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Abstract: Purpose: Failure of rapid re-epithelialization within 10–14 days after corneal injury, even
with standard supportive treatment, is referred to as persistent corneal epithelial (CE) defect (PED).
Though an array of genes regulates reepithelization, their mechanisms are poorly understood. We
sought to understand the network of genes driving the re-epithelialization in PED. Method: After
obtaining informed consent, patients underwent an ophthalmic examination. Epithelial scrapes
and tears samples of six PED patients and six individuals (control) undergoing photorefractive
keratectomy (PRK) were collected. RNA isolation and quantification were performed using either the
epithelial scrape taken from PED patients or from HCLE cells treated with control tears or tears of PED
patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the
expression of a few important genes in CE homeostasis, inflammation, and cell–cell communication,
viz., Kruppel-like factor 4 (KLF4), GPX4, IL6, TNFα, STING, IL8, desmoglein, and E-cadherin, among
others. Their expressions were normalized with their respective housekeeping genes and fold changes
were recorded. KLF4 localization and MMPs activity was carried out via immunofluorescence and
zymography, respectively. Results: KLF4, a transcription factor important for CE homeostasis, was
upregulated in tears-treated HCLE cells and downregulated in PED patients compared to the healthy
PRK group. Cell–cell communication genes were also upregulated in tears-treated cells, whereas they
were downregulated in the PED tissue group. Genes involved in proinflammation (IL6, 282-fold;
TNFα, 43-fold; IL8, 4.2-fold) were highly upregulated in both conditions. MMP9 activity increased
upon tears treatment. Conclusions: This study suggests that tears create an acute proinflammatory
milieu driving the PED disease pathology, whereas the PED patients scrapes are an indicator of the
chronic stage of the disease. Interferons, pro-inflammatory genes, and their pathways are involved in
PED, which can be a potential target for inducing epithelialization of the cornea.

Keywords: persistent epithelial defect (PED); re-epithelialization; interlukin-6; inflammation; correlation

1. Introduction

Vision impairment is a serious threat worldwide, which is more rampant in developing
countries such as India. As reported by the World Health Organization, 2.2 billion people
globally suffer from vision impairment [1]. Corneal opacity is one of the major reasons
for vision impairment and preventable blindness [2]. Due to a lack of awareness and the
unavailability of nearby ophthalmic clinics, many people show up at the clinic very late,
at which point their condition is difficult to treat. However, even with standard care and
treatment, patients often do not heal.
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The corneal epithelium (CE) is a self-rejuvenating stratified squamous epithelial tissue
at the most anterior part of the eye that serves as a transparent barrier, enabling clear
vision [3]. The structure and functions of CE are controlled by complex cues that mediate
genetic and epigenetic changes [4,5]. During development, CE stratification involves a
perfectly choreographed balance between cellular proliferation and differentiation that
continues during adult CE homeostasis, when additional demands due to cell loss from
periodic sloughing off the superficial cells and epithelial scrape injuries need to be met [6,7].

The transparent CE maintains corneal clarity by protecting the eye against infection
and damage and facilitating nutrient transfer and gaseous exchange from tear fluid. A
breach of CE integrity, resulting from mechanical trauma, infection, keratopathy, dry eye,
systemic and genetic disorders, and limbal stem cell deficiency (LSCD), causes persistent
corneal epithelial defects (PEDs) [8], which result in corneal scarring; ulceration; neovascu-
larization; conjunctivalization, ultimately leading to corneal opacification; and visual loss.
Clinically, failure of rapid re-epithelialization within 10–14 days after a corneal injury, even
with standard supportive treatment, is referred to as a persistent corneal epithelial defect
(PED) [9,10].

There are no definitive epidemiological studies or prevalence data available in India on
PED. The annual incidence of PED is less than 200,000 cases in the U.S. The incidence of PED
following a corneal transplant is around 7558 cases per year in the USA [7]. Though there
are PEDs of different etiology, clinical treatment remains limited and somewhat similar.

In this study, we aimed to investigate the molecular changes in the corneal epithelium
and tear samples of PED patients. To achieve this, PED patients with the etiology of
infection were specifically recruited. This was carried out: (a) to reduce the chance of
sample heterogeneity, (b) to exclude the fact that the severity of chemical or mechanical
injury might be dependent on the exposure and amount of the chemicals or level of trauma
in the eyes. In case of viral or bacterial infection in PED, the host factors play a major role,
yet the mechanism is poorly understood. Tears contain many secreted factors and enzymes,
which are altered when there are any external forces, including infections, in the eyes [11,12].
However, there is a lacuna of knowledge on how this diseased tear can influence the corneal
epithelial cells. We thus wanted to investigate how the healthy vs. diseased tears from
healthy individuals or PED patients affect the corneal epithelial cells in vitro. Additionally,
the in vivo gene expression levels in the corneal epithelium of healthy or PED patients
were measured using qPCR from the corneal epithelial scrapes. Further, we used gene
expression data and clinical information to establish a clinicopathological correlation.

We hypothesized that tears from diseased eyes might contain crucial factors for infec-
tion and non-healing factors of epithelial defects, which can create a feedback loop and
further deteriorate the process. We were interested to see how tears from PED patients
can affect the corneal epithelial cells and how their expression correlates with in vivo gene
expression results. We also investigated if the secreted factors in tears and the corneal ep-
ithelial cells synergistically affect corneal healing or if they act independently by stimulating
different molecular mechanisms.

2. Materials and Methods
2.1. Study Design

The study protocol was approved by the Institutional Review Board of Dr. Shroff’s
Charity Eye Hospital, Delhi. Persistent corneal epithelial defect (PED) patients with active
infections (of viral or bacterial etiology) and age-matched healthy individuals undergoing
photorefractive keratectomy (PRK), were recruited for this study from this single tertiary
care eye hospital. All participants were included in this study with signed informed consent.
All study participants underwent thorough ophthalmic examinations, slit lamp examina-
tion with fluorescein dye to evaluate the epithelial defect, and anterior segment-optical
coherence tomography (AS-OCT) to evaluate corneal thickness and opacity. The etiology
of the infection was determined by an expert clinical team of the Cornea department in the
tertiary care unit of Dr. Shroff’s Charity Eye Hospital and by microbiological tests. The
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tear samples were collected from the study participants using a Schirmer’s strip. Tears
were collected up to the 25 mm mark or for a maximum of 5 min and collected in a sterile
empty microcentrifuge tube and immediately processed or stored at −20 degrees. Epithelial
scraping, which is routinely followed in the clinic for PED patients, was collected from all
PED patients and stored in RNA preserving solution. Similarly, corneal epithelial tissue
was collected from individuals undergoing PRK surgery for correction of refractive errors
and stored in RNA.

2.2. Cell Culture and Maintenance

Human Cornea limbal epithelial cells (HCLE) (a kind gift from Dr. Ilene Gipson,
Harvard Medical School, Boston, MA, USA) were cultured in complete culture media as
described previously [13] (Keratinocyte- serum free media (KSFM), supplemented with
Bovine pituitary extract and 0.2 ng/mL Epidermal Growth factor (EGF)). HCLE cells were
passaged at a 70% confluent stage.

2.3. Extraction of Tears Protein and HCLE Treatment

Total proteins were extracted from the tear samples in sterile 200 uL of 1X PBS and
filtered using 0.2-micron filters. Crude proteins were quantified using 280 nm absorbance
in NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA). To treat HCLE, cells were
seeded at a density of 50,000 cells/well of a 12-well plate in complete media for 24 h.
Cells were treated with an equal concentration of isolated tears for 48 h. At the end of
the experiment, RNA was isolated from HCLE cells using a Qiagen Mini-RNA isolation
kit (Cat. No./ID: 74004), according to the manufacturer’s protocol and quantified using
NanoDrop. An equal amount of RNA from the PED and PRK individuals was converted
to cDNA using the Verso cDNA synthesis kit. Quantitative Real-time polymerase chain
reaction (PCR) (qRT-PCR) was performed in duplicate for all the samples using SYBR green
dye on an Azure qPCR instrument (Azure Biosystem, Ceilo 6, Dublin, CA, USA). RPL10
and beta-actin were taken as housekeeping genes and their geometric mean was used for
data normalization. All results are shown in terms of relative expression (∆∆Ct) of genes,
where PRK is the control group and PED is the disease group.

2.4. Gelatin Zymography

To evaluate the levels of active MMPs in the supernatant of the HCLE treated with
tears extract, gelatin Zymography was performed using 8% acrylamide gel with a final
concentration of 1 mg/mL gelatin. An equal concentration of cell soup was mixed with 4x
loading eye (no reducing agent and no heating) and incubated for 5 min. An equal amount
of protein and pre-stained protein standards (Thermo Fischer Scientific, Waltham, MA,
USA, Cat no. 26616) was loaded in each well of the gel and separated via electrophoresis.
Next, the gel was incubated in 1% triton-X 100 for 30 min twice, followed by incubation
in developing buffer (composition) overnight at 37 ◦C. The next day, developing buffer
was removed and the gel was stained with Coomassie blue stain for 10 min. The gel was
washed and incubated in de-staining buffer to remove the excess stain. The clear band in
the gel indicates the MMPs activity. The bands were quantified using ImageJ software and
were plotted as a bar graph.

2.5. Immunofluorescence

For immunofluorescence, HCLE cells were seeded on coverslips in complete media.
Cells were treated with tear extracts for 48 h. At the end of the experiment, cells were
washed once with PBS, followed by fixing with 4% paraformaldehyde, permeabilization
with 0.1% triton-X 100 for 5 min, and washed 3 times with PBS. Blocking was carried out
using 5% bovine serum albumin (BSA) for 1 h at room temperature followed by adding
KLF4 antibody (CST, 1:100) and incubation overnight at 4 ◦C. Cells were washed 3 times
with PBS and secondary antibody (Invitrogen, Waltham, MA, USA, Goat anti-rabbit, Alex
flour 468) was added (1:200) and incubated for 1 h at RT. Cells were washed with PBS
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3 times. Coverslips were mounted using VECTASHIELD® Antifade Mounting Medium
H-1000-10 and were imaged using a Zeiss inverted fluorescent microscope.

2.6. Data Analysis

qPCR data analysis was conducted in Azure Cielo Manager software and Microsoft
Excel. Plots were generated using GraphPad Prism (version 9.4.1, California, USA), and
R programming (version 4.0, New Zealand). In graphical presentations, normalized fold
change with standard errors of mean (SEM) was used for qPCR data. Outliers in the
in vitro experiment were removed for data analysis. The band intensity of the Zymogram
was measured in ImageJ software (1.53k version, NIH, USA). Possible protein–protein
interactions and biological pathways were determined using the String database [14].

2.7. Correlation Plot

A correlation plot was made using the R built-in functions, ‘Hmisc’, and ‘corrplot’,
packages. Relative mRNA expression values, i.e., ∆∆Ct, and quantitative clinical data, i.e.,
age, duration of PED at the time of sample collection and size of the defect (mm2) were
used to generate the plot. Pearson’s correlation test was performed.

3. Results
3.1. Ophthalmic and Clinical Evaluations

The study was approved by the IRB committee of Dr. Shroff’s Charity Eye Hospital
(SCEH), Delhi, India. All patients were recruited after obtaining informed consent. Patients
presented at SCEH were examined by expert clinicians and were diagnosed with PED.
Age matched controls were the individuals undergoing PRK at Dr. Shroff’s Charity Eye
Hospital, Delhi. Figure 1 shows the overall methodology and experimental design of this
study. All PED patients had infections identified clinically by expert clinicians; patients
had herpes simplex virus (HSV) keratitis and Pseudomonas infections (patient summary in
Table 1). Figure 2 shows the representative images of PED ophthalmic evaluation, diffuse
lamp, and fluorescein dye, indicating the non-healed ulcers in PED. AS-OCT indicates the
thickness of the cornea and the extent of opacity as measured by hyperreflectivity score.
Ophthalmic evaluation revealed that PED patients have variable corneal thickness with
increased hyperreflectivity (opacity) compared to the control (Figure 2).
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Figure 1. Schematic depicting the methodology of sample collections and the experimental design.
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Table 1. Clinical and demography details of the patients included in the studies.

Patients Age Sex Clinical
Diagnosis

Penetrating
Keratoplasty (PK)

Status

Duration
PED

Months

Defect
Size

(mm2)

PED1 66 M HSV POST-PK 1 2

PED2 44 M HSV POST-PK 2 6

PED3 40 M HSV POST PK 1 12

PED4 70 M HSV NO 10 49

PED5 65 M PSEUDOMONAS POST PK 4 36

PED6 78 F PSEUDOMONAS NO 3 35
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Figure 2. Clinical diagnosis and ophthalmic evaluation. Slit lamp images showing the corneal ulcers
associated with PED, diffuse light showing the non-healing ulcers (A), and the same region stained
with fluorescein (B) to show the lack of epithelium. AS-OCT image of a healthy individual (C) and
representative images of PED patients (D,E). Corresponding quantitative bar graph showing the
corneal thickness (F) and hyperreflectivity, measure of opacity (G). ** indicates statistical significance
p ≤ 0.05.

3.2. PED Tears Create an Acute Inflammatory Milieu That Possibly Compromises the
CE Homeostasis

To test the effect of tear samples in active PED patients in vitro, Human Corneal Limbal
Epithelial (HCLE) cells were cultured with extracted proteins from the tear samples of three
PED patients as well as healthy individuals. We hypothesized that this may be due to the
hyper secretion of matrix metalloproteases (MMPs), which degrades different extracellular
matrix (ECM) proteins in case of infections [15]. To test the hypothesis, we checked the level
of MMPs, that are most abundant in infections, by performing a gelatin zymogram in the
HCLE cells treated with tears extracts condition media (Figure 2). Results showed that PED-
induced HCLE cells had significantly higher MMP9 activity compared to cells treated with
healthy tears. (Figure 3), indicating that PED tear samples have factors that can induce the
expression of activated MMPs. High MMPs possibly hinder the epithelialization phase [16]
by degrading the cell–cell adhesion, which is an important part of the healing process, and
the extracellular matrix responsible for cell–cell communications and basement membrane.
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As increased MMPs activity is associated with a pro-inflammatory state of the tissue,
we evaluated the gene expression of pro-inflammatory cytokines in HCLE cells treated
with tear extracts. Inflammation is one of the crucial phases in the wound-healing process.
Though it is required to combat infections, prolonged inflammation leads to persistent and
non-healing wounds. Thus, we looked for a few important inflammatory cytokines known
to be involved in the cornea. We looked for mRNA level expression of TNF-α, IL1-beta,
IL6, IL8, TGFβ1, TGFβ2, STING, and IRF3 using quantitative polymerase chain reaction
(qPCR) (Figure 4A). Most of the genes, viz., IL1-beta, IL6, IL8, IRF3, and TGFβ2 showed
elevated expression in PED compared to the healthy group. TGFβ2 had significantly higher
expression in the PED group (n = 3, p < 0.05, t-test).

Similarly, a few important genes involved in cell–cell communication and corneal ep-
ithelial homeostasis, viz., desmoglein, E-cadherin, beta-catenin, GPX4, NCOA4, SLC7A11,
and KLF4 were also looked for in the tear-induced HCLE cells (Figure 4B). Interestingly,
the expression of KLF4 was higher in the PED-tear group, though statistically not signif-
icant. KLF4 is an important transcription factor and plays a crucial role in maintaining
CE homeostasis by regulating epithelial–mesenchymal transitions, plane of cell division,
cell cycle, etc. However, to further confirm the gene expression-level findings, immunoflu-
orescence staining was performed with an anti-KLF4 antibody. It was observed that in
PED-tear-induced cells, KLF4 was localized in the nucleus, whereas healthy-tear-induced
cells showed the presence of KLF4 all over the cytosol (Figure 5A). KLF4 is a transcription
factor, and the nuclear localization of KLF4 indicates its active form. This further confirms
that KLF4 is active in PED-tear-induced HCLE cells. With these gene expression data, we
performed STRING analysis and showed the importance of these genes in regulating other
crucial factors important in driving PED pathology (Figure 6). We also created a correlation
plot to understand the positive and negative association of these factors in PED.

In summary, tears from PED patients can induce KLF4 production as well as TGFβ2
and MMP9 activities. This points out the dual nature of tear secretions in terms of containing
factors that can affect corneal epithelial defect healing.
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Figure 5. Immunofluorescent images showing the expression and localization of KLF4 in the control
and PED tears-treated HCLE cells. HCLE cells treated with control and PED tears followed by
staining with anti-KLF4 antibody. Scale bar: 100 µm (A). Bar graph shows the expression of KLF4 at
the transcript level by qRT-PCR (B).
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Figure 6. Gene expression relation and corresponding STRING analysis and correlation plot of
the PED epithelial scrape. qRT-PCR showing the gene expression profile in the PED and control
group (A). STRING analysis for the same set of genes, showing the potential interacting partners and
their edge coefficient (B). Correlation plot and the confidence levels of the same gene set (C) n = 6;
test—t-test (* p < 0.05; ** p < 0.01, # p < 0.1; ns non-significant).

3.3. Epithelial Scrapes of Patients Indicate a Chronic Stage of Inflammation Associated with
Compromised CE Homeostasis

Next, we checked for the overall gene expression changes in the corneal epithelial
tissue in vivo. Tears contain only secreted factors, so other intra-cellular factors and cellular
communications are not captured in tears. We collected epithelial scrapes from six PED
patients and six healthy individuals going through PRK surgery. A list of important genes,
including cellular communication genes (E-cadherin, desmoglein); genes related to the
immune system (TNF α, IL6, IL8, and STING); and homeostasis markers (KLF4 and GPX4)
were quantified using qPCR (Figure 6). Even though we observed significantly higher
expression of TGFβ2 in PED-tear-induced HCLE cells, it was not detected in the corneal
epithelial cells in vivo.

As expected, in healthy individuals as well as PED patients, both groups had intra-
group differences in gene expression, but interestingly, the gene expression levels in the
control group had lower deviations. However, E-cadherin, desmoglein, and GPX4 were
significantly downregulated in the PED group. KLF4 is also downregulated in the PED
group (p < 0.1), contrary to the increased expression of KLF4 in HCLE cells treated with PED
tear. On the other hand, IL6 (p < 0.1), IL8, and TNFα (p < 0.05) were highly upregulated
in the PED group. All the PED patients had defects for at least 4 weeks in this cohort
while recruited in the study, and they should normally not be in the inflammatory stage.
This strongly suggests that inflammatory cytokines- TNFα, IL6, and IL8 are likely to be
responsible for the persistent defect in the cornea. Poor cell–cell adhesion is also observed
in PED patients, as seen in the lower levels of desmoglein and E-cadherin.

3.4. Correlation of In Vivo Results with Clinical Factors

Important clinical features (such as duration of PED, defect size, and age) were noted
for all the patients. Thus, we were interested to find out if these features had any effect
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on gene expression in CE tissue. Pearson correlation was calculated for the quantitative
clinical features (Figure 7) with the major relative in vivo mRNA expression level. Relative
expression of STING, IL8, and GPX4 had strong negative correlations with age, i.e., patients
of a higher age had lower expression of these genes in our patient group (Figure 7). The
duration of PED while recruiting the patients and the defect size in the patients were highly
correlated, as expected. Indirectly, this also corresponds to the severity of the PED. This
severity had a strong negative correlation with the mRNA expression level of KLF4, STING,
and IL6. E-cadherin and desmoglein were positively correlated, essentially indicating that
the expression of both genes is affected similarly. Additionally, IL8, TNF-alpha, and GPX4
were positively correlated with each other.
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4. Discussion

Management of patients with PED of the cornea can be challenge to even a seasoned
ophthalmologist. Therefore, it is essential to understand not only the pathophysiology
of poor epithelialization, migration, and appropriate closure of the wound, but also the
mechanism of cellular and molecular changes taking place in the patient surface microenvi-
ronment. In this study, we demonstrated that the corneal epithelial cells have the ability to
express proinflammatory factors in the presence of tears that could be a potential player
in PED pathology [17]. A corneal surface needs a viable cell source of CE, as well as a
conducive microenvironment, to generate healthy CE, thereby maintaining the delicate
balance of proliferation, migration, and differentiation.

In this study, we focused on the role of tears and the PED scrapes as a base material
to understand the disease pathology by profiling the gene expression. We used gene
expression as the input data to establish correlation and the possible biological pathways
involved in PED. Tears have been extensively studied in various ocular surface diseases
as a direct or a surrogate indicator of the tissue state [12,18]. In several eye inflammatory
disorders, tears have been analyzed and proposed as a source of pro-inflammatory factors,
and their secretion is guided by the disease and the micro-environment milieu [12,19].
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In our study, we found that using tears treatment in HCLE cells resulted in increased
expression of pro-inflammatory markers such as IL6, IL8, TNF-alpha, and fibrotic marker
TGF-ß2, indicating that tears are enriched in factors that have the potential to initiate an
inflammatory response. In addition to evaluating the gene expression, we also observed
increased expression of active MMP9 in the tears-treated HCLE cells supernatant. Studies
report wound fluid levels of MMP9 at initial presentation in the clinic as an important
predictor of the healing outcomes in diabetic foot ulcers [20]. We also observed increased
expression of transcription factor KLF4 at the transcript level in cells treated with tears.
Immunofluorescence revealed that the PED tears treatment induces translocation of KLF4
in the nucleus compared to the control, where KLF4 staining was seen in the cytoplasm
as well as the nucleus, indicating that PED tears could potentially induce transcriptional
activation of KLF4. To confirm the transcriptional activation, we evaluated the direct targets
of KLF4; beta-catenin and Desmoglins expression increased, as expected, but E-cadherin
expression decreased, which is contrary to what is known in the literature. Increased
expression of KLF4 is associated with cell cycle arrest and apoptosis [21–23]. We also
observed increased expression of GPX and SLC7A11 and a marginal decrease in NCO4 in
the HCLE cells treated with tears, indicating that tears treatment induces oxidative stress,
resulting in increased expression of these enzymes. Therefore, tears play an important role
in PED by inducing the expression of pro-inflammatory cytokines. Increased expression of
KLF4 coupled with translocation to the nucleus could be the initial step in the development
of PED.

In order to understand that tears are a crucial player in PED, we evaluated the gene
expression in the CE of PED patients scrapes which were continuously nourished by
tears. We were interested in understanding the levels of the same cytokines as seen in the
tears-treated HCLE cells. The profile of pro-inflammatory cytokines was in line with the
tears-treated HCLE cells gene expression. Surprisingly, IL6 levels were very high in PED
patients’ epithelium compared to that of the control. On other hand, the expression of
KLF4 and its target genes expression decreased, contrary to what we saw in tears-treated
HCLE cells. IL6 is known to have an important role in wound healing [24]. It acts as a
neurotrophic factor [25] and its expression is increased in HSV1 infection [26,27]. As the
patients recruited in this study showed HSV1-mediated PED, increased IL6 expression
is an expected result, and it also points to the central role of IL6 in PED pathology. We
also observed decreased expression of two enzymes that are protective against oxidative
stress: GPX and SLC7A11. The decreased expression of KLF4 is associated with loss of CE
epithelial phenotype, compromised barrier function, tight junctions, and adherent junctions
essential for maintaining CE homeostasis [21–23,28].

Discussion of Correlation Plot

Even with only six PED patients, we showed how the clinical features are correlated
with the gene expression in vivo. As it is known that age is one crucial factor for immune
regulations, it is seen in the PED patients that expression of immune genes (IL8, TNF-alpha,
STING) was lowered in patients of a higher age. Interestingly, expression of IL6 was not
found to be strongly related to age; rather, IL6 expression was negatively correlated with
defect size. This indicates that IL6 is expressed more in the early phase of PED and when
the defect size is smaller. Additionally, IL6 expression was not related to any other immune
genes investigated in this study (STING, IL8, TNF-alpha). This opens up the possibility
that IL6 may be a crucial gene in the development of PED in its early phase, and could thus
be a potential target. However, this must be validated in a higher sample size and through
an in-depth understanding of the disease mechanisms.

Another interesting gene is KLF4, which was found to be negatively correlated with
the severity of PED. The higher the severity, the lower the expression of KLF4. As Tiwari
et al. [21–23,28] have demonstrated, KLF4 is important in maintaining the homeostasis of
corneal epithelial cells. This indicates that lower expression of KLF4 is another important
key factor for PED development.
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In conclusion, tears play an important role in PED pathology, setting up a pro-
inflammatory milieu which, coupled with increased KLF4 (an inhibitor of the cell cycle),
could be the potential driver of PED disease pathogenesis. (Figure 8 shows a summary
of this study). However, the epithelial scrape is an indicator of the chronic stage of PED.
Knowing this, our study will provide insight into the cross-talk between HCLE and KLF4.
Investigating the downstream targets in PED samples will provide an avenue for evaluating
these as potential therapeutic targets.
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