives have been offered
by using potassium phosphonate, which indirectly controls Phytophthora diseases by acting on both
host physiology and host-pathogen interactions. In this study, we tested in planta the effectiveness
of trunk injection with K-phosphonate against seven different Phytophthora species associated with
ink disease. For the two most aggressive species, P. cinnamomi and P. ×cambivora, the treatments
were repeated at two different environmental conditions (a mean temperature of 14.5 ◦C vs. 25 ◦C)
and tree phenology stages. The results obtained in this study demonstrated that K-phosphonate
could contain the development of Phytophthora infection in phloem tissues. However, its effectiveness
varied based on the concentration applied and the Phytophthora species tested. A concentration of
280 g/L of K-phosphonate was the most effective, and in some cases, callus formation around the
necrotic lesion was detected. Overall, this study broadens the knowledge of endotherapic treatments
with K-phosphonate as an effective measure for managing chestnut ink disease. Interestingly, the
increase in mean temperature had a positive impact on the development of P. cinnamomi lesions on
chestnut phloem tissues.

Keywords: oomycete; ink disease; fungicide; induced resistance; disease control

1. Introduction

Sweet chestnut (Castanea sativa Mill.) forest stands and orchards are part of the tradi-
tional and historical European landscape, covering more than 2.5 million ha, and mainly
distributed among France and Italy, followed by Spain, Portugal, and Switzerland [1].
Historically, chestnut stands have represented a vital economic resource of the agroforestry
ecosystems, particularly in European rural areas, producing timber, firewood, forage, tasty
edible fruits, and secondary products such as pasture, hay, mushrooms, tannins, and
honey [1–3]. In addition, chestnut woodlands play a huge ecological and social role, provid-
ing several ecosystem services, such as protection against fire and soil erosion, biodiversity
preservation, and conservation of cultural values and recreation, among others [4].

Over the last decades, however, the productivity and sustainability of chestnut stands
have been threatened by several factors, including socio-economic changes, climatic re-
verses, fire, and the introduction and re-emergence of pests and pathogens, which have led
to the abandonment of chestnut cultivation in many areas [5–9]. Among diseases, those
caused by Cryphonectria parasitica (Murr.) Barr (chestnut blight), and Phytophthora spp. (ink
disease) have negatively impacted chestnut woodlands across Europe [10–12]. While the
incidence of chestnut blight has been mitigated due to the natural spread of hypoviru-
lence, which has maintained the disease at low severity in most regions [13], ink disease
(Figure 1) still represents a serious phytosanitary problem that demands effective means
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to control [9]. Ink disease management is complex because its incidence is strictly related
to climatic and site conditions. These include abundant rainfall and mild temperatures,
waterlogging, and poor soil fertility, all exacerbated by anthropogenic activities like soil
compaction and disturbance by tillage practices, vehicle movement along roads, movement
of contaminated substrates, and planting of infested nursery stock [14–18]. The situation
may be even more complex, as in addition to P. cinnamomi Rands and P. ×cambivora (Petri)
Buisman, the main species associated with ink disease, other Phytophthora species may be
recovered from symptomatic chestnut trees. These include P. cactorum (Lebert and Cohn) J.
Schröt., P. castanetorum T. Jung, Horta Jung, Bakonyi and Scanu, P. cryptogea Pethybr. and
Laff., P. gonapodyides (H.E. Petersen) Buisman, P. megasperma Drechsler, P. nicotianae Breda
de Haan, P. plurivora T. Jung and T.I. Burgess, P. pseudosyringae T. Jung and Delatour, P.
sansomeana E.M. Hansen and Reeser and P. syringae (Kleb.) Kleb. [9,12,19–22]. Therefore,
disease control requires accurate diagnosis and analysis of the site and environmental
conditions, other than selecting rigorous control methods.
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Figure 1. Ink-diseased chestnut stump with new resprouts showing the typical flame-shaped necrotic
lesions on the outer bark caused by P. ×cambivora.

Several systemic fungicides are active against Phytophthora, such as Metalaxyl, Fosetyl-
Al, Dimethomorph, and Copper Hydroxide [23,24]. However, their use in forests and
natural environments is restricted or prohibited in most European countries. In addition,
there are several studies on biocontrol with natural antagonists (both fungi and bacteria),
biofumigation with Brassicaceae, or breeding with resistant clones of C. sativa. However,
their effectiveness in the field is still too low to control the disease [9,25]. Among the main
control strategies, treatments with phosphonate (formerly named phosphite) are the most
common and successful methods for controlling Phytophthora on woody trees in horticul-
ture and natural ecosystems [26–33]. Phosphonates (phosphoric acid) are fully systemic
fungicides, i.e., they are xylem- and phloem-translocated with both downward and upward
movement in the host [34]. The precise mechanism of action of phosphonates is complex
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and not fully understood. However, both direct effects on pathogen growth and sporulation
and indirect effects by stimulating host plant defenses have been demonstrated by several
studies [35–38]. While phosphonate enhances fine root formation in treated woody trees, it
does not seem to alter the abundance and composition of edaphic, floristic, and endophytic
bacteria in trees or the balance between different microorganisms, including Phytophthora
species [33,39], although this needs further study. Phosphonates can be applied by foliar
spray, soil drenches, trunk painting, and injection [40,41]. Several commercial phosphonate
formulations are used on woody trees, including potassium, sodium, and ammonium phos-
phonate [34,42]. Stem injection with K-phosphonate (K2HPO3) has been previously tested
to control ink disease on sweet chestnut [43–45]. These studies were focused on the efficacy
against either P. ×cambivora or P. cinnamomi, while very little is known about the effect
of endotherapic treatments against other Phytophthora species associated with ink disease
and the influence of the temperature in field experiments. Therefore, the present study
was undertaken to (i) identify Phytophthora species previously obtained from ink-diseased
chestnut trees; (ii) test the effectiveness of K-phosphonate against several Phytophthora
species associated with ink disease; (iii) detect the most appropriate K-phosphonate con-
centration for stem injection and its phytotoxicity threshold; and (iv) evaluate whether
environmental temperature has any effects on control treatments and the development of
Phytophthora infection.

2. Materials and Methods
2.1. Collection and Identification of Phytophthora Isolates

Isolates of Phytophthora were sourced from the culture collection of the University of
Sassari, Italy, and directly from ink-diseased chestnut trees in Sardinia (Table 1). Isolations
were made by direct isolation from the typical flame-shaped necrotic lesions on phloem
tissues and/or by baiting the rhizosphere soil samples of symptomatic trees [21]. The
modified Synthetic Mucor Agar (SMA), a selective medium for Phytophthora, was used in
both isolation methods [46]. Any growing colonies developed on SMA were subcultured
and stored on carrot agar [47] (CA) at 20 ◦C. Isolates obtained were first grouped based
on morphological analyses, and then representative morphotypes (8) were subjected to
molecular analyses as described by Scanu and Webber [48]. DNA extraction, amplification,
purification, sequencing, and analysis of the ITS sequences were performed as described
by Scanu et al. [49]. All sequences were deposited at GenBank (http://www.ncbi.nlm.nih.
gov/), and accession numbers are given in Table 1, together with all isolates’ information.
All species were obtained from ink-diseased trees in chestnut stands in Sardinia, although
two isolates (P. cinnamomi and P. ×cambivora) were derived from declining Q. suber trees
(Table 1). Stock cultures were maintained on CA tubes at 12 ◦C at the culture collection of
the University of Sassari. All isolates were passaged (inoculated and re-isolated) through
host plant material prior to their use in experiments to ensure their pathogenicity was not
lost during culture storage.

Table 1. Details of Phytophthora isolates associated with ink disease and used in this study for stem
inoculation.

Phytophthora sp. Isolate Codes Year Host Substrate GenBank
Accessions Experiment

P. castanetorum P14 2014 Castanea sativa Rhizosphere soil MF036189 1
P. cinnamomi PH031 2008 Castanea sativa Root OP918117 1, 2, 3
P. cinnamomi AB1 2016 Quercus suber Rhizosphere soil OP918118 2, 3

P. gonapodyides PH038 2009 Castanea sativa Rhizosphere soil OQ176729 1
P. megasperma PH178 2010 Castanea sativa Rhizosphere soil KP863491 1

P. plurivora PH089 2010 Castanea sativa Rhizosphere soil OP918116 1
P. pseudosyringae PH043 2009 Castanea sativa Root OP918115 1

P. ×cambivora PH041 2009 Castanea sativa Collar OP918113 1, 2, 3
P. ×cambivora AB21 2016 Quercus suber Rhizosphere soil OP918114 2, 3

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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2.2. Study Site and Experimental Design

The experimental trials were conducted in two neighboring sweet chestnut stands
located along a mountain slope in the Gennargentu area of Sardinia, Italy (40◦01′06′ ′ N,
9◦14′40′ ′ E; 1080 m a.s.l.). Both stands consisted of newly cut coppices with 3-year-old
resprouts (in the following called “stems”), which were considered healthy as they did not
show any specific symptoms of chestnut blight or ink disease. In experiment 1, in each
coppice, twenty-one stems were selected, while in experiments 2 and 3, twelve stems were
chosen, with each having at least 7 cm in diameter at the base. These were marked for
K-phosphonate treatment (the main plot factor) and arranged in a split-plot design with six
replicate blocks (coppices). A total of 60 coppices were randomly selected: 24 for experiment
1, and 18 each for experiments 2 and 3. Seven Phytophthora species, artificially inoculated in
the stems (below), were randomly assigned as a subplot within each of the coppice main
plots. The experiments were undertaken during September 2016 (experiment 1) in one
chestnut stand and during August 2017 and May 2019 (experiments 2 and 3) in a second
stand (Figure 2).
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Figure 2. Experimental site with 36 coppices in which the stems were injected with 0 g/L (green
dots), 140 g/L (yellow dots) and 280 g/L (red dots) of K-phosphonate in 2017 and 2019.

2.3. Stem Injection of K-Phosphonate

The selected chestnut stems were injected with aqueous phosphonate solutions made
from a 70% commercial formulation (KalexTM, Alba Milagro, Parabiago, Italy), containing
700 g/L of potassium phosphonate (K2HPO3), adjusted to pH 4–5. Three different con-
centrations of K-phosphonate were tested, including 10% (70 g/L), 20% (140 g/L), and
40% (280 g/L) diluted with deionized water. The 10% concentration was tested only in
the first experiment. K-phosphonate was injected at the base of each selected stem. A
hole was drilled at the bottom of the stems through the outer bark layer into the sapwood
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with a 5.5 mm drill bit. Then the K-phosphonate solutions were injected using 20-mL
spring-loaded tree syringes (Chemjet® Tree Injector, Chemjet Europe and Middle East, UK),
one per stem, that lock tightly into the stem (Figure 3). For control treatments, the same
procedure was followed, but 20 mL of sterile water was injected instead of K-phosphonate.
Stems in the same coppice received the same K-phosphonate concentration, and there were
six replicate coppices for each K-phosphonate concentration. One syringe per stem was
used, and the time for uptake of the solution varied from 5 to 30 min. After injection, the
hole was sealed with healing resin (Arbokol, Kollant, Vigonovo (VE), Italy) for pruning
wounds to avoid any fungal infection. The foliage and stems of treated coppice were
monitored for phytotoxicity for up to 2 days. Those individuals showing symptoms like
pale brown discoloration of leaf margins and tip necrosis were excluded from the trials.
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2.4. Stem Inoculation of Phytophthora

Two days after K-phosphonate treatments, chestnut stems were artificially inoculated
with isolates of different Phytophthora species (Table 1), following the experimental design.
While the first experiment included seven different Phytophthora spp., P. castanetorum, P.
cinnamomi, P. gonapodyides, P. megasperma, P. plurivora, P. pseudosyringae, and P. ×cambivora,
the second and third experiments focused only on P. ×cambivora and P. cinnamomi. Stem
inoculations were made between 80 and 120 cm above the collar following the method used
by Scanu and Webber [48]. After sterilizing the bark with 70% ethanol, a 7-mm-diameter
hole was punched through the bark to the wood surface with a steel cork borer. The
same-sized plug was taken from the edge of a Phytophthora colony actively growing on
a 90-mm Petri dish of CA and used as inoculum by inserting it into the hole, replacing
the bark plug. Moist cotton wool was placed over the wounds, covered with a 5 × 5 cm
piece of aluminium foil, and sealed with an adhesive PVC tape. In the first experiment,
made in September 2016, only one isolate per Phytophthora species was used, while in
the second and third experiments, made in August 2017 and May 2019, respectively, two



Pathogens 2023, 12, 365 6 of 15

isolates of the most aggressive and main Phytophthora species associated with ink disease,
P. ×cambivora, and P. cinnamomi [9], were used (Table 1). Within each chestnut coppice,
each isolate was inoculated twice into individual stems, approximately 50 cm apart, to give
a total of 12 inoculated stems (three replicate stems for each Phytophthora isolate). After
35 days, the inoculated stems were harvested and transferred to the laboratory to analyze
the developing necrotic lesions. The periderm of each stem was destructively removed
with a drawknife to expose the phloem. Each lesion was outlined and recorded on tracing
paper, and then scanned on an Epson Perfection V30 photo scanner. The lesion area was
calculated using APS Assess 2.0 (image analysis software for disease quantification; The
American Phytopathological Society, St. Paul, MN, USA). Re-isolation of all the inoculated
Phytophthora species onto SMA was attempted from the lesion margins. The cultures
obtained were compared with the isolates used for the inoculation.

During the experiments, the temperatures were recorded with two data loggers (EL-USB-
2-LCD Data logger, Lascar Electronics, Erie, PA, USA), which were placed in two different
coppices. The temperature data, scanned every 15 min, were downloaded and analyzed with
the software EasyLog Graph Version 7.4.0.0 (Lascar Electronic, Erie, PA, USA).

2.5. Statistical Analyses

Statistical analyses were performed using the software R and RStudio (R Core Team,
2017). R: A language and environment for statistical computing (R Foundation for Sta-
tistical Computing, Vienna, Austria). Linear mixed models (LMMs), which are strongly
recommended when unbalanced samples occur, were used and fitted using Restricted Max-
imum Likelihood estimation (REML) [50]. Models were fitted separately for each pathogen
using the lmer function from the “lme4” package in R [51]. Before the analysis, all data were
explored for heteroscedasticity and normal distribution. In LMMs, the K-phosphonate
treatment (i.e., control, 140 g/L and 280 g/L) was considered a fixed factor, whereas the
stem nested within each selected coppice was selected as a random factor to account for
the split-plot experimental design. Statistical differences among mean values of the lesion
areas for each Phytophthora species were assessed using Analysis of Variance (ANOVA),
followed by the Fisher’s protected least significant difference (LSD) test and Tukey HSD
test (Honestly Significative Difference). Differences in mean values with p ≤ 0.05 were
considered significant.

3. Results
3.1. Isolation and Identification of Phytophthora Species

Details of the Phytophthora species used in this study are provided in Table 1. Only
P. ×cambivora was isolated from necrotic lesions detected on phloem tissues on chestnut
trees, while P. castanetorum, P. gonapodyides, P. megasperma, and P. pseudosyringae were
obtained from rhizosphere soil samples of symptomatic mature trees of sweet chestnut
using the baiting method. An isolate of P. cinnamomi and P. plurivora were detected in
chestnut seedlings in a nursery and newly planted chestnut saplings, respectively. While
one isolate each of P. cinnamomi and P. ×cambivora were obtained from the rhizosphere soil
of declining Q. suber trees. All morphological characters and ITS sequences matched those
of the corresponding Phytophthora species (Table 1).

3.2. Experiment 1

On all chestnut stems inoculated with Phytophthora, a characteristic necrotic lesion devel-
oped. The mean lesions caused by all Phytophthora species on treated stems with 140 g/L and
280 g/L of K-phosphonate concentrations were consistently smaller than those that developed
on the control inoculations (Figure 4). In contrast, lesion areas did not differ significantly
between stems injected with 70 g/L and controls, with the exception of P. megasperma and
P. castanetorum. In some cases (P. plurivora, P. pseudosyringae, and P. ×cambivora), were even
larger on average than controls (Figure 4). For P. megasperma, the mean lesion developed on
stems treated with 280 g/L of K-phosphonate concentration was significantly different from
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that on stems treated with 70 g/L and 140 g/L concentrations. Phytophthora ×cambivora and
P. cinnamomi were shown to be the most aggressive species in colonizing phloem tissues on
untreated controls, with a mean lesion area of 33.8 cm2 and 42.4 cm2, respectively. Interest-
ingly, P. megasperma showed to be as much aggressive as P. ×cambivora and P. cinnamomi. No
phytotoxicity was observed in stems injected with K-phosphonate.
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Figure 4. Mean lesion area (cm2) caused by Phytophthora ×cambivora (CAM), P. cinnamomi (CIN), P.
plurivora (PLU), P. megasperma (MEG), P. gonapodyides (GON), P. pseudosyringae (PSE), and P. castaneto-
rum (CAS) on chestnut stems treated with four different concentrations of K2HPO3 (0 g/L, 70 g/L,
140 g/L, and 280 g/L). Bars represent the standard error. Box plots with the same letters did not show
statistically significant differences on the HSD Tukey test for p ≤ 0.05.

There was 100% pathogen re-isolation from lesions developed on both K-phosphonate-
treated and untreated stems, except for P. castanetorum, which showed 40% re-isolation from
around the inoculation points. During the trial, the temperature ranged from a minimum
of 1.5 ◦C to a maximum of 30 ◦C, with a mean temperature of 13.3 ◦C.

3.3. Experiment 2

Based on the results obtained in the first experiment, two isolates of each of the
two most aggressive Phytophthora species (P. ×cambivora and P. cinnamomi) (Table 1) and
the two most effective K-phosphonate concentrations (140 g/L and 280 g/L) were used
in experiment 2. Both K-phosphonate concentrations significantly (p < 0.05) reduced
the development of necrotic lesions caused by all Phytophthora isolates (Figures 5 and 6).
No statistical differences were found between the two K-phosphonate concentrations.
Phytophthora cinnamomi caused extensive necrotic lesions on untreated stems, with a mean
lesion area of 171.7 cm2, which was, on average, almost five times larger than those caused
by P.×cambivora (mean value 34.5 cm2). Some phytotoxicity was observed in stems injected
with 280 g/L of K-phosphonate.
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Figure 5. Mean lesion area (cm2) caused by Phytophthora ×cambivora (PH041, AB21) and P. cinnamomi
(PH031, AB1) on chestnut stems treated with three different concentrations of K2HPO3 (0 g/L,
140 g/L, and 280 g/L). Bars represent the standard error. Box plots with the same letters did not show
statistically significant differences on the HSD Tukey test for p ≤ 0.05.
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Figure 6. Lesion developed on treated and untreated chestnut stems: a contained lesion area caused
by Phytophthora ×cambivora on a stem previously injected with K-phosphonate (280 g/L) (A), a lesion
caused by P. ×cambivora and P. cinnamomi in control treatments (B,C), a contained lesioned area
caused by P. cinnamomi on a stem previously injected with K-phosphonate (280 g/L) showing callus
formation (arrow) around the inoculation point (D).
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All Phytophthora isolates were readily re-isolated from the necrotic lesions visible in
the phloem tissues of both treated and untreated stems. In some cases, stems treated with
280 g/L of K-phosphonate only developed limited discoloration around the inoculation
point and did not yield any Phytophthora when isolation was attempted. The stems treated
with the highest concentration showed callus formation, which tended to confine the
necrotic lesion, particularly the upward development (Figure 6D). During the experiment,
the recorded temperatures ranged from a minimum of 12 ◦C to a maximum of 37 ◦C, with
a mean temperature of 25 ◦C.

3.4. Experiment 3

Similarly to experiment 2, both K-phosphonate concentrations were able to signifi-
cantly reduce (p < 0.05) the development of necrotic lesions caused by both P. ×cambivora
and P. cinnamomi isolates (Figure 7). The 280 g/L concentration of K-phosphonate was more
effective than the 140 g/L concentration in reducing the growth of P. cinnamomi (96.2% vs.
95.3%) and P. ×cambivora (96.3% vs. 91.3%) on injected stems, compared with untreated
stems. However, no statistical differences were found between necrotic lesions developed
on stems injected with both concentrations, demonstrating their effectiveness. On control
stems, P. ×cambivora was equally aggressive and caused lesions similar in size to those
produced by P. cinnamomi, which were, on average, almost 50 cm2 in size. Phytotoxicity
was not detected in any of the treated chestnut stems.
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Figure 7. Mean lesion area (cm2) caused by Phytophthora ×cambivora (PH041, AB21) and P. cinnamomi
(PH031, AB1) on chestnut stems treated with three different concentrations of K2HPO3 (0 g/L,
140 g/L, and 280 g/L). Bars represent the standard error. Box plots with the same letters did not show
statistically significant differences on the HSD Tukey test for p ≤ 0.05.

All Phytophthora isolates were readily re-isolated from the necrotic lesions visible in the
phloem tissues of both treated and untreated stems. During the trial, the temperature ranged
from a minimum of 1 ◦C to a maximum of 32 ◦C, with a mean temperature of 14.5 ◦C.
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4. Discussion

The management of Phytophthora diseases in forest ecosystems still represents a chal-
lenge since scarce field experimental data about control strategies is available. This study
provides further evidence of the efficacy of phosphonates in suppressing Phytophthora infec-
tion in woody trees [34–45]. Trunk injection with K-phosphonate significantly reduced the
development of necrotic lesions on phloem tissues of chestnut trees artificially inoculated
with a range of Phytophthora species associated with ink disease.

Phosphonate has been widely used in agricultural, forest, and natural settings to
directly control Phytophthora by inhibiting its growth and sporulation and especially to
stimulate host defense responses [23,29]. The direct effect of K-phosphonate in planta against
Phytophthora is difficult to demonstrate [52]. In contrast, the containment of Phytophthora
infection through a stimulated coordinated response following phosphonate injection
was shown in this study by the formation of callus tissue around the margins of almost
all lesions (Figure 6). in contrast no callus was observed in untreated stems, which is
consistent with previous studies [38,53]. K-phosphonate may increase the percentage of
healing attributable to its dual ability to slow the growth of the pathogen while enhancing
the growth of the host plant and compartmentalizing lesions caused by Phytophthora [23].
Similar compartmentalization of necrotic lesions has been noted for Banksia brownii infected
by P. cinnamomi following treatment with potassium phosphonate [51]. A transcriptomics
analysis would be helpful to determine whether the phosphonate treatments are linked
with the expression of microbial genes that might inhibit Phytophthora, as demonstrated
previously [38].

K-phosphonate can be applied in different ways to protect chestnut trees, including
soil drenches, foliar sprays, trunk paints, and injection [29,44,54]. However, trunk injection
increases the efficiency of K-phosphonate to contain disease development as it allows the
application of much higher concentrations than foliar and stem sprays. Indeed in the
first experiment, the lowest concentration of K-phosphonate (70 g/L) did not significantly
reduce the development of necrotic lesions for almost all Phytophthora species tested,
compared to the untreated controls. Furthermore, once injected, K-phosphonate is rapidly
translocated through the xylem and phloem up and down the tree [55]. This was also shown
in this study, in the second experiment, when symptoms of phytotoxicity such as yellowing
and browning were observed on leaves after 48 h from the treatment, indicating the systemic
action of K-phosphonate [29]. Although it was only associated with small-sized treated
stems and only detected in individuals treated with a 280 g/L concentration, phytotoxicity
remains a concern. It must be balanced against the improvement in the health of most trees
treated with K-phosphonate [55]. Trunk injection may also be considered invasive for the
tree since the drill wounds can allow the entry of pathogenic bacteria or other fungi, i.e., C.
parasitica on sweet chestnut. However, in all experiments, treated trees remained healthy
and the wounds were successfully compartmentalized. Another disadvantage is that the
absorption of K-phosphonate can vary among the physiological conditions of the treated
trees and depend on climate variables, which can influence a plant’s transpiration rate [44].
Tree phenology may be another factor that can regulate the efficiency of the translocation
of phosphonate to the roots [56,57]. However, the effectiveness of the treatments did not
change in our experiments. For deciduous trees in temperate climates, summer injections
are ideal for upward movement and should be avoided in late autumn and winter [58].
Most registered phosphonate products on woody trees usually recommend applying two
annual trunk injections, which seem unsustainable in extensive forests due to the labor-
intensive and costly nature of the injections. Previous studies reported that the effectiveness
of K-phosphonate can last from 2 to 6 years, depending on the host plant and Phytophthora
species involved in the pathosystem [29]. Further research is needed to determine how
long phosphonate remains active in treated chestnut trees.

Despite the effectiveness of K-phosphonate in controlling Phytophthora diseases and
its low environmental impact, its use is regulated differently worldwide. K-phosphonate
is considered a systemic fungicide in Australia, the USA, and South Africa, where it is
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widely used in agriculture, agroforestry, and forestry [23,29]. In most European countries,
including Italy, K-phosphonate has until now been regulated by Reg. CE n. 369/2013
and registered as fertilizers [59], thus with almost no restrictions. Since scientific evidence
shows that phosphonates have no nutritional role in the plant to justify their use as fertilizer,
recently, the European Directive EU 1009/2019 has restricted their use, with a ban on their
use in both conventional and organic agriculture. Therefore, any new formulation based
on phosphonate will be registered as a pesticide/fungicide on target crops/plants [60].
Currently in Italy K-phosphonate is registered on seven fruit bearing trees, tomato and
grape. Therefore, at least in Europe, using K-phosphonate to control chestnut ink disease
will depend on country-based regulations. In addition, treatments of K-phosphonate
must also consider the Maximum Residue Limit (MRL) recently issued by EU Regulation
2021/1807, which increases the limit for chestnut fruits to 1500 mg/kg. Considering the
efficacy of K-phosphonate against other important pathogens on sweet chestnut, such as
Gnomoniopsis castanea [60], further research focused on residue values after treatments is
needed. Previous studies reported lower values than those issued by the EU regulation
2021/1807 [59,60].

Because of these new limitations on the use of phosphonates, valid alternative treat-
ments must be researched in the future. Silicate-based mulch could be a valuable alternative
to phosphonates, especially where there might be evidence of resistant isolates [61,62]. Re-
cently, Ca chelate is another potential product that can be utilized to stimulate plant defense
responses against plant pathogens, particularly P. cinnamomi [63]. Green pesticides like
those based on cinnamate anion and bioactive metabolites produced by fungi have shown
a strong inhibition rate comparable to some fungicides against Phytophthora spp., includ-
ing P. cinnamomi and P. ×cambivora [64,65]. Biocontrol beneficial microorganisms such
as Proteobacteria (e.g., Bacillus spp.), Actinobacteria (e.g., Streptomyces spp.), Gammapro-
teobacteria (e.g., the fluorescent Pseudomonas), and fungi (e.g., non-pathogenic Fusarium
spp. and Trichoderma spp.) have shown promising results against several foliar and soil-
borne diseases [66,67]. The antagonistic role of these microorganisms against Phytophthora
deserves further investigation [68].

An additional outcome of this study is that P. ×cambivora and P. cinnamomi were
confirmed to be the most aggressive Phytophthora species in colonizing phloem tissues
on sweet chestnut [9,11,12]. Lesion development by P. cinnamomi may have been due
to the higher temperatures during experiment 2, where, with a mean temperature of
25 ◦C, P. cinnamomi caused extensive lesions (av. 2 cm length per day) on untreated stems.
This is consistent with the optimum temperature for pathogen growth in vitro, which
is shown to be around 27 ◦C [49]. In a scenario of climate change, with an expected
rise in the mean temperature in the following decades [69], the spread and impact of P.
cinnamomi on chestnut stands will most likely increase in Mediterranean areas [70,71]. In
contrast, the aggressiveness of P. ×cambivora was not affected by the increase in mean
temperature during the trials. Although less aggressive, some Phytophthora species caused
significant necrotic lesions on untreated stems, such as P. plurivora and P. megasperma. For
the latter, only the highest K-phosphonate concentration of 280 g/L significantly reduced
the lesion progress, suggesting some tolerance in this species. Development of resistance to
phosphonate after prolonged exposure has been observed in some Phytophthora species [60],
including P. crassamura, a close relative of P. megasperma [72]. This suggests that caution
should be taken when relying on phosphonate as the only means to control Phytophthora
diseases [73]. Phytophthora castanetorum, P. gonapodyides, and P. pseudosyringae were shown
to be weak colonizers of phloem tissues. However, these species are known for their
prevalent soilborne lifestyle; therefore, their involvement in chestnut ink disease may be
more related to root infection [9]. Due to the complexity of ink disease, stringent hygiene
protocols should be followed to prevent its spread before, during, and after treatment
operations. Ink disease incidence is also strictly related to climatic and site conditions and
human activities [15,18]. Therefore, any possible strategy should be part of an integrated
management program to mitigate chestnut ink disease [74,75].
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5. Conclusions

Overall, this study broadens the knowledge of using K-phosphonate to control chest-
nut ink disease caused by Phytophthora species [43–45]. Although field experiments are
often time-consuming and expensive, this study provides a reliable and practical control
treatment useful for sweet chestnut growers who have ink disease. The efficacy of trunk
injection varied based on the concentration applied and the Phytophthora species tested,
while it was not affected by tree phenology or environmental temperature during the treat-
ments [44,54,55]. Although K-phosphonate has a low environmental impact, its availability
on the market can be locally uncertain depending on the differences in categorization and
authorization for its use [57,58].

This work also highlights the potential for some species to become serious pathogens
on sweet chestnut in Mediterranean regions under the current climate change scenario.
Climate change, in particular a rise in mean temperatures, extreme precipitation regimes,
and severe droughts, could intensify ink disease incidences and further destabilize chest-
nut stands [71,76]. In the absence of alternative methods to control Phytophthora disease
in forests, trunk injection with K-phosphonate remains a valid solution to mitigate the
emergence of P. cinnamomi and, overall, reduce the impact of ink disease in chestnut stands.
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