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Abstract: Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-
forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially
their presence in the food industry is problematic. Using chemical disinfectants in the food industry
to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming
bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods.
Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially
biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds
with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as
natural preservatives in the food industry. However, the use of these natural preservatives in the
food industry is restricted by their poor availability, stability during food processing and storage.
Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is
one way to get around these limitations and as well as the use of underutilized bioactives. The use
of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug
delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles
used in fabricating or encapsulating natural products are considered as an appealing antibiofilm
strategy since the nanoparticles enhance the activity of the natural products against biofilms of
foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive
analysis of the current methods in nanotechnology used for natural products delivery (biofabrication,
encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in
the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.

Keywords: antibiofilm; biofabrication; foodborne pathogens; nanocarrier; natural preservatives

1. Introduction

Biofilms are a community of mono or mixed species of sessile bacteria encased in
self-produced extracellular polymeric substances, which have physiological characteris-
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tics that distinguish them from their planktonic counterparts [1]. Biofilm formation is a
complex adaptive mechanism that shields biofilm residents from unfavorable conditions,
such as human defenses, disinfectants, and antibiotics [2]. The extracellular polymeric
substances produced by the bacteria include proteins, polysaccharides, and extracellular
eDNA (Figure 1), which allow the bacteria to communicate and maintain three-dimensional
structures [3].

Figure 1. General summary of the composition of bacterial biofilms.

Pathogenic microbial communities in the form of biofilms present challenges for the
food industry [4,5]. The almost unavoidable biofilm development on food processing
equipment threatens the hygienic quality of the final food products, raising food safety
concerns and potentially endangering consumer health [6]. Many approaches have been
utilized to overcome the biofilm formation of pathogenic bacteria in food sectors, for
instance, with physical, chemical, and mechanical methods [7]. However, the bacteria
residing in biofilms are far more resistant to these treatments [8,9].

The potential of natural products and phytocompounds against bacterial pathogens’
biofilm formation and eradicating preformed biofilms has been well studied. Several
phytocompounds and other natural products with their exact mechanism of action against
bacterial biofilm, especially foodborne pathogens, were recently reviewed in detail by
others [10–12]. However, using natural products has limitations, like stability and bioavail-
ability, when it comes to their application [13]. Hence, the present review is intended to
cover the use of nanoparticles or nanoformulations containing different natural products
with biofilm targeting potential against foodborne pathogens published in recent years. The
goal is to assess the recent development of new nanotechnology approaches that increase
the activity of underutilized bioactive natural compounds. As a result, these substances can
be considered for the rational design of highly effective, sophisticated antibiofilm strategies
with the potential for clinical and translational studies.

2. Significance of Pathogenic Bacteria and Their Biofilms in the Food Industry

According to earlier reports, materials typically found in the food industry, such
as Buna-N, Teflon seals, rubber seals, stainless steel, aluminum, and glasses, as well as
food-processing units like heating exchangers, cooling towers, conveyor belts, wastewater
pipes, etc., can harbor pathogenic microbes like Escherichia coli, Staphylococcus aureus, Listeria
monocytogenes, Campylobacter jejuni, Salmonella spp., Bacillus cereus, and Pseudomonas spp. in
the form of biofilms (Table 1) [6,14].
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Table 1. Selected foodborne pathogens with biofilm-forming ability in the food industry.

Foodborne Bacterial
Pathogens

Selected Important Pathogenic Attributes and Essential
Genes or Proteins Involved in Biofilm Formation

Favorable Conditions and Frequently
Associated Food Products Diseases Conditions References

L. monocytogenes

Listerial adhesive proteins mediate adherence in L.
monocytogenes. Further, internalins and phospholipases ensure

their internalization in host cells. In addition, it produces
other proteins like listeriolysin (causing infection) and actins

(aiding mobility between host cells).
Putative response regulator (DegU), flagellar proteins (FlaA

and Mot), quorum sensing proteins (AgrBDCA),
biofilm-associated protein (BapL), adhesin proteins (LAP),

D-alanylation pathway (DtlABCD), internalins,
phospholipases, phosphate-sensing two-component system

(PhoPR), autoinducer-2 (LuxS), autolysin, SigB, relA, hpt, and
SecA2 are reported to be involved in biofilm formation.

It can survive in harsh environments,
such as varied pH (4.0–9.6) and

temperature (−1.5 to 45 ◦C). It is
frequently associated with dairy products,

fresh produce, and ready-to-eat foods.

Ingestion of contaminated food leads to
gastroenteritis or Invasive listeriosis. The

invasive systemic disease targets
immunocompromised hosts and lead to

miscarriage and stillbirth in pregnant
women. It can cause meningitis or

encephalitis in newborns and the elderly.

[15–17]

Salmonella spp.

Adherence is mediated by the expression of proteins related to
motility (fimbriae and flagella) and different adhesion

proteins (BapA, SiiE, ShdA, MisL, and SadA).
Bap and curli (CsgD) and cellulose (BcsA) biosynthesis are

reported to be involved in biofilm formation.

It can grow at temperatures ranging
between 8 and 45 ◦C and at a pH ranging

between 4.0 and 9.5.
Incidence, dissemination, and persistence

of infections are often observed when
consuming raw foods like fruits

and vegetables.

Salmonella infection, often known as
salmonellosis, is characterized by an early

onset of fever, diarrhea, and stomach
cramps within 12 to 72 h after exposure.

[18,19]

E. coli

Molecular determining factors responsible for surface
colonization include exopolysaccharides, lipopolysaccharides,
poly-N-acetyl glucosamine, colonic acid, lipoproteins (SslE), E.

coli factor adherence 1 (Efa1), immunoglobulin binding
protein (Eib), and fimbrial (AAF, Fim) adhesins. It also

produces heat-stable (STa, STb) and heat-labile (LTp/h, LT-IIa,
LT-IIb) enterotoxins.

E. coli thrives in aerobic and anaerobic
conditions and temperatures ranging

from 23 to 40 ◦C and at a pH of 6.5 to 7.5.
Contaminated ground meat, dairy, and

fresh vegetables are the causes of
most outbreaks.

E. coli, a sign of feces in food and water,
suggests inadequate hygiene. Food

infected with heat-stable enterotoxins
from pathogenic E. coli may induce

food poisoning.

[20,21]
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Table 1. Cont.

Foodborne Bacterial
Pathogens

Selected Important Pathogenic Attributes and Essential
Genes or Proteins Involved in Biofilm Formation

Favorable Conditions and Frequently
Associated Food Products Diseases Conditions References

S. aureus

Produce enzymes that degrade phospholipids, elastin, DNA,
and hyaluronic acid, and facilitate tissue penetration. Express
different pore-forming toxins to evade host immune response,
such as leukocidins, phenol-soluble modulins, protein A, Eap,
staphyloxanthin, staphylococcal complement inhibitor, and
capsular polysaccharides. Express toxins like Toxic shock

syndrome toxin-1, α-toxin, enterotoxins, exfoliative toxins A
and B, and lipoteichoic acid.

Microbial surface components that recognize adhesive matrix
molecules include surface proteins such as bone

sialoprotein-binding protein, fibronectin-binding proteins,
clumping factors, and fibrinogen-binding protein.

Produce several proteins involved in biofilm formation, such
as SasG, CidA, Bap, Spa, and polysaccharide intracellular

adhesions (ica operon).

Grow at a temperature ranging from 15 to
45 ◦C, with pH ranging between 4.0 and

9.8. Staphylococcal food poisoning
happens with consuming dairy products

from animals suffering from S. aureus
mastitis. In addition, there are a lot of
people who carry the bacteria. This is

primarily because of improper
food handling.

Food pathogenic S. aureus strains produce
enterotoxins. Due to their stability, heat

tolerance, and capacity to withstand
freezing and drying, these enterotoxins

are a significant food business risk. These
enterotoxins cause staphylococcal food
poisoning outbreaks when consumed.

[22,23]

Campylobacter spp.

Express CadF, JlpA, PEB1, and CapA for different surface
adherence. Express a wide range of flagellar protein required

for host cell adhesion, biofilm formation, and secretion of
invasive proteins that suppresses the host immune response.

In addition, they produce toxins (CdtA, CdtB, and CdtC).

Grow between 37 ◦C and 42 ◦C
(optimally at 41.5 ◦C), with fresh chicken
meat as the most implicated food type.

Among the Campylobacter spp., C. jejuni
and C. coli are the most significant.

Campylobacteriosis causes diarrhea,
stomach discomfort, fever, headache,

nausea, and vomiting

[24,25]
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In food-processing facilities, biofilms have been a critical cause of food deterioration
related to economic losses and food safety problems, leading to several outbreaks [6,26].
Every year, numerous foodborne-related outbreaks are documented globally. The finan-
cial loss associated with illnesses caused by foodborne pathogens in the United States is
estimated to hit $78 billion annually [5,27]. In 2019, the European Union, consisting of
27 member states, reported 5175 foodborne outbreaks, with 49,463 illnesses, 3859 hospi-
talizations, and 60 deaths [28]. In this context, outbreaks related to Listeria and Salmonella
infections significantly cause the highest number of diseases. These facts prompted re-
searchers worldwide to dive further into the knowledge of elements contributing to biofilm
formation and resiliency to create better strategies to limit possible outbreaks and manage
illnesses caused by foodborne pathogens. [14,15].

Typically, microbes related to the food industry such as B. cereus, Enterohemorrhagic
E. coli, L. monocytogenes, and S. enterica, are predominantly present in the mixed biofilm
state [7]. Moreover, B. cereus forms endospores that can withstand pasteurization conditions
and make robust biofilms [29]. The enterotoxin (hemolysin) of B. cereus causes various
illnesses, namely diarrhea and abdominal pain [7]. This kind of toxin is stably present in
foods with higher butterfat content and in High-Temperature-Short-Time pasteurized food
products [30]. In the case of enterohemorrhagic E. coli, transmission occurs via ingesting
contaminated fruits, vegetables, meat, milk, and distilled water. The E. coli strain O157:H7
forms thick biofilms on stainless steel and borosilicate glass but not on polypropylene
surfaces [31]. It can potentially secrete Shiga toxins (STEC), spawn enterohaemorrhagic
gastroenteritis, and cause watery diarrhea and blood in feces [32]. Compared to other
foodborne pathogens, L. monocytogenes is a deadly pathogen that accounts for the increased
mortality rate [33]. The recent incidence in South Africa was recorded as the largest
Listeria outbreak and attracted the attention of ordinary people to the importance of food
safety [34]. In addition, S. enterica and S. aureus are potential pathogens in biofilm formation
and causing infection-mediated diseases. Methicillin-resistant S. aureus (MRSA) is prevalent
in farm animals and forms biofilms on many animal surfaces [35].

3. Natural Products as a Promising Alternate

The emergence of drug-resistant microbes is mushrooming at an alarming rate. Com-
pared with other approaches, using natural bioactives could be a promising alternative
that inhibits pathogenic bacterial growth and biofilm formation. Consequently, introducing
synthetic or unknown ingredients in a food product to hamper microbial incidences causes
consumers to consider the product harmful to their health or body. Therefore, various
food additives, including genetically engineered products, artificial sweeteners, taste en-
hancers, food colorants, and preservatives, contribute to the negative reputation of the
product. As a result of this tendency, the food industry is considering natural alternatives
to synthetic ingredients.

3.1. Natural Bioactives as Preservatives

Several natural sources like plants [13], animals [36], microorganisms [37], bacte-
riocins [38], and even bacteriophages [39] are being exploited for the identification of
bioactive leads against the growth and biofilm formation of foodborne pathogens, which
consequently ended up with an overabundance of compounds (Table 2) [37,40]. Phyto-
compounds are one of the bioactive secondary metabolites that might be used as natural
food preservatives. Herbal and plant medicines continue to garner interest as potential
therapeutics. A plethora of reports presented the potential of plant bioactives against
foodborne pathogens growth and biofilm formation and was reviewed extensively [13,41].
The compounds identified from herbs and spices with good antibacterial and antibiofilm
properties are excellent alternatives to chemical ingredients since they are generally con-
sidered safe [42–45]. Investigating plant extracts’ antibacterial and antibiofilm activities
may lead to the discovery of novel drugs effective against multidrug-resistant foodborne



Pathogens 2023, 12, 270 6 of 35

bacterial strains [46]. As natural preservatives, the phenolic bioactives from herbs and
spices also enhance the antioxidant activities against foodborne pathogens [40].

Essential oils are highly concentrated, volatile, hydrophobic chemicals present in a
wide variety of plants. The hydroxyl groups of essential oil components, such as those in
thymol, carvacrol, and eugenol, react with the phospholipid bilayer of microorganisms
resulting in leakage of ions, nucleic acids, and ATP and water imbalance, leading to cell
death [40]. The said compounds at sub-MIC were reported to target the biofilm formation
of bacterial pathogens in a concentration-dependent manner. Čabarkapa et al. revealed the
potential of essential oils rich in thymol in preventing biofilm formation and eradicating
preformed Salmonella enteritidis biofilms [47]. Similarly, exposure to carvacrol reduces
the biofilm formation in different foodborne pathogens, such as L. monocytogenes [48],
S. aureus [49], and S. Typhimurium [50].

Furthermore, the bioactives from thyme and rosemary plants reduce the biofilm
growth of L. monocytogenes and garlic extract can prevent quorum sensing (QS) signaling in
multidrug-resistant bacterial pathogens [40,51]. In addition, flavones under the flavonoid
class form a complex with the components of the bacterial cell wall and impede cell
adherence and proliferation. In this regard, the genes Staphylococcus accessory regulator
(sarA) and intercellular adhesins (ica) are both downregulated by baicalein to suppress
the virulence regulation of S. aureus [52]. Similarly, it has been shown that the biofilm
formation of S. Typhimurium (ATCC 14028) was reduced by increasing the concentration of
cinnamaldehyde. Moreover, the metabolic activity of preformed biofilms was also inhibited
to 39% and 65% upon treatment with cinnamaldehyde at 312 µg/mL and 624 µg/mL,
respectively [53].

Similar to plant compounds, reports present the antibiofilm potential of compounds
isolated from different microorganisms (Table 2). Very recently, the inhibitory effects of
reuterin derived from Lactobacillus reuteri (LR 21) isolated from broiler cecum on biofilm
formation, quorum sensing, and virulence genes of Clostridium perfringens were demon-
strated by Xu et al. [54], wherein the reuterin was shown to significantly repressed the
surface motility and related biofilm formation of C. perfringens. In addition, this compound
significantly down-regulated the genes associated with virulence and quorum-sensing
expression. D-amino acids isolated from the cell wall of many bacteria have been reported
to modulate biofilm formation in B. subtilis [55] and S. aureus [56].

Glycolipid is a biosurfactant with potential anticancer and antibacterial effects and
currently has a wide variety of therapeutic uses [57] including in the pharmaceutical,
food, and petroleum sectors. Sophorolipid is one of the glycolipids produced by the yeast
Starmerella bombicola that has antibacterial and antibiofilm properties against foodborne
pathogens such as C. jejuni, E. coli, Listeria spp., and Salmonella spp. [58–60]. Further, Silveira
et al. recently discovered that combining sophorolipid and lactic acid to treat campylobacter
cells resulted in an additive interaction and required half of the concentration to treat
campylobacters [58].

Many compounds with therapeutic potentials have been discovered in marine algal
species such as Bacillariophyceae (diatoms), Chlorophyceae, Chrysophyceae, Rhodophyceae, and
Phaeophyceae [61]. Castillo et al. [62] also found that a commercially manufactured fura-
none, identical to the extract from Delisea pulchra, was effective against Gram-negative
C. jejuni. AI-2 activity, bacterial motility, and biofilm formation were significantly reduced
when coupled with epigallocatechin gallate from green tea and a citric acid extract. Simi-
larly, α-linolenic acid and 1-palmitoyl-sn-glycero-3-phosphocholine isolated from marine
microalgae reduced the biofilm formation of S. aureus and E. coli [63].
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Table 2. Antibiofilm activity of selected extracts and compounds from different natural resources.

Natural Bioactive and Source Target Foodborne
Pathogen(s) Mechanism of Action Reference(s)

Plant source

Essential oil of Citrus reticulata E. coli and S. aureus C. reticulata essential oil inhibited biofilm formation and eradicated the mature biofilm [64]

Essential oils components from Allium
sativum and Cuminum cyminum S. Typhimurium Essential oils eliminated the planktonic and biofilm forms of S. Typhimurium by

downregulating QS (sdiA and luxS) and cellulose synthesis (csgD and adrA) genes [65]

Essential oil of Thymus daenensis and
Satureja hortensis E. coli O157:H7 Essential oils reduced biofilm formation by downregulating the expression of luxS and

pfs genes [66]

Essential oil of Artemisia dracunculus S. Typhimurium and S. aureus
Essential oil inhibited biofilm formation as well as disrupted existing biofilms

Downregulation of luxS and pfs in S. Typhimurium and hld in S. aureus are expected to be the
mechanism of action

[67]

Lemongrass essential oil L. monocytogenes and S. aureus In L. monocytogenes, an active compound penetrated the biofilm and inhibited its formation
In S. aureus, biofilm disruption was observed [68]

Menthol and menthone from peppermint
essential oil (PEO) of Mentha × piperita S. aureus

Active against biofilm formation in S. aureus
Moreover, the essential oil effectively killed and eradicated the residents in

preformed biofilms
[69]

Thymol from the essential oil of
Thymus zygis L. monocytogenes

Thymol reduced eDNA release and the expression of enzymes related to biofilm formation
In addition, thymol downregulated the expression of biofilm and polysaccharide

adhesion-related genes
[70]

Limonene, pinene, terpinene, and myrcene
from the essential oil of Citrus medica L. monocytogenes Essential oil components targeted biofilm formation and eradicated the preformed biofilms

of L. monocytogenes [71]

Tea catechin extract MRSA Tea catechin extract inhibited biofilm formation by downregulating biofilm-related genes
such as fnbA and icaBC [72]

Exocarp extract of Gingko biloba MRSA and S. aureus
The extract inhibited biofilm formation and preformed biofilms of S. aureus

Gene expression of icaA and sarA were lowered after 6 h and sigB after 12 h, while
upregulation of icaR was observed after 12 h

[73]

Peel extract of Citrus sinensis P. aeruginosa and S. aureus The peel extract of C. sinensis prevented MRSA and ESBL development in the biofilm matrix [74]

Flesh extract of Moringa oleifera P. aeruginosa and S. aureus
M. oleifera prevented the development of MRSA biofilm matrix

M. oleifera inhibited the development of single as well as mixed biofilm cultures better than
C. sinensis

[74]
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Table 2. Cont.

Natural Bioactive and Source Target Foodborne
Pathogen(s) Mechanism of Action Reference(s)

Root extract of Veteriveria zizanioides S. aureus The methanolic extract prevented the biofilm formation of S. aureus
Targeted the genes involved in the initial attachment like clfA and fnbAB [75]

Barb extract of Butia odorata S. aureus The barb extract reduced the number of biofilm cells [76]

Ohelo berry extract L. monocytogenes The extract targeted biofilm formation via downregulation of the global regulator gene sigB [77]

Spice extract from Syzygium aromaticum
and Cinnamomum verum L. monocytogenes

The extract targeted biofilm formation by modulating the release of eDNA
In addition, it downregulated the genes responsible for biofilm formation such as lapB, actA,

flaA, prfA, and inlA
[78]

Methanol extract of Lonicera caerulea var.
emphyllocalyx Enteropathogenic E. coli

The methanolic extract targeted biofilm formation and reduced the spread of biofilm
Biofilm-related genes, such as fliC, csgA, and fimA, were downregulated upon treatment with

the extract
[79]

Emodin, chrysophanol, and physcion
from Rumex japonicus extract S. aureus Inhibition of biofilm formation and removal of biofilm [80]

Baicalein from Scutellaria baicalensis extract S. aureus
Inhibition and disruption of biofilm formation

Downregulated staphylococcal enterotoxin A (sea) and α-hemolysin (hla) levels
Downregulated QS-related genes agrA, RNAIII, and sarA as well as icaA

[52]

2-hydroxy-4-methoxybenzaldehyde from
Hemidesmus indicus MRSA

Inhibition and disruption of biofilms
Downregulated virulence factors such as hemolysin, nuclease, lipase and staphyloxanthin

Downregulated the global regulator, SigB, required for biofilm formation
[43,81]

Kaempferol from Glycine max S. aureus Inhibited biofilm formation by reducing the expression of sortase (srtA) and
adhesion-related genes [82]

Quinic acid S. aureus
Reduction in biofilm biomass

Downregulation of sarA and upregulation of agrA
Reduction in the number of sedentary cells on stainless steel

[83]

Naringenin S. aureus Inhibited biofilm formation by downregulating the expression of sigB, icaA, agrA, and sarA. [84]

Papain from Carica papaya S. aureus and C. jejuni Inhibited biofilm formation
Degraded the mature biofilm formed on stainless steel [85]

Phloretin L. monocytogenes Phloretin targeted biofilm formation by repressing quorum-sensing gene expression [86]

Pristimerin S. aureus Inhibition, disruption, and dispersal of biofilm [87]



Pathogens 2023, 12, 270 9 of 35

Table 2. Cont.

Natural Bioactive and Source Target Foodborne
Pathogen(s) Mechanism of Action Reference(s)

Quercetin S. Typhimurium and S. enteritidis Inhibited biofilm formation by downregulating the expression of genes encoding virulence
factor (avrA, and hilA), stress response (rpoS), and quorum-sensing (luxS) [88]

Rutin E. coli and S. aureus Inhibition and reduction of biofilm formation
Reduction of mono- and multi-species biofilms in a concentration-dependent fashion [89]

(−)-tetrahydroberberrubine·acetate
(THBA) from Nandina domestica B. cereus Inhibition of biofilm formation and disruption of mature biofilms [90]

Animal source

BCp12 peptide derived from Milk S. aureus
Inhibited biofilm formation

Downregulated the expression of genes related to the QS system, including agrA, agrB, agrC,
and psmB.

[91]

β-GBP peptide sequence from the
Penaeus vannamei B. subtilis Reduced preformed biofilms [92]

Hc-CATH peptide from sea snake
Hydrophis cyanocinctus and As-CATH4 and

As-CATH5 from Alligator sinensis
A. junii and P. mirabilis Inhibition, as well as the removal of biofilms [93]

Manuka Honey E. coli O157:H7 Inhibition, as well as the removal of biofilms [94]

Apitoxin from Apis mellifera S. enterica Reduced biofilm formation
Expression of biofilm and virulence-related genes was different in different strains [36]

Avarol from Dysidea avara P. aeruginosa PAO1 Reduced biofilm formation [95]

Bacterial source

Peptide AL705 L. monocytogenes FBUNT Reduced biofilm formation by disturbing QS signaling [96]

Sonorensin from Bacillus sonorensis MT93 S. aureus Inhibited biofilm formation by increasing membrane permeability [97]

Cell-free supernatant of Lactobacillus
curvatus ET31 L. monocytogenes Inhibition of biofilm formation by targeting luxS gene expression

However, the cell-free supernatant was not able to remove the preformed biofilm [38]

Bacteriophage

JK004 Cronobacter sakazakii Removed the biofilm [98]

vB_STM-2 S. Typhimurium (ST-4) Removed the biofilm
Penetrated into EPS and depolymerized EPS [39]
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3.2. Challenges in the Use of Natural Preservatives for Preservation

Natural bioactives possess tremendous potential against biofilm-forming bacterial
pathogens. However, a plethora of challenges are associated with the usage of natural
bioactives as preservatives. Gram-negative bacteria are rich in lipopolysaccharide (LPS),
making it tricky for phenolic compounds to penetrate the cell wall [99]. Hence, the catechin
monomers from grape seed extract showed increased antibacterial activity towards Gram-
positive than Gram-negative bacteria [100]. Similarly, bacteriocins cannot penetrate the LPS
of Gram-negative bacteria [101].

The first obstacle to overcome is the extraction of bioactive compounds from natural
sources. The extraction technique must be chosen carefully to preserve the quantitative and
qualitative properties of the bioactive compounds [102]. Since natural food preservatives
need extraction and additional refining procedures, they often increase production costs.
Thus, natural food preservatives became more costly than their synthetic counterparts [103].

In the food industry, using natural preservatives may reduce the quality of food and
make the food organoleptically unacceptable [104]. The concentration of active compounds
greater than the threshold level increases the efficacy loss of food components that alter
sensory properties such as taste and smell [105]. Furthermore, spices could provoke intense
or pungent aromas in the food. In addition, the storage temperature and heating processes
(sterilization and dehydration) are essential factors that induce the active compounds to
lose their respective inhibitory activities [105,106].

4. Nanotechnology Approach: An Emerging Antibiofilm Platform

Nanotechnology is a promising technology that has the ability to convert an individ-
ual particle to one billionth of its original size. The converted particles are nano-sized
(1–100 nm), have a large surface area and mass ratio, and are highly reactive, making
them completely different from the exact composition of the bulk material [107]. The
converted nanoparticles have many advantages, including an increased impact against the
target pathogenic microorganisms with multiple functional sites. The exact antibacterial
mechanism of nanoparticles has not been entirely elucidated. Many studies have suggested
possible mechanisms of action. The absorption of nanoparticles into the cell membrane
and the subsequent disintegration are the initial steps involved in the antibacterial mecha-
nism of nanoparticles [108]. Following absorption and disintegration, the cell-penetrating
nanoparticles target bacterial growth through intracellular content leakage, generation of
reactive oxygen species, impairment of the electron transport system, inactivation of efflux
pumps, and most importantly, interference with the enzymatic and metabolic activities of
the cell [108].

The discovery and advancement of nanotechnology allow researchers to construct, use,
explore, and manipulate nanomaterials in many fields. In the food sector, the application
of nanotechnology significantly impacts many areas, such as the production of packaging
material, food formulation with enhanced bioavailability, enhancing organoleptic prop-
erties, ensuring food safety, and others [109]. It has also become a leading technology
in food preservation, particularly in combating foodborne bacterial growth and biofilm
formation [110].

Biofilm formation is rapid and spontaneous in the food industry environment com-
pared to medical settings as it deals with nutrient-rich products. For instance, dairy industry
instruments can quickly become a source for biofilm formation [111]. Although the inherent
antibacterial activity of nanoparticles is well-known, the application of nanoparticles as
antibiofilm agents is a relatively new area of research. The ongoing investigations exploring
nanoparticles’ interaction with EPS and biofilm residents are still being studied [112,113].
However, a proper understanding of the transport of nanoparticles into the biofilm is vital
for designing nanoparticles with customized properties. For reasons like traversing the EPS
barrier, enhanced and targeted drug delivery, controlled release, and others, nanoparticles
are a viable way to overcome biofilm formation by foodborne pathogens [114,115].
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4.1. Techniques for Targeting Biofilms through Natural Product Delivery
4.1.1. Biofabrication of Nanoparticles with Antibiofilm Activity Using
Surface Functionalization

The surface functionalization of the nanoparticles with phytochemicals or other natu-
ral products enhances the bioactivity of the functionalized product. The covalent or non-
covalent attachment of the natural product on the surface of the nanoparticles can enhance
their solubility, and thereby, its antibiofilm potential. Moreover, the nanoparticle’s pene-
tration enhances the local concentration of the compound inside the biofilm [116]. In this
regard, metallic nanoparticles have been vastly exploited (Table 3). Metallic nanoparticles
such as gold, silver, copper, and others, synthesized via biological methods (i.e., through
plant extracts and natural compounds) frequently have bioactives or compounds in the
plant extract as a capping agent [117]. Similar to metallic nanoparticles showing intrinsic
activity, these nanoparticles act as a carrier for the bioactives that are physically surface-
functionalized. The syntheses of nanoparticles often utilize a salt that is exposed to a
redox reaction caused by natural extracts or bioactive compounds under specified pH
conditions. The same natural substance is responsible for maintaining the freshly prepared
nanoparticle’s surface potential and rendering them with antibacterial/antibiofilm activity
after the reduction procedure. As a consequence, the oxidized derivative of the active
component caps the nanoparticles [118].

Biofabrication of metallic nanoparticles has gained much interest because of their
simple one-step process without producing toxic chemicals. Recently, this technique has
been used to assess the biofilm-inhibiting and preformed biofilm-eradicating activity of
silver nanoparticles capped with the aqueous extract of Terminalia catappa leaf against
L. monocytogenes [119]. Similarly, silver nanoparticles capped with quercetrin and afzelin
curtailed the biofilm formation of S. enterica serovar Typhi and E. coli [120]. In addition,
these biofabricated nanoparticles were reported to rescue animal models like Caenorhabditis
elegans and zebrafish from bacterial infections, respectively [119,120].

Nanoparticles generally have desirable qualities, such as the ability to change surface
characteristics and stability. Meanwhile, selecting phytocompounds and natural products
is crucial in determining the size and shape of the nanoparticles. A recent report by Zahoor
et al. also demonstrated that amino acids like glutamine, aspartic, and tyrosine are size and
shape-controlling agents during silver nanoparticle synthesis [121]. Like silver nanoparti-
cles, the copper nanoparticles synthesized using the glucosides isoquercetin and cassinopin
reduced the biofilm formation of MRSA with an effective biofilm inhibitory concentration
as low as 1 µg/mL. The prepared nanoparticles exhibited antibiofilm activity against MRSA
by altering its cell membrane permeability and surface hydrophobicity [122]. Further, the
study’s result revealed that the antibiofilm property was shown by the copper nanopar-
ticle itself and not through its release of copper (Cu(II)) ions. A final method for surface
functionalization entails the covalent conjugation of the natural bioactives to the surface
of a reactive nanoparticle. This fact was substantiated by the study of Barros et al. [116],
wherein the phenol group of curcumin, an active ingredient of the medicinal plant Curcuma
longa, was linked with the carbohydrate group from the silica nanoparticle through an ester
linkage to enhance the antibiofilm property of the silica nanoparticles. Likewise, several
studies demonstrated the antibiofilm potential of different metallic nanoparticles such as
gold, titanium, zinc, and others, that were surface functionalized with natural extracts or
compounds against foodborne bacterial pathogens (Table 3).
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Table 3. Recent studies on the bioactivity of nanoparticles that were surface functionalized with natural products against the biofilms of foodborne pathogens.

Type of
Nanoformulation Active Agents Properties of

Nanoparticles Biological Activity against Foodborne Pathogens Reference

Silver nanoparticles Terminalia catappa ~26–100 nm in size
At sub-MIC concentrations, silver nanoparticles dislodged the preformed biofilms of

L. monocytogenes and entrenched the biofilm cells.
The prepared silver nanoparticles enhanced the life span of infected C. elegans by 90%.

[119]

Copper oxide
nanoparticles

Leaf extract of
Eucalyptus globulus ~16.78 nm in size The tested concentrations inhibited biofilm formation in the range of 44.41 ± 7 to

70.75 ± 8% and 34.41 ± 7 to 62.29 ± 8% in E. coli and MRSA, respectively. [123]

Gold nanoparticles Caffeine 77.0 ± 5.0 nm in size

At 256 µg/mL, caffeine-loaded gold nanoparticles reduced biofilm formation by 69.55,
63.74, and 64.89% in S. aureus, L. monocytogenes, and E. coli, respectively.

At MIC (512 µg/mL), the nanoparticles eradicated preformed biofilms by 63.71 and
77.4% in E. coli and S. aureus, respectively. It was 79.66% effective against

L. monocytogenes with an MIC value of 1024 µg/mL.
Further, the caffeine-loaded nanoparticles were potent enough to eradicate the

biofilm-embedded persister cells of the tested pathogens.

[124]

Gold nanoparticles Seed Extract of
Trachyspermum ammi

~24.4 nm in size
Shapes appeared to be

spherical, spheroid, and a few
anisotropies

At 0.5 MIC, the gold nanoparticles reduced biofilm formation by 81 and 73% in Serratia
marcescens and L. monocytogenes, respectively.

Gold nanoparticles targeted biofilm formation of the test pathogens by reducing the
biofilm-related virulence factors such as cell surface hydrophobicity, motility,

and exopolysaccharides.
Increased ROS production was expected to play a role in eradicating the preformed

biofilms of the tested pathogens.

[125]

Copper oxide
nanoparticles

Leaf extract of
Mentha spicata

Spherical nanoparticles with
36 nm in size

The synthesized copper oxide nanoparticles were superior in inhibiting the biofilm
formation of S. aureus (98%) compared to E. coli (86%) at 100 µg/mL. [126]

Copper nanoparticles

Cassinopin and
isoquercetin from the

leaves of
Crotalaria candicans

Spherical-shaped cassinopin-
and isoquercetin-capped

nanoparticles were 66 and
69 nm in size, respectively

The synthesized nanoparticles were proficient enough to thwart the biofilm formation of
MRSA, S. Typhi, and E. coli, even at a concentration of 2 µg/mL. [122]

Silver nanoparticles Kaempferitrin from
Crotalaria juncea

Spherical-shaped
nanoparticles with an average

size of 33 nm and zeta
potential of −33.8 mV

Kaempferitrin-loaded silver nanoparticles were able to retard biofilm formation
in MRSA.

Enhancing the cell membrane permeability in the cells treated with bioactive-loaded
silver nanoparticles was suggested to be the antibiofilm mechanism.

Further, the silver nanoparticles reduced the bacterial burden by ~1.8-fold in the infected
zebrafish with no toxicity.

[127]
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Table 3. Cont.

Type of
Nanoformulation Active Agents Properties of

Nanoparticles Biological Activity against Foodborne Pathogens Reference

Copper nanoparticles Kaempferitrin from
Crotalaria juncea

Spherical-shaped
nanoparticles with an average

size of 56 nm and a zeta
potential of −38 mV

Kaempferitrin-loaded copper nanoparticles were able to retard the biofilm formation
in MRSA.

Enhancing the cell membrane permeability in the cells treated with bioactive-loaded
copper nanoparticles is expected to be the possible antibiofilm mechanism.

Further, the silver nanoparticles reduced the bacterial burden by ~2-folds in the infected
Zebrafish, leaving no toxicity

[127]

Gold nanoparticles Aerial part extract of
Origanum majoranum

Spherical-shaped
nanoparticles with sizes

ranging between 5 and 30 nm

The gold nanoparticles were prepared using L-glutathione.
The prepared gold nanoparticles were then conjugated with O. majoranum extract.

The gold nanoparticles showed antibacterial, antibiofilm, and antioxidant activities.
Compared to the extract, the extract-conjugated gold nanoparticles showed antibiofilm
activities against S. aureus and E. coli with inhibition rates of 19.2 and 30%, respectively.

[128]

Zinc oxide
nanoparticles

Fruit extract of
Aegle marmelos

Hexagonal wurtzite-shaped
nanoparticle with an average

size of 22.5 nm

The zinc oxide nanoparticles coated with A. marmelos efficiently inhibited the biofilm
formation of S. aureus and were validated with confocal microscopic analysis.

Further, the use of nanoparticles reduced the pathogen’s hydrophobicity index and
enhanced the pathogen’s susceptibility to hydrogen peroxide.

[129]

Silver nanoparticles Oscillatoria sp.

Spherical-shaped
nanoparticles with an average

size of 10 nm and
polydispersity index of 0.58

The synthesized nanoparticles showed potent biofilm inhibition in S. aureus, S. Typhi,
and E. coli.

The synthesized silver nanoparticles showed reduced toxicity towards the shrimp
model Artemia salina with an LC50 of 2060 µg/mL.

[130]

Zinc oxide
nanoparticles

Leaf extract of
Acacia arabica

Rod-shaped nanoparticles
with an average size of

11.3 nm

The zinc oxide nanoparticles at 0.5 MIC reduced the biofilm formation of E. coli,
S. aureus, and S. enterica.

Further, the EPS estimation assay revealed that these nanoparticles targeted EPS
production to hinder biofilm production in the tested pathogens.

The nanoparticles showed no toxicity towards HeLa cells at the tested concentrations.

[131]

Silver nanoparticles The seed extract of
Nigella sativa

Spherical-shaped
nanoparticles with an average

size of 50 nm

The extract-conjugated nanoparticles showed antibiofilm activity against S. aureus and
E. coli with inhibitory rates of 84.92 and 82.84%, respectively. [132]

Iron oxide
nanoparticles

Eucalyptus globulus
essential oil

Quasi-spherical shaped
nanoparticle with an average

size of 7.5 ± 2.5 nm

Interfered with the development of biofilm formation in E. coli and S. aureus.
The iron oxide nanoparticles were highly biocompatible for the growth and proliferation

of amniotic fluid-derived mesenchymal stem cells.
[133]
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4.1.2. Nanoencapsulation of Natural Compounds with Antibiofilm Activity

Arming natural compounds through the nanoencapsulation procedure has several
advantages over surface functionalization techniques. First, they enable sustained release
of the bioactive compounds, where the drug release profile is governed by the properties
of the polymer being used for encapsulation, such as drug–matrix interactions, solubil-
ity, diffusion, and biodegradation [134]. Through nanoencapsulation, it is possible to
regulate the delivery of natural bioactives to the target site using site-specific stimulants,
such as ultrasound, enzymes, pH, and magnetic fields [135–138]. This functional property
aids researchers in exploiting nanocarriers as a portable detection system for microbial
pathogens to avoid or reduce infectious disease outbreaks [139]. Next, nanocarriers enhance
the natural compounds’ bioavailability and bioactivity by minimizing the nanoparticles’
size, surface modification, and encapsulating the natural compounds with different poly-
mers [140]. Apart from the targeted drug delivery and improving the potential of the
encapsulating drug, nanocarriers also protect the encapsulating natural bioactives from
degradation, oxidation, and aggregation, which is considered an essential advantage
in overseeing the use of nanocarriers over nanoparticles with surface fabrication [141].
Similarly, encapsulation using nanoparticles to transport natural drugs can improve the
penetration of drugs into a biofilm and enhance either the removal of the biofilm or killing
of the biofilm-encased pathogens. In addition, the toxicity of the drugs can be reduced by
shielding its direct contact with the environment, and the drug’s enhanced stability can
enable constant release over time [142].

Polymeric Nanoparticles

Polymeric nanoparticles are distinguished by their qualities customized for a specific
payload and to the appropriate size, specific cellular trafficking, and easy regulation of
drug delivery via improved material engineering. These polymeric materials are either
natural (polysaccharides such as chitosan, cellulose, dextran, and others, or polypeptides
and proteins, such as albumin, gelatin, legumin, and others) or synthetic (polyglycolide,
polycaprolactone, derivatives of polyacrylic acid, poly(ethylene glycol), polylactides (PLA)
and copolymers including polylactide co-glycolide (PLGA), and others) [143].

There are several reports on the potential of biopolymeric nanosystems against food-
borne pathogens’ growth and biofilm formation (Table 4). These nanoparticles act via
electrostatic interactions with the negatively charged EPS in the outer layer of the biofilms.
Starch, cellulose, chitosan, cyclodextrin, alginate, and guar gum are a few examples of
biopolymers often used to encapsulate natural products. Among these biopolymers, chi-
tosan is a naturally occurring amino polysaccharide polymer with intrinsic antibacterial
and antibiofilm properties. It has been a common biopolymer exploited to deliver natural
products (Table 4) [144]. Earlier reports demonstrated that chitosan is a good choice of
biopolymer for encapsulating natural compounds [145,146] and essential oils [147–149]
against the biofilm formation of different foodborne pathogens. The use of chitosan
nanoparticles is increasing in the active packaging sectors. In this light, a recent work by
Khan et al. [150] reported that chitosan nanoparticles loaded with usnic acid, which is said
to have antibiofilm activity against S. aureus, is efficient in eradicating the biofilm-residing
persister cells of foodborne pathogens like S. aureus, E. coli, and L. monocytogenes [151]. Next
to chitosan, another polysaccharide-based biopolymer that has been much exploited in drug
delivery is cyclodextrin. Although three forms of cyclodextrins (α-, β-, and γ-cyclodextrins)
are available, β-cyclodextrin is the most frequently used for encapsulation. Cyclodextrins
are useful for encapsulating hydrophobic molecules, especially essential oils, as it contains
both hydrophilic (outer) and hydrophobic (inner) parts [152]. The cyclodextrin and drug
will form an inclusion complex through weak forces like van der Waals, hydrophobic, and
hydrogen bonds. The antibiofilm drugs are encapsulated onto the cyclodextrin to make an
inclusion complex for site-directed delivery. Several antibiofilm drugs have been encap-
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sulated using cyclodextrin to eradicate the preformed biofilms of foodborne pathogenic
bacteria [153–155].

Dendrimers are three-dimensional branched structures with repeated chemical pat-
terns. It has attracted researchers in the field as it can encapsulate hydrophobic and
hydrophilic compounds. Moreover, the addition of functional groups to the dendrimers
increases the targeted delivery of drugs [156]. Studies have reported the delivery of some
selected natural compounds such as resveratrol [157] and curcumin [158], against some
human illnesses. Although dendrimers have long been applied in biomedicine, they have
been recently discovered to act as antibacterial agents and coat surfaces [159]. However,
there are reports of dendrimers encapsulating natural compounds against different infec-
tious diseases. As stated above, the focus on the utility of dendrimers, especially against
foodborne pathogens, and their biofilm-forming ability is on the rise. In this light, a recent
study showed that the low molecular weight dendrimer peptides showed profound activity
against foodborne pathogens such as E. coli and S. aureus, without incorporating any active
drugs [160].

PLA and PLGA are the synthetic polymers that are most often used as nanocarriers.
The use of these synthetic polymers has long been seen in different applications. Moreover,
the Food and Drug Administration and European Medical Agency have approved these
polymers for human use [161]. In this light, several works utilized these polymers to
effectively deliver different antimicrobials against the growth and biofilm formation of
foodborne bacteria (Table 4) [162]. However, their potential to carry and deliver antimi-
crobials inside the biofilms and eradicate the preformed biofilms is on the rise. In this
light, a recent work by Anjum et al. studied the antibiofilm potential of xylitol when
embedded in PLGA nanoparticles [163]. Xylitol cannot penetrate bacterial biofilms and is
simultaneously degraded by the bacterial beta-lactamase enzymes. Incorporating xylitol
into PLGA nanoparticles enhanced the penetration of xylitol into the EPS and resulted in
subsequent biofilm disruption in S. aureus.

The surface charge of the nanoparticles plays a crucial role in their interaction with
bacteria and biofilms. This was evidenced by the work of Da Costa et al. [164]. The authors
modified the surface charge of the PLA nanoparticles by coating them with a positively
charged peptide poly-L-lysine. These charge-reversed PLA nanoparticles had a pronounced
biofilm-eradicating potential compared to nanoparticles with their original charge. The
evidence for nanoparticles’ efficacy in halting bacterial pathogenesis is mounting. Further,
to enhance the delivery of the antimicrobials or antibiofilm compounds into biofilms, a
deeper understanding of the mechanisms governing the system’s efficacy is required, as
shown by this study.

Lipid Nanoparticles

Lipid nanoparticles can be categorized as liposomes, nanoemulsions, solid lipid
nanoparticles, and nanostructured lipid carriers. Due to their elastic physicochemical
properties, well-established safety profiles, and ease of scaling up processes, lipid nanopar-
ticles are some of the most promising tools for the targeted delivery of drugs [165]. Most
lipids used as nanocarriers are approved by US Food and Drug Administration. Hence,
the use of lipid nanoparticles is more prevalent than the previously described metallic and
polymeric nanoparticles. Specifically, polyethylene glycol-grafted liposomes were in intelli-
gent mode, which extended their presence for a longer time in the blood circulation without
activating phagocytosis-mediated clearance or showing any toxicity [166]. Because of the
above qualities, lipid-based nanoparticles have been extensively studied for targeting bacte-
rial infections, especially against biofilm formation of bacterial pathogens (Table 4) [167]. In
this regard, a recent study with nanostructured nano lipid carriers encapsulating olibanum
oil was shown to kill sessile C. jejuni cells significantly more than the free oil [168].

Because of their industrial scale-up, biocompatibility, low toxicity, and ability to en-
trap both lipophilic and hydrophilic actives, liposomes are the most studied lipid-based
nanoformulations (Table 4) [169]. Liposomes are spherical phospholipid bilayer vesicles.
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Liposomes preferentially adsorb onto biofilm surfaces and penetrate the EPS to prevent bac-
terial growth [170]. In addition to the advantages of using nanocarriers mentioned above,
liposomes offer much more peculiar and advanced features, such as protecting volatile and
chemically unstable antimicrobial or antibiofilm drugs (e.g., essential oils) against active
component loss in air, light, and high temperature conditions during production, storage,
and administration [171]. Specifically, soy lecithin and cholesterol (5:1)-derived liposomes
extended cinnamon oil’s stability to 96 h and increased its antibiofilm activity against
MRSA by almost ten times [171]. In light of developing drug resistance, liposomes entering
the biofilm hide the drug from biofilm inhabitants until they burst. Thereby, the liposome
prevents cells from recognizing the drug and developing resistance via horizontal gene
transfer [172,173]. Apart from conventional liposomes, surface-modified liposomes such as
PEG-derived liposomes, immunoliposomes, lectin-coated liposomes, and mannosylated
liposomes, are reported to enhance the bioactivity of the encapsulating drug in eradicating
and killing the biofilm and biofilm residents [173].

In addition to liposomes, antibiofilm lipid-based nanocarriers include nanoemulsions.
Oil–water emulsifier nanoemulsions are isotropic and thermodynamically stable nanosys-
tems. Their role as functional additives in different products such as cosmetics, topical
drug delivery systems, and pharmaceuticals are promising. Nanoemulsions may penetrate
porous matrices and touch the biofilm surface, enabling high antibacterial agent concen-
trations. Because of their adept penetration into porous matrices and intimate contact
with the biofilm surface, nanoemulsions are very useful for disintegrating biofilms [174].
Lipophilic nanoemulsions interact with the EPS, thereby disrupting and disengaging the
lipid layer [141]. A cumin oil-containing nanoemulsion was reported to target the biofilm
formation in E. coli and S. enterica by reducing EPS production [175]. Moreover, the cumin
oil-containing nanoemulsion significantly reduced the production of QS-related phenotypes
in those foodborne pathogens. Similarly, another work by Prateeksha et al. [176] stud-
ied the potential of nanoemulsions of eugenol (0.0005%) and methyl salicylate (0.0025%)
isolated from Gaultheria fragrantissima essential oil against the biofilm formation of E. coli
O15:H7. The hydrogel containing the compound-loaded nanoemulsion reduced the surface
colonization of E. coli on different surfaces. Furthermore, the essential oil nanoemulsion
was reported to inhibit the biofilm-related genes in E. coli.

Silica Nanoparticles

Similar to other nanoparticles, silica nanoparticles can also encapsulate drugs. Of-
ten mesoporous nanoparticles are seen with the encapsulation of active leads after in-
corporating compounds with stimuli-based release properties [177]. Mesoporous silica
nanoparticles are adaptable because pore size, particle size, and surface area can be easily
modified. It also provides the prolonged release of encapsulated pharmaceuticals over
hours or days [178]. In a study, mesoporous silica nanoparticles encapsulating different
essential oils, such as eucalyptus, orange, and cinnamon, were employed to alter the ad-
hesion, biofilm development, and preformed biofilms of S. aureus and E. coli [179]. The
activity of the essential oil-encapsulated nanoparticles was found to be dependent on the
phytochemicals used for encapsulation.
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Table 4. Recent studies on the nanocarriers encapsulating natural products against the biofilms of foodborne pathogens.

Polymers Used for
Nanoformulation

Natural
Substance

Properties of
Nanoparticles

Biological Activity against Foodborne
Pathogens References

Nanoparticles—biguanide-based
polymetformin from
Poly(ethylenimine)

Pluronic F-127 surfactant
and tannic acid

Spherical-shaped nanoparticles with
an average size of 96 nm and

average zeta potential of -43 mV.

The biofilm-eradicating activity of nanoparticles plateaued from
8 µg/mL, which showed a 2.4 log10-fold biofilm reduction in
MRSA. Along the same lines, the activity of biguanide-based

polymetformin alone plateaued from 32 µg/mL with a 1.5 log10
reduction, and 256 µg/mL for vancomycin with a

1.1 log10 reduction.
The nanoparticles showed good compatibility with human red
blood cells, mouse embryonic fibroblast 3T3 cells, and human

dermal fibroblast cells.

[180]

Nanoemulsion—
Poly(oxanorbornenimide) modified
with guanidinium, maleimide, and
tetraethylene glycol monomethyl

ether moieties

Eugenol,
methyl eugenol, carvacrol,

linalool, (+)-limonene,
p-cymene, and α-pinene

The average size of the
nanoemulsion containing different
natural products ranged from ~180

to ~530 nm.

After 3 h of treatment, nanoemulsions with eugenol and carvacrol
eradicated 90% of S. aureus biofilm.

Compared to a carvacrol-loaded nanoemulsion, eugenol showed
low toxicity to 3T3 fibroblast cells.

[181]

Polymeric Eudragit® nanocapsules Carvacrol
Nanocapsules with an average size
of 156 nm, PDI value of 0.22, and

zeta potential +44.8.

The nanocapsules were active in eradicating the biofilm formation
of foodborne pathogens such as Salmonella spp. and E. coli. [182]

Nanoliposomes (L80-T) and
nanoarchaeosomes (A80-T)

Thymus vulgaris
essential oil

Spherical vesicles.
L80-T with Z potential

−4.1 ± 0.6 mV, size ∼115 nm, and
A80-T with Z potential

−6.6 ± 1.5 mV and size ∼130 nm.

Compared to L80-T, A80-T was active against the preformed
biofilms of S. aureus and its clinical isolates.

Similar to the positive control vancomycin which has no effect
even at a concentration 4 to 8-fold higher than the MIC90.

However, A80-T at a concentration of MIC90 or MBC dislodged
the preformed biofilms.

[183]

Liposomes Berberine and curcumin
Spherical-shaped liposomes with an

average size of 253 and a surface
charge of −57 mV.

Compared to the free drug, co-encapsulation of BBR and CCR in
liposomes decreased their MICs by 87% and 96%, respectively.

At 10 µg/mL, dual drug-loaded liposomes disrupted the
preformed biofilms of S. aureus.

In addition, the dual drug-loaded liposomes reduced the bacterial
burden and thereby the infection in L929 fibroblast cells.

[184]
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Table 4. Cont.

Polymers Used for
Nanoformulation

Natural
Substance

Properties of
Nanoparticles

Biological Activity against Foodborne
Pathogens References

Liposomes

Antilisterial peptide (Lys-
Val-Asp-His-Phe-Pro-Leu)

originated from rice
bran protein

Spherical-shaped liposome with an
average size of 137.9 ± 3.1 nm and a

surface charge of 28.9 ± 0.8mV.

The MIC of liposomes with antilisterial peptide (84.26 µg/mL)
against the sessile L. monocytogenes cells was higher than the free

peptide (8 µg/mL).
However, the liposome encapsulating peptide showed a rapid

release and killing of L. monocytogenes cells after 10 min of contact
time, which was 120 minutes for free peptide.

The liposome-encapsulated drug showed flavor stability for four
weeks when stored at 4 ◦C.

[185]

Sol-gel–derived from
tetramethylorthosilicate Garlic extract –

Garlic extract-loaded nanoparticles were efficient in penetrating
and disrupting the well-established MRSA biofilms.

At 5mg/mL, the extract-loaded nanoparticles reduced the
biofilm-residing bacterial viability to 80% and reduced the
bacterial biofilm thickness to 2.3 µm from 9.6 µm (control).

[186]

Solid lipid nanoparticles–Chinese
white wax Curcumin Spherical-shaped nanoparticles with

an average particle size of 402 nm.

The curcumin-loaded nanoparticles showed a sustained drug
release profile and showed a higher drug release rate under an

acidic (pH 4.5) rather than a neutral (pH 7.4) environment.
The curcumin-loaded nanoparticles inhibited the biofilm
formation of S. aureus at a concentration of 125 µg/mL.

[187]

Solid lipid nanoparticles Cinnamon oil
Spherical-shaped nanoparticles with
an average size of 337.6 nm and zeta

potential of −26.6 mV.

Encapsulated solid lipid nanoparticles reduced the antimicrobial
activity against E. coli by 2-fold compared to the cinnamon oil

alone. Further, the sub-MIC of solid lipid nanoparticles reduced
biofilm formation by 55.25%.

[188]

Starch nanoparticles

Triphala formulation
containing the blended

extract of Terminalia chebula,
Terminalia bellirica, and

Emblica officinalis

The average size of the nanoparticle
was 283 nm with a zeta potential of

−12 mV.

The starch nanoparticle-encapsulated drug showed a
dose-dependent antibiofilm activity against MRSA, with

10 µg/mL being the most effective biofilm
inhibitory concentration.

[189]
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Table 4. Cont.

Polymers Used for
Nanoformulation

Natural
Substance

Properties of
Nanoparticles

Biological Activity against Foodborne
Pathogens References

Solid lipid nanoparticles - Glyceryl
monostearate and Poloxamer 188 Anacardic acid

The average size of the nanoparticle
was 212 nm with zeta potential and

PDI value of−13 mV and 0.285,
respectively.

Treatment with anacardic acid-loaded nanoparticles reduced the
biofilm formation of S. aureus at 0.097 µg/mL.

The nanoparticle treatment reduced the biofilm thickness
(50.3 µm, in control) and biofilm biomass (27.77 µm3/µm2, in

control) to 18.61 µm and 10.54 µm3/µm2, respectively.

[190]

Chitosan nanoparticles Chrysin
Spherical-shaped nanoparticles with
an average size of 355 nm and with

PDI value of 0.487.

Chrysin-loaded nanoparticles inhibited the biofilm formation of
S. aureus to 54% at 768 µg/mL. The nanoparticles also reduced

biofilm-related phenotypes, such as EPS and cell
surface hydrophobicity.

[145]

Chitosan nanoemulsion Thymol/thymol essential oil
The mean particle size of thymol
and thymol essential oil were 123

and 139 nm, respectively.

Compared to the thymol essential oil, thymol in a nanoemulsion
showed better biofilm inhibition against S. aureus (83.78%) and

E. coli (83.64%).
The thymol nanoemulsion enhanced the shelf life by reducing the

total viable count in the pork sample.

[147]

Chitosan nanoparticles Citrus reticulata essential oil The average particle size ranges
between 131 and 162 nm.

The activity of encapsulated nanoparticles was based on the
concentration of C. reticulata essential oil.

Chitosan nanoparticles loaded with equal volumes of C. reticulata
essential oil showed good biofilm inhibition and eradication

activity against S. aureus and E. coli.

[148]

Chitosan nanoparticles Cinnamaldehyde The average size was 298.1 nm with
a zeta potential of +38.73 mV.

Cinnamaldehyde-loaded chitosan nanoparticles at 1.25 mg/mL
showed antibiofilm activity. Further, these nanoparticles eradicate

the preformed biofilm of S. aureus to 48.1%.
[146]

Chitosan Prangos acaulis
Semi-spherical nanoparticles with
an average size of 89.8 nm and a

zeta potential of 10.78 mV.

The chitosan nanoparticles were effective against the
Gram-positive bacteria S. aureus and B. cereus with a biofilm

inhibitory rate of nearly 50% compared to the Gram-negative
bacteria E. coli with a biofilm inhibitory rate of 32% at

2000 µg/mL.

[191]

PLGA Xylitol
Nanoparticles with an average size
of 106–140 nm and a zeta potential

of 12.29–34.05 mV.

PLGA nanoparticles loaded with 5% xylitol showed a profound
preformed biofilm-eradicating and killing activity against

S. aureus.
The biofilm penetrating potential of PLGA nanoparticles

enhanced the biofilm-eradicating ability of xylitol.

[163]
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Table 4. Cont.

Polymers Used for
Nanoformulation

Natural
Substance

Properties of
Nanoparticles

Biological Activity against Foodborne
Pathogens References

Nanoemulsions Cinnamon and clove
essential oils

The average size of the
nanoemulsion was less than 15 nm.
The PDI and zeta potential values

were below 0.37 and −10.5 mV,
respectively.

Compared to Brij-35, the nanoemulsion formed using Tween-20
showed an enhanced rate of biofilm inhibition of 76% in S. aureus. [192]

Nanoemulsions Eugenol and methyl
salicylate

The mean diameter of eugenol and
methyl salicylate was 9.389 ± 0.2 nm
and 10.81 ± 0.4 nm, with PDI values

of 0.345 and 0.371, respectively.

The nanoemulsion carrying the drugs showed higher antibiofilm
and antivirulence activity against E. coli O157:H7. The expression

of genes related to the biofilm formation in E. coli was
significantly downregulated upon treatment with the

drug-loaded nanoemulsion.

[174]

Nanostructured lipid carriers Olibanum oil

The resultant nanoparticles had a
particle size of ~200 nm, a

polydispersity index of ~0.15, and a
zeta potential of ~−35mV.

The nanostructured lipid carriers encapsulating olibanum oil
effectively killed the biofilm resident C. jejuni cells and had an

MIC value of 780 µg/mL, which was very significant compared to
the free oil with an MIC of 1–3 mg/mL.

[168]
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5. Strategies to Enhance Biofilm Clearance

Compared to free compounds, NPs exhibit increased efficacy in preventing biofilm
formation and eliminating mature biofilms (Table 4). In general, antibiofilm activity can be
achieved by modifying the surface properties of the nanoparticles, which target bacterial
adherence and eliminate the adhering bacterial pathogens. Although the complete eradi-
cation of mature biofilms is challenging, it has been accomplished in rare instances. It is
believed that at most moments, the cargo was deactivated either by the harbored enzyme
or the microenvironment. With antibiotics loaded in lipid liquid crystal nanoparticles,
100 percent biofilm eradication was observed, although a 3-fold greater concentration of
free antibiotic failed to eliminate the preformed biofilms [193].

In contrast, a few nanoparticles were ineffective. For instance, nanoparticles showed
MIC values at the microgram level or failed to eradicate preformed biofilms or kill the
biofilm residents [145,191,194]. Zein nanoparticles loaded with anacardic acid could not
kill and destroy the residents of preformed biofilms [195]. Similarly, liposomal-loaded
antilisterial peptide showed a 10-fold increased MIC and antibiofilm inhibition compared
to the free peptide [185]. This was attributed either to the low drug delivery inside the
biofilm or to the inability of the nanoparticles to penetrate the biofilm matrix. Hence, it is
crucial to determine appropriate methods to boost NPs’ antibiofilm abilities.

5.1. Size and Surface Modifications

The capacity of nanoparticles to penetrate biofilms is directly related to their size.
Depending upon the density of the EPS matrix, water channels and meshes in biofilms
vary in size from 10 nm to hundreds of nm [196]. The diffusion rate of nanoparticles
within a biofilm is also directly proportional to its size [197,198]. It is suggested that
nanoparticles with an average size of 130 nm or smaller can penetrate the biofilm matrix
and have better biofilm-eradicating potential [199]. However, most nanoparticles with
this cutoff are attributed to the metallic nanoparticles and necessitate the reassessment of
those nanoparticles with small sizes for biofilm penetration and eradication. Notably, the
nanoparticles with this cutoff are primarily associated with the metallic ones (Table 3). In
contrast, organic NPs are malleable and biodegradable and must be validated whether the
observed cutoff value applies to them.

Similar to size, surface properties of the nanoparticles, like surface charge and hy-
drophobicity, are also essential factors determining their biofilm penetrating potential.
Coating PLA nanoparticles with the positively charged peptide poly-L-lysine enhanced
biofilm-eradicating capacity compared to uncharged nanoparticles [164]. The cationic
polymer chitosan is predicted to prevent bacterial biofilm formation by reacting electrostat-
ically with the negatively charged EPS, proteins, and DNA that make up biofilms [144,200].
Moreover, nanoparticles engineered with biofilm-degrading components such as DNase,
proteinases, and β-N-acetyl-glucosaminidase, showed better biofilm-eradicating poten-
tial [201,202]. Other positively charged nanoparticles show better binding and penetrating
potential, possibly through electrostatic interaction with biofilm components [146,191,203].
However, a deeper study is required to determine whether this is the actual scenario.
Similarly, hydrophilic nanoparticles with a negative or neutral charge are suitable for the
penetration of nanoparticles intended for mucosal delivery [204] but can also be applied
for biofilm penetration.

5.2. Stimuli-Responsive Release

In the presence of external cues, it is possible to create nanoparticles that trigger the
release of encapsulated drugs. An attraction-luring, intelligent, and potential therapeutic
technique for optimized drug release is using stimuli-responsive drug delivery systems
that are sensitive to a wide range of endogenous stimuli including pH, redox state, and
temperature. In this light, the acidic pH of the biofilm can be used as the external stimulus
to trigger the release of the encapsulated drug. Cationic farnesol-loaded nanoparticles
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were synthesized using the co-polymers 2-(dimethylamino) ethyl methacrylate, butyl
methacrylate, and 2-propylacrylic acid [205]. As a cationic nanoparticle, it showed a high
affinity towards biofilm components. Moreover, in the acidic biofilm environment, the
pH-sensitive core accelerated the sustained release of farnesol into the biofilm for a more
extended period. Compared to the free drug (20%), the farnesol-loaded nanoparticles
reduced the preformed bacterial biofilm by 80% [206]. In addition, the farnesol-loaded
nanoparticles attenuated the infection in vivo. The nanoparticles loaded with saturated
farnesol enhanced biofilm eradication by 3-fold and 7-fold compared to the farnesol-loaded
nanoparticles and farnesol alone [207].

Similar to pH, the enzymes secreted by bacteria can also be an external cue that can be
used to trigger drug release. Specifically, hyaluronidase [207], lipase [208], gelatinase [209],
and glutamyl endonuclease [209] have also been used as enzyme cues for triggered drug
release. Wang and Shukla synthesized an antibiotic nanoparticle loaded on a gelatin core
and coated with chitosan and hyaluronic acid [207]. Hyaluronidase produced by the
bacteria first degraded the hyaluronic acid, exposing the chitosan coating, which in turn
aids enhanced biofilm adhesion and penetration. As the chitosan layer expands, more
gelatinases could reach the inner core, leading to gelatin breakdown and drug release [206].
Compared to the free drug, the drug loaded in the nanoparticle coated with hyaluronic
acid enhanced the eradication of the biofilm.

In another work, Wu et al. [177] synthesized mesoporous silica nanoparticles decorated
layer by layer with stimuli-responsive materials. The lysozyme and amoxicillin encapsu-
lated with mesoporous nanoparticles were first coated with 1,2-ethanediamine, a cationic
polymer that shows non-specific electrostatic interactions with bacterial membranes, and
then with hyaluronic acid on which the hyaluronidase can act. They demonstrated the sys-
temic release of lysozyme and amoxicillin and the antibacterial potential of the synthesized
nanoparticles against E. coli and S. aureus [177], highlighting the use of a combination of
stimuli-responsive materials in the drug delivery system for the eradication and killing of
biofilm cells.

Apart from the endogenous cues, targeted drug delivery is possible using endogenous
signals, such as magnetic fields, ultrasound, electric fields, and light [210–212]. Recent
strategies included the use of ultrasound. Along with the nanoparticle, the use of ultrasound
effectively enhanced the eradication of biofilm formation. Recently, Gopalakrishnan et al. [213]
reported using a combination treatment involving antimicrobial polymeric nanoparticles
and ultrasound. The ultrasound treatment dislodged the preformed biofilms and enhanced
the penetration of the polymeric nanoparticles. This combined treatment strategy improved
biofilm eradication by 100- to 1000-fold without showing toxicity to fibroblast cells.

As a very affordable and accessible external stimulus, light is widely used for highly
precise, controlled drug release from responsive nanocarriers [214]. In particular, light in
the near-infrared region is appropriate for treating biofilm infections because of its longer
wavelength, greater tissue penetration, and low toxicity. In addition, near-infrared region
light may operate as a thermal trigger since photothermal agents can convert it to heat.
This conversion is often utilized in materials that respond to light since light is considerably
simpler to regulate than heat [214]. In a study by Zhao et al. [215], liposomes encapsulated
with the near-infrared light-responsive agent cypate and antibiotic eliminated biofilm
formation by pathogenic bacteria. The liposomes remained stable at room temperature.
Above 40 ◦C, the liposomes released more than 80% of the antibiotics into the medium. The
synthesized nanoparticles showed a more than 80% biofilm reduction, which was 8-fold
higher than the free antibiotic alone.

Like near-infrared light, magnetic fields are also widely used in medicine. Mag-
netic nanoparticles can target particular biofilm infection sites and penetrate protective
biofilm matrices with the energy from external magnetic fields. In addition, they have
been shown to induce local heat and mechanical stresses, which have the potential to
deteriorate polymeric materials and result in drug release. In their study, Yu et al. assessed
the activity of two co-assembled mesoporous silica nanoparticles containing antimicro-



Pathogens 2023, 12, 270 23 of 35

bial compounds [216]. The melittin-containing mesoporous nanoparticle was capped
with β-cyclodextrin modified with polyethylenimine (Host-MSN). The other magnetic
nanoparticles contained ofloxacin and were decorated with adamantane and capped with
curcubit[6]uril (Guest-MSN). Compared to the free drugs, the conjugated nanoparticles
eradicated the biofilm of the pathogenic bacteria by removing the biofilm biomass and
rapidly killing biofilm residents. Furthermore, these nanoparticle co-assemblies exhibited
no toxicity to mammalian cells and prevented biofilm formation in vivo without causing
host tissue damage and inflammation.

5.3. Combined Strategies

The combination of two different antibiofilm strategies will have synergistic activity
by enhancing biofilm eradication. The innovative nanoencapsulation approach of liposome
co-encapsulating antibiotics with metals improves their antibacterial and antibiofilm prop-
erties. For instance, gallium targets iron metabolism and iron-dependent cellular processes
to impede bacterial growth and biofilm formation [217,218]. Following this approach,
the growth and biofilm formation of P. aeruginosa was targeted by DPPC/dipalmitoyl
phosphatidylglycerol (DPPG) liposomes containing gallium and gentamicin. This formula-
tion outperformed liposome-loaded gentamicin and the free antibiotic against planktonic
and biofilm P. aeruginosa cells. This metal–antibiotic-loaded liposome also eliminated
bacterial biofilms and QS signaling and lowered gallium toxicity [219]. Bismuth and
bismuth-thiol, like gallium, alter iron uptake, alginate expression, lipopolysaccharides,
virulence factors, bacterial adhesion, and biofilm formation to inhibit a broad spectrum
of microorganisms [220–223]. Hereto, the liposome co-encapsulated with tobramycin and
bismuth-ethanedithiol was effective against Burkholderia cepacia and P. aeruginosa. The
drug-free liposomes with bismuth-ethanedithiol and the free drug had significantly re-
duced MIC and MBC values. Metal and drug co-loaded liposomes decreased A549 human
lung cancer cell toxicity compared to free bismuth-ethanedithiol and tobramycin. In addi-
tion, the liposomes co-encapsulated with tobramycin and bismuth-ethanedithiol reduced
biofilm-forming P. aeruginosa growth at 0.064 mg/L and suppressed QS below the free drug
and bismuth MICs. Bismuth-ethanedithiol tobramycin, bismuth-ethanedithiol-tobramycin,
liposomal tobramycin, and co-encapsulated with tobramycin and bismuth-ethanedithiol
did not perform better individually [224].

Similar to co-encapsulation, it is possible to synthesize a mixed nanohybrid system
involving both polymers and lipids. This nanohybrid system has the advantages of bio-
compatibility and enhanced drug delivery, which the lipids and polymers will provide,
respectively. This was substantiated by the work of Gou and colleagues [225], wherein
this nanohybrid system boosted antibiotic penetration inside the biofilm and improved the
treatment of MRSA infection.

Similarly, the simultaneous construction of the size and pH-responsive nanoparticles
enhanced biofilm eradication [226]. Azithromycin-conjugated amino-ended poly(amidoamine)
dendrimer- and 2,3-dimethyl maleic anhydride-modified PEFG-block-polylysine were
synthesized and assessed for their biofilm-eradicating potential [35]. The acidic biofilm
environment disassembles the primary structure of the nanoparticles, leading to the release
of the antibiotic-conjugated dendrimer, which is small and has a better biofilm penetrating
potential. The pH-responsive nanoparticle efficiently reduced bacterial burden and inflam-
mation in a lung infection model. A combination of enzyme modification and photothermal
therapy alleviated MRSA biofilms [227]. A mesoporous polydopamine nanoparticle was
fabricated with near-infrared-responsive carbon monoxide and biofilm-disrupting enzyme
DNase. The release of DNase destroyed the rigidity of the biofilm. After near-infrared
light irradiation, the nanoparticles released antibacterial carbon monoxide on the impaired
biofilms [227].

Antimicrobial photodynamic therapy (aPDT) eliminates specific cells by inducing
reactive oxygen species. This approach utilizes three different factors such as light (at an
appropriate wavelength), a photosensitizer (a compound activated by light), and molecular
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oxygen (for the generation of ROS) [228,229]. Singlet oxygen, produced explicitly by this
approach, triggers cell death by interacting with practically all cellular components and
biomolecules. Among several synthetic photosensitizers, natural compounds such as
curcumin, hypericin, and flavin derivatives, are used [229]. A study by Cossu et al. [230]
demonstrated the synergistic activity of gallic acid and UV-A against the biofilm formation
of E. coli O15:H7. This synergistic approach reduced the metabolic activity of the cells
residing in biofilms by 80% when exposed to 30 min of UV-A with 10 mM gallic acid.
Similarly, the photosensitizers encapsulated with mesoporous silica nanoparticles reduced
EPS production and biofilm formation by S. aureus and P. aeruginosa [231]. Considering the
role of aPDT against the resistance development among foodborne pathogens, the report
of Al-Mutairi et al. [232] in 2018 stated that aPDT is not supposed to induce antimicrobial
resistance in bacterial pathogens.

6. Conclusions and Future Perspectives

As detailed above, a surplus of clean labeled compounds has been identified from
natural resources with growth- and biofilm-inhibiting and biofilm eradicating potentials
against foodborne bacterial pathogens. However, certain limitations hold back the applica-
tions of these identified natural products. For instance, the identified bioactive might have
low bioavailability, bioactivity, solubility, and stability. Moreover, microbial biofilms with
altered microenvironments might modify the functions of natural bioactive compounds.
Encapsulation or fabrication of natural bioactives with nanoparticles will enhance the
activity compared to the free drugs in most instances.

To conclude, this review has summarized the most recent works that utilize the
nanotechnology approach to enhance the potential of natural products in the combat
against the biofilms of foodborne bacterial pathogens. The use of antibiofilm nanoparticles
in food sectors is in its infancy. However, the rise in studies over the last few years indicates
the topic’s increasing significance.

Although nanoparticles loaded with natural products show superior abilities, several
issues need to be resolved when these nanoparticles are used in foods: (1) future studies
focusing on the impact of nanoparticles on biofilms. Using natural products in nanoparticles
shows some undesired effects [185]. However, insufficient knowledge of the properties
of nanoparticles and the drug being encapsulated is thought to be the primary cause of
those effects. Recent studies insist on the importance of nanoparticle properties such as
size, shape, and surface charges, in biofilm studies [164,199,233]. However, the interaction
studies dealing with nanoparticles and biofilm matrix components are minimal and remain
a pivotal question to be explored [197,234]. (2) More studies focusing on the impact
of food and food components on nanoparticles need to be conducted. The activity of
nanoparticles depends on the nature and the load of the drug that is being encapsulated.
Natural products are extremely susceptible to degrading enzymes and environments with
altered pH and temperature. However, these can be overcome with specific strategies
like a stimuli-based release. (3) Studies need to be performed focusing on the toxicity
of the nanoparticles and the detailed evaluation of critical aspects such as toxicokinetics,
translocation, and synchronized response of different tissues to the nanoparticles. In
this regard, the drug-loaded nanoparticles have mostly been studied in vitro, and little is
known about their potential in animal models. However, some nanoformulations have
shown promising results in animal models, namely, silver [119], copper [127,235,236],
magnesium oxide [237], polymeric [180], and silica nanoparticles [216]. Meanwhile, the
use of drug-loaded nanoparticles in food systems has gained considerable attention from
regulatory boards regarding the consumers’ health after ingesting food products with
residual nanoparticles [238]. In addition, they can surpass biological barriers and lead to
bioaccumulation in various organs, tissues, and cells [239]. The World Health Organization
and U.S. Food and Drug Administration’s Nanotechnology Task Force was established
to evaluate the risks, explore nanomaterial qualities, and draft stringent rules to govern
their usage [238]. However, no standard for health risk assessments has been developed for
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these nanomaterials before their approval for use in foods. Nevertheless, a comprehensive
evaluation of these aspects needs further research. (4) Finally, the studies focusing on
application-oriented research is needed. To overcome the limitations in the applicability of
antibiofilm nanoparticles, the concurrent advances in active packaging technologies can also
be expected to contribute to realize the promise of safe and effective usage of nanoparticles
in food systems [240]. Keeping the advantages and disadvantages in mind, future efforts in
the standardization and the assessment of nanoformulations in food will enhance the use
of natural products in the battle against biofilms of foodborne bacterial pathogens.
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