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Abstract: Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a variant of
anaplastic large cell lymphoma (ALCL) associated with textured-surface silicone breast implants.
Since first being described in 1997, over 1100 cases have been currently reported worldwide. A causal
relationship between BIA-ALCL and textured implants has been established in epidemiological
studies, but a multifactorial process is likely to be involved in the pathogenesis of BIA-ALCL.
However, pathophysiologic mechanisms remain unclear. One of the hypotheses that could explain
the link between textured implants and BIA-ALCL consists in the greater tendency of bacterial biofilm
in colonizing the surface of textured implants compared to smooth implants, and the resulting chronic
inflammation which, in predisposed individuals, may lead to tumorigenesis. This review summarizes
the existing evidence on the role of micro-organisms and rough surface implants in the development
of BIA-ALCL. It also provides insights into the most updated clinical practice knowledge about
BIA-ALCL, from clinical presentation and investigation to treatment and outcomes.

Keywords: breast lymphoma; anaplastic large cell lymphoma; breast reconstruction; breast augmentation;
textured implant; breast implant; biofilm

1. Introduction

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a variant of
anaplastic large cell lymphoma (ALCL) associated with textured-surface silicone breast im-
plants [1–4]. It is now recognized as an anaplastic kinase-negative (ALK-), CD30 + lymphoma,
a distinct T-cell–derived lymphoma within the non-Hodgkin’s lymphoma spectrum [5].
This neoplasm may present with different clinical phenotypes. A small subgroup of cases
presents with solid tumor mass and progressive disease, while most present with delayed-
onset (>1 year from surgery) periprosthetic seroma and follow an indolent course, often
with a good prognosis [6,7].

BIA-ALCL was first described in 1997 by Keech and Creech, who took part in the
treatment of a 41-year-old female presenting with a small mass in the lateral aspect of the
right breast five years after breast implant placement [8]. Since first being described, over
1100 cases have been reported worldwide [9]. Mean time from breast implant placement to
diagnosis is around 10 years [10].

Although originally believed to be of very rare occurrence, recent studies suggest that
BIA-ALCL incidence could be higher compared to previous epidemiological estimates.
Current reported incidence ranges between one 1 in 355 and 1 in 30,000 people with a
textured surface breast implant and seems to vary further according to manufacturer-
specific risks [10–13].
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The disease remains equally distributed among cosmetic and reconstructive patients,
suggesting that a history of previous malignancy (e.g., breast cancer) cannot be considered
as a risk factor for the development of BIA-ALCL [10,11].

In the past years, the growing scientific evidence on the topic led to the U.S. Food
and Drug Administration releasing warning statements and updates associating breast
implants with BIA-ALCL [9,14]. As a consequence, media coverage on breast implants and
BIA-ALCL is significantly impacting public perception and awareness, causing confusion
between facts and suppositions, but also increasing the need for further understanding of
this matter [15].

After more than two decades of research, the molecular mechanisms responsible for
the aberrant T-cell clonal expansion in BIA-ALCL remain poorly understood [1]. However,
to date, consensus on the implant texturization as a known modifiable risk factor and its
implication in the development of BIA-ALCL has been reached [16]. Nevertheless, we
are still facing a knowledge gap in pathophysiologic mechanisms for developing BIA-
ALCL [16].

Several hypotheses have been proposed regarding the etio-pathologic pathways lead-
ing to BIA-ALCL, possibly working in concert, including implant immunogenicity due
to silicone or its degradation products from textured implants, a genetic susceptibility
altering the host autoimmune response, an IL-13 associated allergic response, or chronic
inflammation triggered by bacterial biofilm [17–20].

This article reviews the existing evidence on the role of micro-organisms in the devel-
opment of BIA-ALCL.

2. Textured Surface Implants and BIA-ALCL

Textured implants were introduced in 1968 [21]. Modern textured surface implants
date back to the 1990s [22]. Their worldwide success and distribution were justified by their
potential role in minimizing capsular contracture risk and reducing implant malrotation,
two of the most common and troublesome complications of breast implants [22,23].

Ultimately, textured implants were not found to sufficiently reduce capsular contrac-
ture, a process in which the mechanisms remain unclear [24,25]. Nevertheless, bacterial
biofilm is likely to play a role in the pathogenesis of capsular contracture [26–29]. An
analysis of removed capsules demonstrated that 17 out of 19 cultures obtained from pa-
tients with significant contracture yielded positive results for bacterial growth (mainly
coagulase-negative staphylococci), compared with only one out of eight samples obtained
from patients with minimal or no contracture [28]. In addition, 14 of the 17 positive cultures
from significantly contracted breasts yielded coagulase-negative staphylococci. Subclinical
infection or bacterial biofilm may trigger the immune reaction to the secretion of profibrotic
cytokines and subsequent contracture [28]. In addition, further evidence demonstrated the
benefits of intraoperative antiseptic irrigation of the implant leading to a reduction of the
incidence of capsular contracture [30,31].

A causal relationship between BIA-ALCL and textured implants has been established
due to the consistent findings in epidemiological studies [16,32]. To date, there has not been
any definitively confirmed BIA-ALCL in patients who underwent placement of smooth-
implant only [6,33]. Although several reports of patients with smooth implants at the
time of BIA-ALCL diagnosis have been published, they all had either a history of textured
implant/expander or incompletely known history of previous breast implants [16]. Macro-
texturization has also been associated with higher risk of BIA-ALCL when compared to
lower grade of texturization [34–36].

The type of texturization varies between single manufacturers’ processing of the outer
shell of the implant [34]. Among textured devices, Biocell (Allergan Aesthetics, An Abbvie
Corporation, Irvine, CA, USA) and Silimed polyurethane (Silimed Corporation, Rio De
Janeiro, Brazil) implants showed higher odds ratio of BIA-ALCL incidence compared to
Siltex (Mentor, A Johnson & Johnson Company, New Brunswick, NJ, USA). According
to Valencia-Lazcano et al. [37], implant-specific risk of BIA-ALCL was 1:2832 for Silimed



Pathogens 2023, 12, 313 3 of 12

polyurethane, 1:3345 for Biocell and 1:86,029 for Siltex implants. One prospective study at a
single institution reported even higher risk for Allergan Biocell implants, with 1:355 women
developing BIA-ALCL [11]. A time-to-event analysis indicates that the risk of developing
BIA-ALCL increases over time [38]. However, existing studies have not assessed the
prophylactic value of textured device explantation, with or without capsulectomy, in
preventing this disease process. Moreover, current FDA guidelines do not recommend
replacing or removing textured implants in asymptomatic patients [39].

Despite the effort of some authors to classify breast implants based on type of implant
texturization, all focus only on the device physical properties without addressing biological
properties and none of the classification attempts has been clinically validated and uni-
versally accepted [16]. The International Organization for Standardization (ISO) updated
in 2018 its breast implant classification, which currently is the most used classification
system, only accounting for average surface area and roughness through scanning electron
microscopy, a relatively nonspecific characterization of texturization [16,34]. Thus, there is
room for improvement for a clinically validated classification system that includes parame-
ters beyond “surface roughness” [32–34]. Indeed, some authors claim that the incidence
per manufacturer does not always correlate with surface roughness and area and therefore
the different manufacturing process should also be considered [36]. Increasing attention is
being paid to the host’s reaction to the implanted device [32]. In animal models, different
implant surfaces were associated with variable host inflammatory response (e.g., less rough
surfaces induced weaker inflammatory response than rougher) [40], suggesting the need
to quantitatively and qualitatively standardize breast implants according to the immune
reaction in humans.

3. Role of Bacterial Biofilm and Chronic Inflammation in BIA-ALCL

One of the hypotheses that could explain the link between textured implants and
BIA-ALCL consists in the greater tendency of bacterial biofilm in colonizing the surface of
textured implants compared to smooth implants and the resulting chronic inflammation
which, in predisposed individuals, may lead to tumorigenesis [2,3,5,27].

Biofilms are surface-associated microbial colonies, embedded in a self-secreted ex-
tracellular matrix [41]. A significant property of biofilm is the increased resistance to
phagocytosis and antiseptics, which, in a clinical context, implies resistance to host defense
mechanisms and antimicrobials. Consequently, bacterial biofilm is able to chronically
stimulate the host immune system and its inflammatory process [26,41,42].

Several in vitro studies have reported that rough-textured breast implants promoted
the increase of propensity for biofilm growth compared to smooth surface implants [43–46].
This difference is felt to be related to the larger surface area and increased bacterial adhesion
(Staphylococcus epidermidis) attaching to rough surfaces [43]. James et al. confirmed that
rougher breast implants with more surface (i.e., Siltex and Biocell) harbored more bacterial
biofilm (Staphylococcus epidermidis, Pseudomonas aeruginosa and Ralstonia pickettii) than
smoother implants [45]. Jones et al. demonstrated a prominent positive correlation between
implant surface area and bacterial attachment/growth biofilm (Staphylococcus epidermidis,
Staphylococcus aureus, and Ralstonia pickettii) [46]. Similar results in biofilm (Staphylococcus
epidermidis, Staphylococcus aureus) and breast devices were obtained by Lee et al. [44].

Bacterial biofilm likely plays a role in the pathogenesis of capsular contracture [25,26,29].
Regardless of the source, either endogenous or introduced during surgery [47], bacte-
rial biofilm creates a chronic inflammatory environment and induces the recruitment of
macrophages and myofibroblasts which contribute to fibrous capsule formation around the
implant [28,48]. Although no correlation between capsular contracture and BIA-ALCL has
been verified, the chronic stimulation of the immune response by peri-prosthetic bacterial
colonization, as likely seen in capsular contracture, leads to the association of bacterial
biofilm and BIA-ALCL.

Other examples of chronic inflammation-driven lymphomas have been described
in the literature. There is evidence that cutaneous T-cell lymphomas are preceded by
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chronic inflammation [49]. Similarly, the biological peptide gluten, in combination with
the intestinal microbiome, has been shown to drive T-cell changes in patients with celiac
disease towards T-cell lymphoma transformation [50]. Lastly, the gastric mucosa-associated
B-cell lymphoma that arises from a chronic inflammatory reaction to Helicobacter pylori is
another example [51].

In support of the chronic inflammation hypothesis, Lechner et al. [52] detected high
production of T- cell-associated cytokines IL-6 and IL-10 in their BIA-ALCL model. Kadin
et al. [19] confirmed a Th17/Th1 phenotype of BIA-ALCL neoplastic lymphocytes, support-
ing the potential role of antigenic stimulation and chronic inflammation. Wolfram et al. [53]
showed intracapsular T cells producing IL-17, IFN-Υ, IL-6, IL-8 and TGF-β, confirming
a Th17/Th1 weighted local immune response in silicone implants with capsular fibrosis.
Hu et al. [54] showed a linear correlation between implant capsular bacterial load and the
proliferation of activated lymphocytes. The correlation was strongest for CD4+ T cells, the
same phenotype found in BIA-ALCL aberrant cells [54]. In a subsequent study evaluating
the microbiome of BIA-ALCL and non-tumor capsule samples, Hu et al. [20] reported a
gram-negative shift in BIA-ALCL samples, with significantly greater proportions of gram-
negative bacilli Ralstonia spp. On the contrary, Staphylococcus spp., a normal constituent of
skin and endogenous breast microflora, was the most frequently identified organism on
the contralateral benign breast capsules. Gram-negative bacteria have a lipopolysaccharide
coat (LPS) which is a known powerful trigger of the host immune system. Reinforcing
the findings of Hu et al., Mempin et al. [55] showed a unique, proliferative response of
patient-derived BIA-ALCL primary tumor cells to the presence of Gram-negative bacterial
LPS. This behaviour was not evident for tumor cells obtained from phenotypically similar
cutaneous form of ALCL, a T-cell leukemia cell line (MT-4), and peripheral blood mononu-
clear cells derived from patients who have been diagnosed with capsular contracture and
from those who have not been previously exposed to breast implants [55]. Moreover, the
proliferative response was absent in the peripheral blood mononuclear cells from BIA-
ALCL patients, suggesting the response to LPS is a local tumor response and not a general
systemic response [55].

However, Walker et al. [17] used 16S rRNA sequencing to test the Ralstonia hypothesis
and investigated the microbiome of BIA-ALCL specimens and benign breast implant
capsules from the contralateral breast. Their study failed to replicate the Ralstonia species
data previously described by Hu and colleagues [20]. Walker et al. [17] demonstrated
a Gram-positive predominance and that BIA-ALCL does not appear to have a distinct
microbiome in comparison to normal capsules, challenging the notion of a Gram-negative
shift in BIA-ALCL capsules.

Furthermore, it should be recognized that Ralstonia species are well known contam-
inants that may confound results of assays surveying PCR-amplified marker genes of
microbial communities [56,57]. These species are ubiquitous water and soil organisms that
have been found in molecular biology grade water, PCR reagents and even in DNA extrac-
tion kits [56–58]. Therefore, failure to replicate studies associating Ralstonia species with
BIA-ALCL specimens may highlight the pitfalls of employing these exquisitely sensitive
investigative techniques, especially in low microbial mass specimens.

A summary of the available findings on the role of micro-organisms on the pathogen-
esis of BIA-ALCL is described in Table 1. Of note, findings such as the non-proliferative
response of BIA-ALCL cells to breast implant silicone, type of interleukins secreted by
intracapsular T cells, and Th1/Th17 weighted inflammatory response are evidence of an in-
flammatory response to an antigen. Although this may be the result of infection pathogens,
the mechanistic evidence connecting pathogens to inflammation is still missing.

Although evidence for a specific bacterial pathogen remains elusive, that does not
preclude involvement of an infectious agent. In addition, although some data support a
bacterial role in the pathogenesis of BIA-ALCL, it has not achieved universal acceptance
and rather should be considered as a multifactorial process which involves other factors
such as genetics (Figure 1). Further research on the origin of BIA-ALCL is needed.
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Table 1. Summary of the available findings compatible with and against the hypothesis of a microbial
involvement in the pathogenesis of BIA-ALCL.

PROS CONS

Micro-organisms

• Gram-negative bacilli Ralstonia spp
shift in BIA-ALCL samples [20].

• Gram-positive predominance in
BIA-ALCL specimens [17].

• Failure to replicate the Ralstonia hypothesis
using 16S rRNA sequencing [17].

• Ralstonia species have been found in
contaminants [56].

• BIA-ALCL does not appear to have a
distinct microbiome in comparison to
normal capsules [17].

Lipopolysaccharide (LPS)

• Proliferative response of
patient-derived BIA-ALCL primary
tumor cells to the presence of
Gram-negative bacterial LPS. This
behavior was not seen in other types
of ALCL [55].

Silicone

• Breast implant shell of all surface
grades alone does not produce a
proliferative response of BIA-ALCL
cells, indicating that breast implant
alone does not act as a
pro-inflammatory stimulant [55].

Lymphocytes

• Linear correlation between implant
capsular bacterial load and the
proliferation of activated
lymphocytes. The correlation was
strongest for CD4+ T cells, the same
phenotype found in BIA-ALCL
aberrant cells. [54]

• Th17/Th1 phenotype of BIA-ALCL
neoplastic lymphocytes [19].

Interleukins
• Intracapsular T cells producing

IL-17, IFN-Υ, IL-6, IL-8 and TGF-β,
confirming a Th17/Th1 weighted
local immune response [53].
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4. Genetics and BIA-ALCL

It is very likely that chronic inflammation plays a prominent role in the etiological
pathways of BIA-ALCL development. However, a genetic susceptibility is also believed
to play a key role in the process of BIA-ALCL tumorigenesis. The presence of bacteria,
coupled with a unique genetic background of the host, such as HLA variations [59], could
explain the relatively uncommon incidence of BIA-ALCL, as it requires both bacterial
presence and genetic susceptibility to cause ongoing immune activation and malignant
transformation in susceptible hosts over time.

A study from de Boer et al. showed that BRCA 1/2 mutation carriers with implants
have an increased risk of BIA-ALCL [13]. Moreover, Ionescu et al. found that the ab-
solute risk of developing BIA-ALCL in women with BRCA 1/2 mutations with breast
implants was 1/1551 at 75 years of age compared with 1/7507 in women from the general
population [60]. Women diagnosed with Li-Fraumeni syndrome, a cancer-predisposing
condition caused by germline pathogenic mutations in TP53, have been reported to develop
BIA-ALCL, perhaps suggesting that they may also be at greater risk [61,62].

The JAK-STAT pathway has been shown to mediate inflammation-associated cancers
and been postulated to have a key role in BIA-ALCL [63]. The JAK-STAT pathway regulates
embryonic development and signaling and is implicated in cell proliferation, differentiation
and apoptosis [13,64]. The pathway is dysregulated across various types of T-cell lym-
phomas; however, the extent of deregulation is significantly higher in BIA-ALCL [13,65,66]
and it was present in 60% of cases according to a recent study [63]. To date, oncogenic
JAK- STAT3 pathway mutations have been described in 43.8 percent of successfully tested
cases [1]. Blombery et al. also performed targeted next-generation sequencing on 11 BIA-
ALCL specimens and found that 10 of the 11 cases were associated with a JAK-STAT3
pathway genetic variant. Additionally, 7 of the 11 cases contained a STAT3 variant [67].

5. Implications for Clinical Practice
5.1. Clinical Presentation

The most common BIA-ALCL presentation consists of painless swelling of the breast
and late-onset seroma. A minority of patients presents with a palpable mass in the
breast [68,69]. Other signs and symptoms may be present, such as capsular contrac-
ture, local pain, lymphadenopathy and B-symptoms [6,68,69]. Patients who had implants
placed for cosmetic augmentation and those who underwent implant-based reconstruction
showed no difference in both incidence and clinical presentation [33]. A systemic review
by Sharma and et al. reported that 82% of patients presented with swelling in the breast
and breast asymmetry, 10% with pain and 8% with palpable breast mass [69]. Less frequent
presentations of BIA-ALCL include regional lymphadenopathy, local skin rash, fever and
capsular contracture [7,70]. Other possible causes of seroma, such as trauma or infection,
should be explored alongside BIA-ALCL diagnosis [6,7].

5.2. Investigation

According to the 2022 National Comprehensive Cancer Network guidelines, any
textured implant carrying-patient who presents with a delayed-onset (>1 year after im-
plantation) seroma, or with a periprosthetic solid mass, deserves prompt investigation
for BIA-ALCL [71] Breast ultrasound, MRI or PET-CT in selected cases represent initial
workup [71]. Early diagnosis is best achieved by cytological analysis of the first seroma
aspirate (minimum 50 mL), as repeat seroma aspirates may dilute the neoplastic cells with
new seroma fluid [70–72]. Cytological analysis should occur in conjunction with breast
imaging and should include CD30 immunohistochemistry and T Cell quantification and
characterization. A mass may suggest a more severe presentation, warranting needle or
open biopsy [7,70,72].

BIA-ALCL’s clinical behavior resembles more solid tumors than other non-Hodgkin
lymphomas. Therefore, the MD Anderson Cancer Center TNM developed a more ap-
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propriate staging system which replaced the Ann Arbor classification for non-Hodgkin
lymphomas [69,72].

5.3. Treatment

Although most of the data on treatment and outcomes come from retrospective case
series and reports, factors associated with higher risk of recurrence and mortality include
presentation with a mass, advanced stage at presentation, extracapsular involvement and
incomplete surgery [33,68,69]. Complete surgery is defined as breast implant removal and
total capsulectomy with complete excision of any associated mass and negative margins
on final pathologic evaluation [6]. In some cases, mastectomy has been performed at
the time of capsulectomy [69]. However, there is no data supporting an improvement in
BIA-ALCL clinical outcomes with mastectomy. Patients with stage 1 BIA-ALCL and tumors
completely confined to the capsule may pursue immediate breast reconstruction, with most
patients achieving complete remission and high patient satisfaction [73]. Patients with
more advanced BIA-ALCL presentation may be considered for reconstruction following a
6–12-month delay [73]. In 2022, the National Cancer Center Network provided guidelines
to diagnosis and treatment of BIA-ALCL [71]. In localized BIA-ALCL, complete surgical
excision is the landmark treatment, demonstrating improvement in event-free survival
and overall survival compared to limited surgery, chemotherapy, or radiation therapy [6].
Systemic therapy is appropriate for more advanced cases or incomplete surgery [71].
Although large trials evaluating the effectiveness of different chemotherapy protocols
in BIA-ALCL are lacking, the NCCN suggests the use of Bremtuximab vedotin, CHOP
(Cyclophosphamide, Hydroxydaunorubicin, Oncovin, Prednisone) or their combination as
systemic treatment regimens [71], similarly to primary cutaneous or systemic ALCL [74].
Radiation therapy could also be considered in case of incomplete capsulectomy or nodal
involvement [71]. A systematic review revealed that 39% of all BIA-ALCL patients received
adjuvant chemotherapy and 37% received adjuvant radiotherapy [69]. Of note, 100% of
patients with stage 4 disease received chemotherapy and radiotherapy, while patients with
stage 1 received chemotherapy (23%) and radiotherapy (27%) in fewer cases [69]. This
highlights the importance of accurate staging using TNM, which has been predicative of
prognosis in BIA-ALCL [6,70]. NCCN guidelines also underscore that because BIA-ALCL
has been found incidentally in the contralateral breast in 4.6% of cases surgeons should
consider removal of the contralateral implant prophylactically [6,70].

5.4. Outcomes in BIA-ALCL

Although most patients with BIA-ALCL have a relatively indolent clinical course,
reports of deaths attributable to the disease emphasize the importance of a timely diagnosis
and adequate treatment with appropriate surveillance [6]. Indeed, Clemens et al. demon-
strated that the overall survival for BIA-ALCL was 94% at three years and 91% at five years.
Earlier stage at presentation is associated with higher survival rates [6,69]. Therefore, early
diagnosis and treatment are critical in optimizing outcomes [33]. Complete capsulectomy
with clear margins has been demonstrated to be the most effective treatment in improving
clinical outcomes [6,69]. Recently, Tevis et al. [68] prospectively reported outcomes in a co-
hort of 52 women with cytologically proven BIA-ALCL over a five-year period. Among the
study population, two patients presented with distant metastases and 14 patients presented
with nodal involvement. Most patients presented with stage 1 or 2 disease. Although two
patients (3.8%) experienced tumor recurrence, eventually all patients achieved complete
remission [68]. The 2022 NCCN recommends surveillance following response to treatment
every 3–6 months for 2 years, and then as clinically indicated [71]. The NCCN also endorses
imaging surveillance no more often than every 6 months for 2 y and then annually for
5 years or as clinically indicated [71].
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5.5. The Role of Antiseptic Solutions

The pathogenetic involvement of subclinical infection and chronic inflammation in
BIA-ALCL origin warrants evidence-based guidelines for intraoperative strategies to mit-
igate biofilm formation in attempt to reduce the risk of BIA-ALCL [75]. One potential
preventive strategy is the use of antiseptic solutions for pocket irrigation. However, studies
have demonstrated a lack of consensus on best practices for implant and pocket irrigation
solutions. In an American Society of Plastic Surgeons survey, triple antibiotic solution
(TAB; bacitracin, cefazolin, and gentamicin) without Betadine was used by 41% of plastic
surgeons, while the remaining 59% favored 29 other irrigation solution regiments [76].
However, preliminary in vitro evidence suggests that TAB may be ineffective in killing
bacterial species seen in breast implant biofilm [76–78]. Many studies endorse the use of
povidone-iodine pocket irrigation for its widespread antimicrobial activity, low cost and
efficacy in dissolving biofilms [30,78–81]. Furthermore, Betadine may be preferable to other
antibiotic irrigation solutions because of its low immunogenicity and no documented evi-
dence of bacterial resistance [78,82]. There is no standardized formulation of Betadine used
as an irrigation solution. However, 25–50% Betadine has been demonstrated to balance
concerns over high concentration and achieving the best broad-spectrum antimicrobial
impact [78,83]. While evidence on the potential association between any specific micro-
organism and BIA-ALCL implants remains inconclusive and hypothetical, Betadine does
confer greater gram-negative coverage than TAB and has been posited as the preferred
antimicrobial [82,83]. In vitro results suggest that Betadine may be used in conjunction with
TAB to enhance TAB efficacy if the pocket is treated for at least 5 min [78,79]. Other studies
propose that hypochlorous acid or derivatives are efficacious in antimicrobial activity dur-
ing antiseptic breast irrigation [77,84]. While this antiseptic is widely used in other surgical
procedures, data is limited on the efficacy of hypochlorous acid in breast reconstruction. It
is important to note that no studies have demonstrated the effects of disinfection protocols
on risk of BIA-ALCL, and most of the available literature examining pocket irrigation
efficacy focus on capsular contracture as the primary outcome [85]. Further studies linking
implant and pocket irrigation techniques to BIA-ALCL incidence are warranted.

6. Conclusions

Current evidence suggests a multifactorial etiology of BIA-ALCL, namely the combi-
nation of bacterial colonization, chronic inflammation, and genetic susceptibility. Current
evidence suggests that textured implants are heavily implicated in the BIA-ALCL patho-
genesis. Therefore, it is essential to weigh risks and benefits of this implant choice and to
allow patients to make an informed decision prior to surgery. Many surgeons in the United
States have moved away all together from textured implants because of the increased risk
associated. However, given the incomplete and fragmentary understanding of BIA-ALCL
pathogenesis and given the paucity of available studies, further research is needed. The
scientific community would benefit from greater scrutiny of the infectious presence within
the breast capsule of BIA-ALCL specimens to identify the incidence of specific pathogens.
Further studies would be needed to assess the impact of antiseptic and antimicrobial agents
in minimizing the incidence of BIA-ALCL by reducing the contamination of the implant.
Mechanistic studies assessing the link between the potential antigen, specific genetic se-
quences and development of BIA-ALCL will be useful to extend our knowledge on the
topic. Surely, there is a need to further elucidate mechanisms at the base of this rare, yet
serious condition.

Although much still has to be done, the international community has united to estab-
lish evidence-based guidelines in an attempt to offer guidance on the optimal management
of BIA-ALCL in a joint effort to improve our understanding and patient outcomes.
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