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Abstract: Chagas disease, a neglected disease caused by the protozoan Trypanosoma cruzi, is endemic
in 21 Latin American countries, affecting 6–8 million people. Increasing numbers of Chagas disease
cases have also been reported in non-endemic countries due to migration, contamination via blood
transfusions or organ transplantation, characterizing Chagas as an emerging disease in such regions.
While most individuals in the chronic phase of Chagas disease remain in an asymptomatic clinical
form named indeterminate, approximately 30% of the patients develop a cardiomyopathy that is
amongst the deadliest cardiopathies known. The clinical distinctions between the indeterminate
and the cardiac clinical forms are associated with different immune responses mediated by innate
and adaptive cells. In this review, we present a collection of studies focusing on the human disease,
discussing several aspects that demonstrate the association between chemokines, cytokines, and
cytotoxic molecules with the distinct clinical outcomes of human infection with Trypanosoma cruzi.
In addition, we discuss the role of gene polymorphisms in the transcriptional control of these
immunoregulatory molecules. Finally, we discuss the potential application of cytokine expression
and gene polymorphisms as markers of susceptibility to developing the severe form of Chagas
disease, and as targets for disease control.

Keywords: cytokines; immunoregulation; gene polymorphism; chagas disease; Trypanosoma cruzi

1. Introduction

According to the World Health Organization (WHO), Chagas disease, a parasitic
disease caused by infection with Trypanosoma cruzi, leads to approximately 14,000 deaths
annually and is one of the main causes of sudden death, which often occurs in the most
productive phase of the patient’s life. The disease is still considered a serious social and
public health problem, despite the advances made in its control and prevention [1–4].

The main form of T. cruzi infection in endemic setting is via the contact with contami-
nated excreta from the invertebrate host, a triatomine of the Reduviidae family, that occurs
during the vector’s blood meal. However, other forms of parasite transmission via blood
transfusion, organ transplantation, congenital transmission, ingestion of contaminated food
and, less frequently, laboratory accidents, may occur [5–8].

After infection, an acute phase of short duration is followed by the chronic phase
of the disease, which can last for years or decades. The acute phase is characterized by
local tissue degeneration and inflammatory changes due to high parasitemia [9,10]. In
approximately 90% of cases, the clinical manifestations last from a few weeks to a few
months, and spontaneously regress with a decrease in parasitemia. In most cases, the
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acute phase can be asymptomatic, or patients may display unspecific symptoms [11]. Lack
of specific symptoms is one of the challenges in the early diagnosis of CD, which has
implications for therapeutic interventions. Thus, finding new diagnostics, especially a
point-of-care that can be applied in the field is a pressing matter. Regarding this effort, new
approaches have recently been developed and have been extensively reviewed in a recent
paper focused on Chagas disease diagnosis [12].

Around 70% of patients who progress to the chronic phase of CD remain asymptomatic,
characterizing the indeterminate clinical form (IND). In these patients, the disease is only
detected by positive results from at least two specific serological tests since the patients
do not display any clinical signs or symptoms of the disease. Approximately 30% of
chronic patients display digestive and/or cardiac alterations during the chronic phase,
which may lead to death. Amongst the symptomatic forms, the cardiac clinical form has
the highest morbidity and mortality rate [13,14]. The distinct clinical evolution in the
chronic phase results from multifactorial mechanisms. For instance, parasite aspects, such
as strain variability and tropism [15,16], and host aspects, such as age, sex, nutritional,
socioeconomic factors, and immunological characteristics [17–20] are known to influence
disease progression.

2. The Role of Cytokines in Immune Regulation during the Chronic Phase of
Chagas Disease

Cytokines are molecules actively involved in immune regulation during the chronic
phase of Chagas disease (Figure 1) and, although their role in cell activation is essential
for infection control, it can contribute to myocardial dysfunction [21,22]. While a high
expression of mRNA that code for pro- and anti-inflammatory cytokines has been observed
in mononuclear cells from patients chronically infected with T. cruzi [23], studies performed
by several groups showed that the production of such cytokines was distinct in patients with
different clinical forms of the disease (Table 1). While the role of these cytokines provides
insight as to the mechanism by which they act, more studies are needed to address this
issue. The release of pro-inflammatory cytokines in the plasma, as well as their expression
by peripheral blood mononuclear cells (PBMC) and by the myocardium, characterize the
intense inflammation and Th-1-like response that is observed in patients with chronic
Chagas cardiomyopathy (CCC) [24–33]. This exuberant inflammatory immune activation
observed in CCC patients is high, even if compared to inflammatory cardiomyopathies of
other etiologies, such as rheumatic heart disease and idiopathic cardiomyopathy [34,35].
On the other hand, anti-inflammatory cytokines are predominant in the immune milieu of
IND patients, despite the concurrent production of anti- and pro-inflammatory cytokines
observed in these patients [36].

Table 1. Cytokines, chemokines, and cytotoxic molecules associated with distinct clinical outcomes
of human Chagas disease.

Cytokines and Their
Receptors Role Source References

Association withthe Development of CCC
IFN-gamma Inflammation, T-cell activation PBMC, heart [22,24,29,30,37–39]

TNF
Inflammation, T-cell

activation, worse cardiac
function

Plasma, blood, PBMC, heart [18,28,31,32,38,40–42]

sTNFR1 and sTNFR2 Inflammation,
worse cardiac function Plasma [43]

IL-6 Inflammation,
worse cardiac function Plasma [30,44,45]

IL-1β Inflammation Plasma [30,46]

TGF-β Tissue fibrosis Serum, heart [47]
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Table 1. Cont.

Cytokines and Their
Receptors Role Source References

Association withthe Development of CCC
MIF Inflammation, progression Serum [48]

Association with protection to CCC
IL-2 Low in CCC PBMC [49]

IL-10 Protective immune response,
better cardiac function Plasma, PBMC, whole blood [18,30,38–41,50]

IL-17 Protective immune response,
better cardiac function Plasma, PBMC [38,51–53]

Fibrotic and Cytotoxic
Molecules Description Source References

Association withthe Development of CCC
MMP-2 Tissue fibrosis Plasma [54,55]

MMP-9 Tissue fibrosis Plasma, PBMC [54,56]

MMP-2/MMP-9 ratio Pathological cardiac
remodeling Plasma, heart [57,58]

Fibronectin Recruitment of inflammatory
T cells to the heart Heart [42]

Granzyme A Myocyte dysfunction Heart [28]
Chemokines and Their

Receptors Description Source References

Association withthe Development of CCC

CXCL9 Recruitment of
inflammatory cells Plasma, heart [46,59,60]

CXCL10 Recruitment of
inflammatory cells Plasma [46,61,62]

CCL5 Recruitment of
inflammatory cells Serum [63]

CCL2 Recruitment of
inflammatory cells Serum and plasma [32,63]

CCR5 Recruitment of inflammatory
cells, Worse prognosis PBMC [62,64]

CXCR3 Recruitment of inflammatory
cells PBMC [64]

Cytokines can be produced by a plethora of distinct cell populations, and identify-
ing the source of the cytokines, as well as the antigens that induce their expression may
guide immunotherapeutic interventions. The functional analysis of human monocytes
after in vitro infection with T. cruzi trypomastigotes showed that, in CCC patients, these
cells display high expression of TNF. Conversely, monocytes from IND patients are com-
promised with the production of IL-10 [18,51]. In addition, classical (CD14++CD16-) and
inflammatory (CD14++CD16+) monocytes are positively correlated with IL-6 production,
described as a biomarker of cardiac failure and severity in CCC patients [44,45,65]. Al-
though monocytes are an essential source of cytokine in chronic Chagas disease, they are
also crucial for antigenic presentation to T lymphocytes, which are highly activated in the
chronic phase of infection [66].

The presence of circulating CD4+ T cells that produce high levels of IFN-gamma and
low IL-10/IFN-gamma ratio reported in CCC patients confirms the Th1 profile associated
with intense inflammation. Menezes et al. (2004) demonstrated a positive correlation
between the frequency of CD4+ TNF+ cells and CD4+CD28- cells in CCC patients. Alterna-
tively, CD4+ CD28- cells were positively correlated with the frequency of CD4+IL-10+ cells
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in IND patients, suggesting the involvement of distinct mechanisms of immunoregulation
between the symptomatic and asymptomatic clinical forms of the disease [67].
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Figure 1. Schematic representation of cytokine expression in the indeterminate and cardiac clin-
ical forms of Chagas disease. In the indeterminate clinical form, an increased expression of anti-
inflammatory cytokines, such as IL-10 and IL-17 is observed. However, in the cardiac clinical form,
the increased expression of pro-inflammatory cytokines, such as IFN-gamma and TNF, favor the
establishment of the inflammatory environment. Cytokines, such as IL-7 and IL-15, have been
associated with the cardiac clinical form.

This immunological polarization is also observed among other cytokine-producing
cell subpopulations. T cells that do not express the co-receptors CD4 and CD8, named
double-negative (DN) T cells, have been described as potent cytokine producers in many
diseases [68]. After in vitro stimulation with T. cruzi trypomastigotes, DN T cells expressing
the T-cell receptor (TCR) alpha-beta from CCC patients show high expression of inflamma-
tory cytokines (IFN-gamma, TNF). On the other hand, the TCR gamma-delta+ DN T cells
are involved with high IL-10 expression and better cardiac function in IND patients [50].
Interestingly, stimulation of TCR gamma-delta+ DN T cells with a glycolipid-rich fraction
of T. cruzi increases the IFN-gamma-mediated inflammatory profile in CCC patients [69].
Conversely, blocking the in vitro activation of DN T cells from CCC patients reduces the
frequency of IFN-gamma in TCR gamma-delta+ DN T cells and increases the frequency of
IL-10 in effector memory TCR gamma-delta+ DN T cells, favoring the establishment of a
less inflammatory environment [70,71]. Furthermore, in IND patients, central memory DN
T cells show a balanced immune response characterized by the co-expression of circulating
IL-10+ IFN+ cells [70].

In addition to the DN T cells, another minority circulating cell population that displays
a dichotomic cytokine profile in Chagas disease associated with distinct clinical forms are
the B1 B cells. These cells represent a subset of B cells involved with the production of
natural and auto-reactive antibodies [72,73], as well as significant IL-10 expression [74].
Previous studies have shown that the frequency of B1 B cells is increased in chronic Chagas
disease patients [66], and that the frequency of these cells is restored to normal levels in Cha-
gas patients submitted to successful chemotherapy [75]. It has been shown that B-1 B cells
from Chagas patients respond to parasite antigens [75], and are preferentially activated by a
component of this antigen that is enriched in proteins, but not lipids and carbohydrates [41].
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In addition, these activated B1 B cells produce different cytokine profiles depending on
whether they come from IND or CCC patients: while activated TNF-producing B1 B cells
are observed in cultures of PBMC from CCC-stimulated protein-rich parasite-derived anti-
gens, a concomitant production of TNF and IL-10 was observed in cultures of PBMC from
IND under the same condition [41]. Importantly, these potentially regulatory activated B1
B cells are correlated with better cardiac function in Chagas disease [41]. Moreover, the
presence of regulatory B2 B-cells, the great majority of antibody-producing B-cells, have
been correlated with the indeterminate form of Chagas disease [56]. These data support the
hypothesis that a balanced anti-inflammatory/pro-inflammatory profile in IND patients,
established with the involvement of different cell subpopulations, prevents tissue damage
and progression to symptomatic forms of the disease.

The systemic and cellular inflammatory profile observed in CCC patients is mirrored
by the expression of cytokines in the cardiac tissue [28,31,37]. This scenario contributes
to cardiomyocyte apoptosis and, consequently, to heart tissue damage and remodeling,
which involves fibrosis [39,64,76,77]. In addition, these immune mediators may contribute
to cellular recruitment and survival of inflammatory T cells in the myocardium [42,78].

Therefore, understanding the cytokine networks involved with the pathogenic im-
mune response in CCC and with the protection in IND patients may elucidate important
immunological targets to prevent progression to symptomatic forms of the disease, as well
as control the intense inflammatory response associated with the cardiac pathology.

3. Cell Cytotoxicity in the Pathogenesis of Chronic Chagas Cardiomyopathy (CCC)

CCC is characterized by the development of myocarditis, tissue fibrosis, and cardiac
hypertrophy [79,80]. The inflammatory infiltrates present in the myocardium of CCC
patients are composed mainly of CD8+ T cells, which reinforces the role of cytotoxic activity
in cardiac tissue damage [81–84].

CD8+ T cells release cytolytic granules, composed of perforin and granzymes, toward
the target cells. Perforin forms pores in cell membranes and allows the entry of granzymes
that activate caspase pathways. This can result in apoptosis induction of target cells infected
by intracellular microorganisms, such as T. cruzi [83–85].

The presence of lysosomal-associated membrane protein-1 (LAMP-1 or CD107a) on
the surface of cytolytic cells characterizes the process of cell degranulation and the effector
immune response in infectious diseases [86]. In 2015, Lasso et al. showed that CD8+ T cells
from patients with CCC displayed an increase in the expression of CD107a/b, perforins, and
granzyme B when stimulated with T. cruzi antigens and the KMP-11 recombinant protein,
indicating that these cells increase their cytotoxic potential during chronic infection [87].
Reis et al. (1993) had previously reported the expression of CD8+ granzyme A+ cells in
myocardial lesions of CCC patients, supporting the idea that cell cytotoxic mechanisms
mediate cardiomyocyte destruction [28].

CD4+ cells have also been described as potentially cytotoxic in CD. A positive correla-
tion was demonstrated between CD4+ cells expressing the variable region beta 5 chain (Vβ5)
of the T-cell receptor (TCR), and the expression of granzyme A in CCC patients [88]. Fur-
thermore, in 2012, Keesen et al. (2012) demonstrated an increased frequency of granzyme B
and CD107 on circulating CD4+ T cells from IND and CCC patients, when compared to
healthy donors. Interestingly, the authors showed an association between the expression of
granzyme B and CD107a with the memory marker CD45RO in CD4+ cells from patients in
the IND group after stimulation with T. cruzi antigen. This indicates that the expression
of cytotoxic markers by this cell subpopulation may be necessary to control the immune
response in asymptomatic patients [89]. However, it is worth speculating which factors
are associated with the immunological imbalance that leads to cellular cytotoxicity in
CCC patients. It is also important to highlight that the frequency of CD4+ granzyme A+
T cells is higher in patients with CCC compared to idiopathic dilated cardiomyopathy
(IDC) [35]. Furthermore, the potentially cytotoxic CD4+CD28 cells are increased in patients
with chronic Chagas disease, when compared to uninfected individuals [90,91].
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The mechanisms of cell recruitment from the blood to cardiac tissue are not fully un-
derstood. However, it is known that the expression of adhesion molecules and chemokines
may contribute to the migration of cell subpopulations with cytotoxic and inflammatory
potential. In 1996, Laucella and collaborators demonstrated an association between serum
s-p-selectin and the severity of chronic Chagas disease [92]. Furthermore, the upregulation
of ICAM-1, VCAM-1, and LFA-1 in the myocardium of CCC patients points to the role of
T-cell recruitment and inflammation in cardiac pathogenesis [92].

The engagement of adhesion molecules and chemokines are essential orchestrators
of leukocyte migration. In 2004, Talvani et al. demonstrated that the release of CCL2
in plasma and the supernatant of PBMC from patients infected with T. cruzi is higher
in those with severe cardiac impairment than in the group with mild heart disease [32].
Furthermore, samples from CCC patients showed elevated plasma levels of CCL3 and
CCL4 when compared to patients with digestive disorders (32). The serum levels of
chemokines CXCL10 and CXCL9 were increased in Chagas patients when compared to
uninfected individuals [46]. Moreover, the plasma of CCC patients, when compared to
healthy donors, showed increased levels of different systemic chemokines involved with
the cellular recruitment of leukocytes and granulocytes [34]. This reinforces the role of
strong immune activation and cellular recruitment in the pathogenesis of CD.

In 2005, Gomes et al. reported that CCC displayed an increased frequency of CXCR3
and/or CCR5 expression by CD4+ and CD8+ T cells. Interestingly, these cells produce
the inflammatory cytokines IFN-gamma and TNF [64]. Additionally, when studying the
progressive evolution of CCC, Roffe et al., in 2019, demonstrated a gradual increase in the
expression of effector cells expressing CCR5 [62]. Consistent with these data, other studies
showed that circulating and infiltrating mononuclear cells in the myocardial tissue of CCC
patients present the expression of CXCR3, CCR5, CXCL9, and CCL5 [60,93].

Importantly, circulating CD8+ T cells from CCC patients show higher co-expression
of CCR5 and cMet, chemotactic receptors involved in T-cell cardiac tropism, compared
to IDC patients. Furthermore, the association between CD8+ CCR5+ cMet+ cells with
IFN-gamma and the Eomes transcription factor highlights the potential of these cells for the
recruitment of inflammatory and cytotoxic molecules capable of mediating cardiac tissue
damage in CCC patients [35]. These findings demonstrate the participation of chemokines
and their receptors in mediating the recruitment of immune cells with inflammatory and
cytotoxic activity in the myocardium of CCC patients, which can induce tissue destruction
and cardiac pathology (Figure 2). However, studies in this area are still scarce and further
analysis evaluating the association of these molecules with cytotoxic activity may elucidate
the mechanisms involved in cardiac tissue destruction in CD.
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Figure 2. Cytotoxic and inflammatory immune response in chronic Chagas cardiomyopathy. T
cells mediate cytotoxicity in chronic Chagas cardiomyopathy. These cells are recruited to the heart
by adhesion molecules and chemokines, and can release inflammatory cytokines and cytotoxic
molecules, such as granzymes and perforins, that contribute to cardiac tissue damage, fibrosis, and
disease severity (Designed with Biorender).

4. Control of Cytokine Expression

Factors that lead IND patients to develop CCC are still unknown. However, stud-
ies indicate that mechanisms of gene regulation and cytokine-mediated signaling may
be involved in the susceptibility to developing cardiomyopathy [94]. Amongst these
mechanisms, the presence of single nucleotide polymorphisms (SNPs) and alteration of
transcription factors emerges as important.

SNPs are changes in the DNA that occur in at least 1% of a given population, where
a nucleotide is exchanged for another. SNPs can occur in every region of the genome,
such as introns, exons, promoters, enhancers, or in between genes [95,96]. Some gene
polymorphisms can lead to changes in the levels of expression of the final protein, as well
as alterations in its functions, and are, thus, classified as functional polymorphisms.

Several studies have demonstrated that genotypic alterations can influence the pro-
duction of biological molecules in CD [97–99], suggesting that SNPs may be related to
susceptibility to CD and/or to the establishment of severe CCC. SNPs are often used as
biological markers to locate genes that are associated with the disease. For over 30 years,
numerous studies related to polymorphism in genes that encode cytokines, chemokines,
multiple receptors, and important molecules in the antigens presentation (MHC) have
been published. The selected studies are presented in Table 2 displaying the molecules
by their effector characteristics. While this data show the implication of polymorphisms
in disease outcomes, it is important to emphasize that some characteristics may vary
between populations causing different implications and results according to the sample
studied [100].



Pathogens 2023, 12, 171 8 of 19

Table 2. Polymorphisms in genes associated with the immune response and their association with
distinct clinical outcomes of human Chagas disease.

Gene Polymorphism Description References
Association with Development of CCC

IL4RA Interleukin 4 receptor [101]

IKBL/NFKBIL1 NF-kappa-B inhibitor-like protein 1 [102]

IL12ß; IL12 Pro-inflammatory cytokine [99,103]

IL17A; IL17F Protective cytokine [104–106]

NLRP1 Protein involved in inflammasome [107]

CASP1 Protein involved in inflammatory cascade [108]

Lymphotoxin
Member of the TNF superfamily of

cytokines; are responsible for regulating
the growth and function of lymphocytes

[109,110]

PI3 kgamma
Molecules involved in signaling pathway

of the
efficient immune response against T. cruzi

[111]

Association with Protection to CCC
CXCL10, CCL5, CXCL9 Chemokine Ligand [60,63]

CTLA-4 Cytotoxic T-lymphocyte-associated
antigen 4 [112]

VPAC1 Vasoactive intestinal peptide (VIP)
receptors 1 [113]

No association with CCC
IL4 Anti-inflammatory cytokine [101,103,114]

MIF Macrophage migration inhibitory factor [115]

IL1A, IL6 Pro-inflammatory cytokine [103,116]

TGF-β1 Multifunctional cytokine [99,117,118]

TLR1, TLR2 TLR4, TLR6 Toll-like receptor (TLR) [119,120]

TNFR1; TNFR2; Tumor necrosis factor receptor [99]

Galectin-3 Member of the lectin family/ cell–cell
adhesion [121]

CARD11 Protein involved in the function of
immune system cells [107]

FOXP3 Protein involved in immune system
responses [122]

Variable According to the Population Studied

MHC genes
Major histocompatibility

complex/presentation of internal or
external antigens to the T cells

[123–126]

CCR5; CCR2 Chemokine receptor type [60,109,127–130]

TNFA; TNFB; IL1B; IFN-g Pro-inflammatory cytokine [99,103,131–138]

IL10 Anti-inflammatory cytokine [97,99,114]

IL1RN Interleukin-1 receptor antagonist [131,132]

MAL/TIRAP Encodes an adaptor protein for TLR [120,139,140]

BAT-1 Anti-inflammatory activity associated
with reduced expression of HLA-B-1 [99,141]

CCL2/MCP-1 Chemokine ligand 2 [63,142]

Despite the number of studies performed related to polymorphism association with
disease susceptibility and severity, there are still important candidates that have not been
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evaluated. For example, studies related to CD and polymorphism in genes encoding cyto-
toxic molecules, critical for pathology, are lacking. Until now, few genome-wide association
studies (GWAS) have been conducted, and there are no GWAS studies linking SNPs and
changes in immune response in Chagas disease. Thus, studies on different molecules associ-
ated with CD and the assessment of their potential use as genetic biomarkers are necessary.
In addition to gene polymorphisms, epigenetic alterations and activation of transcription
factors are also important in controlling the expression and function of cytokines and other
immune proteins.

Epigenetics is characterized by reversible changes in the expression and activity of
one or more genes, without modifying the DNA sequence. Epigenetic changes occur by
chemical changes in DNA bases which can result in changes in chromosome structure
and packaging, maintaining the same nucleotide sequence [143]. The main epigenetic
mechanisms are DNA methylation, histone modification, and non-coding RNA expression.
DNA methylation consists of the addition of a methyl group (-Ch3) at the 5’ position of
the DNA cytosine (C) and it occurs most frequently in cytosines that are immediately
followed by a guanine (G). Regions rich in this sequence are called CpG islands and are
commonly located in the promoter region of genes. Thus, methylation is associated with
gene silencing, blocking gene transcription [144–146].

Another epigenetic mechanism is post-translational modifications in histone proteins.
Histones are proteins that DNA binds around that are important for the condensation of
the genetic material in the nucleus, regulating gene expression [147]. These modifications
include acetylation (addition of an acetyl group), methylation (addition of a methyl group),
phosphorylation (inclusion of a negative phosphate group to the histone tail), and ubiqui-
tylation, which is the annexation of a large molecule of ubiquitin to lysine residues. Each
of these changes interferes with DNA-histone interactions and can activate or block gene
transcription [147–150].

Another class of epigenetic mechanisms is non-coding RNAs (ncRNAs). The ncRNAs
are transcribed but not translated into proteins. Among ncRNAs, we can highlight the mi-
croRNAs (miRNAs) that are small, endogenous, and participate in the post-transcriptional
regulation of cell signaling pathways [151,152]. miRNAs bind to complementary mRNAs,
regulating expression through their destruction or the avoidance of protein translation (89).
Several studies demonstrate the influence of miRNAs in various biological processes such
as cell death, cell proliferation/differentiation, and immune regulation [153,154].

There are a few studies in the literature on epigenetic mechanisms and CD. Among
these mechanisms, the most studied are microRNAs. A lower expression of miR-1, miR-
133a, miR-133b, miR-208a, and miR-208b microRNAs were identified in heart tissue samples
of CCC patients when compared to the healthy control group [155]. In addition, it was
observed that during the chronic phase of the disease, IND patients have overexpression of
microRNA-208a in plasma, when compared to cardiac patients, which may be a possible
biomarker of disease progression [156]. In 2019, Nonaka et al., showed that the microRNAs
MiR-19a-3p, miR-21-5p, miR-29b-3p, miR-30a, and miR-199b were differentially expressed
in patients with CCC when compared to the indeterminate form. Additionally, their
expression presented a positive correlation with cardiac dysfunction and fibrosis, and
a negative correlation with ejection fraction and left ventricular tension, suggesting a
relationship between the expression of these microRNAs and disease progression [157].
The difficulty of obtaining human samples and the limitation in simulating in vitro a
biological environment are factors that may explain why there are so few epigenetic studies
in Chagas disease patients. Thus, experiments in animal models and in silico analysis are
strategies used to better understand the role of miRNA in this disease.

In 2015, Navarro et al., infected C57BL/6 mice with Colombian T. cruzi strain, evalu-
ated the expression of different miRNAs at 15, 30, and 45 days after infection, and identified
which miRNAs were differentially expressed. They reported that an association was
observed between changes in the QT interval and the expression of miRNAs. miR-20, miR-
20b, miR-21, miR-142, miR-146a, miR-146b, miR-155, miR-182, miR203, miR-222 had an



Pathogens 2023, 12, 171 10 of 19

increased expression, while in miR-139, miR -145, miR-149, miR-322, miR-503, a reduction
of expression was observed [158]. The same group, in 2017, evaluated the role of miRNAs
in the regulation of transcriptional changes during the acute phase of T. cruzi infection in
mice. Using the computational evaluation of the integrated genome-wide analysis of genes
and miRNA expression changes, the authors predicted that several miRNAs are related
to disease progression of arrhythmia, fibrosis, myocarditis, and hypertrophy of the heart
and that miR-238-3p, miR-149-5p, miR-143-3p, miR-145-5p, and miR-486-5p are present in
these four pathological changes [159]. It was observed that miR-21, miR-146a, and miR-155
were overexpressed in cardiac tissue and plasma of mice infected with T. cruzi, both in the
chronic and acute phases. Of these microRNAs, only miR-146a was found to be expressed
in both stages of the disease, thus emerging as a potential biomarker of infection [160]. The
upregulation of miR-21 and collagen expression was observed in serum samples from CCC
patients, cardiac tissue from infected mice, and tests in cardiac fibroblast culture. Thus, this
specific microRNA would be a mediator involved in the pathogenesis of cardiac fibrosis,
being a potential therapeutic target for CCC [161]. Furthermore, it was observed that the
lack of miR-155 caused strong parasitic infection and decreased the survival of infected
mice, and these showed a reduction in the production of IFN-gamma and TNF, which are
pro-inflammatory cytokines [162].

Cytokines bind to their receptors on the cell surface, leading to activation or inacti-
vation of STATs and NF-kB, which are transcription factors capable of interfering with
gene transcription. Target genes regulated by STATs are related to cell survival, growth,
apoptosis, host defense, cell stress, and differentiation functions depending on the sig-
naling pathway and target tissue. The NF-kB pathway plays a critical role in regulating
the survival, activation, and differentiation of innate immune cells and inflammatory T
cells [163,164]. For example, Th1 lymphocyte subpopulations respond to the binding of
proinflammatory cytokines to their receptors, such as IFN-γ, IL-6, IL-12, and TNF, which
will activate STATs 1, 3, 4, and NF-kB, respectively [39,164]. However, Th2 cells develop a
regulatory response, mainly mediated by IL-4 binding, promoting STAT6 pathway activa-
tion [165]. Although not directly associated with Th1 and Th2 activation, STAT2 is critical
for macrophage activation and type 1 interferon responses [166] and STAT5 is associated
with cell proliferation and apoptosis [167]. Activation pathways of transcription factors by
the engagement of cytokines and their receptors are shown in Figure 3.

Despite the importance of these mechanisms in influencing protein expression and
function, to the best of our knowledge, fewer studies regarding cytokine signaling have
been performed in Chagas disease. It has been shown that STAT4 is associated with heart
failure in patients with dilated cardiomyopathy [31]. Furthermore, it has been described
that T. cruzi can release extracellular vesicles that act on macrophages activating the NF-kB
signaling pathway, which in turn, produces inflammatory cytokines contributing to cardiac
damage and exacerbated inflammatory pathology observed in CCC [168]. In addition,
the blockade of this pathway is important for the reduction of cardiac damage [169] and
may emerge as a potential target for intervention. Therefore, analysis of the expression of
cytokine receptors and activated STATs will also provide important information regarding
cytokine-mediated immune control and unveil additional targets.
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Figure 3. Cytokine activation of STAT and association with Th1/Th2 development. The engage-
ment of inflammatory cytokines, such as IFN-gamma, IL6, IL12, and TNF, with their receptors favors
the activation of transcription factors STAT1, STAT3, STAT4, and NF-kB, which contributes to the
production of Th1 cytokines. While in modulatory environments, the presence of IL4 cytokine
activates STAT6, which contributes to the production of Th2 cytokines. The association of STAT with
cytokines (right corner of figure) emphasizes the main STAT associated with the cytokine, although
other STAT may also be activated by the same cytokine (Designed with Biorender).

5. Concluding Remarks

The significance of this review is that it provides a comprehensive assessment of the
role of cytokine and immunoregulation in the differential clinical evolution of human Cha-
gas disease, presenting critical aspects related to their role in controlling or exacerbating the
inflammatory response, as well as pre- and post-transcriptional control of these molecules.
Below, we highlight some of the potential future directions that can arise from the current
knowledge in the area. There is convincing evidence that cytokine networks can influence
the clinical outcome of CD. In fact, the studies reviewed in this article reinforce the cor-
relation of inflammatory cytokines, such as IFN-gamma and TNF, with the worst clinical
outcome and progression of CCC. Cytokines with a modulatory profile are correlated with
the maintenance of IND, without impairment of cardiac and digestive functions. However,
the mechanisms by which these molecules act, as well as the complex signaling pathways
activated by cytokines, are not completely understood. Additionally, there are a few studies
of SNPs in cytokine coding genes in CD patients. Despite that, signaling pathways and
SNPs certainly have an impact on the clinical course of the disease. It is important to empha-
size that several other aspects of the host, as well as the parasite’s intrinsic characteristics,
are key determinants in cytokine responses. In addition, although many studies assess
the profile of cytokines in individuals with established chronic disease, longitudinal study
cohorts that follow the profile of this immune network from the beginning of the infection
should be encouraged to understand the importance and impact of these molecules in
CD evolution. Given the solid and extensive knowledge gained over the years related to
cytokine influence in Chagas disease severity, future studies focused on their modulation,
or on their receptors and signaling pathways, to control disease pathology may provide
important immunotherapeutic alternatives to treat Chagas disease alone or in combination
with anti-parasite drugs.
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